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Absorbing processes

Z = (Zt , t ≥ 0), a pure jump Markov process in Λ ∪ {0}

I Q = (q(x , y), x , y ∈ Λ ∪ {0} the rates.)

I Λ is an irreducible class.

I µ is the intial ditribution.

I 0 is absorbing (i.e. q(0, y) = 0 for all y ∈ Λ)

I Absorption is certain: Pµ(Zt = 0, for some t > 0) = 1.

Unique invariant distribution: δ0. In this case we study the
conditioned evlution

ϕµt (x) =
Pµ(Zt = x)

Pµ(Zt 6= 0)



Quasi-stationary distributions

ϕµ is the unique solution to the Kolmogorov forward equations

d

dt
ϕµt (x) =

∑
y∈Λ

q(y , x)ϕµt (y) +
∑
y∈Λ

q(y , 0)ϕµt (y)ϕµt (x).

The Yaglom limit for the measure µ is defined by

lim
t→∞

ϕµt (y), y ∈ Λ,

if the limit exists and is a probability on Λ.
A quasi-stationary distribution (qsd) for Q is a probability
measure ν on Λ that is invariant under {ϕt , t ≥ 0}, that is

ϕνt = ν, for all t ≥ 0.

If the Yaglom limit exists, it is known to be a qsd (and a qsd is
a Yaglom limit).



Some difficulties

I Non-linear semigroup.

I It is non-attractive, even if Z is.

I Markov process theory can not be applied.

I In particular: the number of quasi-stationary distributions can
be 0, 1 or ∞.

I There is no obvious way to simulate neither the qsd nor the
conditioned evolution for large times.



Example: linear birth and death process

q(x , x + 1) = px , q(x , x − 1) = (1− p)x

I There is a one parameter family of qsd if p < 1
2 , and no one

if p = 1
2 . (Seneta-Vere-Jones, 1966. Cavender, 1978)



Some intuition

Let T be the aborption time and assume Λ = N.

Theorem
Theorem (Ferrari, Kesten, Mart́ınez and Picco 1995):
Assume lim

x→∞
Pδx (T < t) = 0, then

There exists a qsd ⇐⇒ E(eθT ) <∞, for some θ > 0.



The Fleming-Viot process (fv) driven by Q

We have N particles, each particle moves independently of the
others as a continuous time Markov process with rates Q, but
when it attempts to jump to state 0, it comes back immediately to
Λ by jumping to the position of one of the other particles chosen
uniformly at random.
Denote

I ξt = ξN,ξ
0

t = (ξt(1), . . . , ξt(N)) ∈ ΛN the state of the process
at time t.

I η(ξ, x) the number of ξ particles at site x .

I mx(ξ) = η(ξ,x)
N , x ∈ Λ the empirical measure.



The Fleming-Viot process (fv) driven by Q

Generator

LN f (ξ) =
N∑
i=1

∑
x∈N\{ξ(i)}

[
q(ξ(i), x) + q(ξ(i), 0)

∑N
j 6=i 1{ξ(j)=x}

N − 1

]
(f (ξi ,x)− f (ξ)),

ξi ,x(j) =

{
x j = i ,

ξ(j) j 6= i ,



fv as an approximation of the conditioned evolution
and qsd

We have

d

dt
E
ηt(x)

N
=
∑
y∈Λ

q(y , x)E
ηt(y)

N
+
∑
y∈Λ

q(y , 0)E[
ηt(y)

N

ηt(x)

N − 1
] .

Recall

d

dt
ϕµt (x) =

∑
y∈Λ

q(y , x)ϕµt (y) +
∑
y∈Λ

q(y , 0)ϕµt (y)ϕµt (x).



fv as an approximation of the conditioned evolution
and qsd

Introduced by Burdzy, Holyst, Ingemar and March with Brownian
Motion in a bounded domain as driving process (1996, 2000).

Important contributions and generalizations by
Grigorescu and Kang
Löbus
Villemonais
Bieniek, Finch (general diffusions).

In the countable state space setting
Ferrari, Marić, Asselah, Jonckheere
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Problems (some)

1. Convergence of ηt(x)
N to ϕµt (x) as N →∞ in finite time

intervals.

2. Existence of an invariant measure λN for fv and convergence
to equilibrium for each N.

3.

∫ ∣∣∣∣η(ξ, x)

N
− ν(x)

∣∣∣∣ dλN(ξ)→ 0, ν a qsd. (which?)

Remark: fv inherits the difficulties of the conditioned process.
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Problem 1: Particles correlations
Evolution of the empirical profile

d

dt
E
ηt(x)

N
=
∑
y∈Λ

q(y , x)E
ηt(x)

N
+
∑
y∈Λ

q(y , 0)E[
ηt(y)

N

ηt(x)

N − 1
] .

Conditioned evolution

d

dt
ϕµt (x) =

∑
y∈Λ

q(y , x)ϕµt (y) +
∑
y∈Λ

q(y , 0)ϕµt (y)ϕµt (x).

So et(x) = Eηt(x)
N − ϕµt (x) verifies

d

dt
eµt (x) =

∑
y∈Λ

q(y , x) et(y)+
∑
y∈Λ

q(y , 0) (ayet(y)+bx et(x))+R(ξ; x , t).

R(ξ; x , t) =
∑
y∈Λ

q(y , 0)

[
N

N − 1
E [my (ξt)mx(ξt)]− Emy (ξt)Emx(ξt)

]
.
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Proposition (Ferrari-Marić, 2006)
For each t > 0, and any x , y ∈ Λ

sup
ξ∈ΛN

∣∣Eξ[mx(ξt)my (ξt)]− Eξ[mx(ξt)]Eξ[my (ξt)]
∣∣ ≤ eCt

N
.

Proof. Follows from∣∣P(ξt(i) = x , ξt(j) = y)− P(ξt(i) = x)P(ξt(j) = y)
∣∣ ≤ eCt

N
.

which can be proved by coupling.
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Coming back to the conditioned evolution...
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Coming back to the conditioned evolution...

Under reasonable assumptions on Q, Gronwall’s inequality gives us

E(‖m(ξt)− ϕm(ξ0)
t ‖2) ≤ eCt

N

i.e. For compact time intervals, the empirical measure of fv
converges to the conditioned evolution



Subcritical branching

Let {p(n), n ∈ N} be the offspring distribution. We consider
Λ = N and {q(x , y); x , y ∈ N} of the form

q(x , x + i − 1) = xp(i), i 6= 1, q(x , x) = −x ,

and q(x , y) = 0 otherwise.
We assume

−v :=
∞∑

i=−1

ip(i + 1) < 0 (and exponential moments)

There is a one parameter family of qsd! (Seneta-Vere-Jones 1966,
Cavender 1978, Van Doorn 1991)



Subcritical branching

The minimial QSD νmin has generating function given by

G (νmin; z) = 1− exp

(
−v
∫ z

0

du∑
i≥0 p(i)ui − z

)
,

and is the Yaglom limit of every initial distribution µ with finite
mean.

Also it has the minimum expected absorption time.
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Subcritical branching

Theorem. (Asselah, Ferrari, G., Jonckheere)
For each N ≥ 1, the Fleming-Viot process driven by subcritical
branching is ergodic with invariant measure λN and for each x ∈ N
we have

lim
N→∞

∫
|mx(ξ)− νmin(x)| dλN(ξ) = 0.



Strategy of proof

∫
|mx(ξ)−νmin(x)| dλN(ξ) =

∫
|mx(ξξt )− νmin(x)| dλN(ξ)

=

∫
K(α)

∣∣∣mx(ξξt )− νmin(x)
∣∣∣ dλN(ξ) + 2λN(K (α)c)

≤ sup
ξ∈K(α)

∣∣∣mx(ξξt )− νmin(x)
∣∣∣+ 2λN(K (α)c)

≤ sup
K(α)
|mx(ξξt )− ϕm(ξ)

t (x)|+ sup
K(α)
|ϕm(ξ)

t (x)− νmin(x)|+2λN(K (α)c)
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λN(K (α))

Let

K (α) := {ξ : ψ(η) ≤ α} ψ(η(ξ, x)) :=

∑
x2η(ξ, x)∑
xη(ξ, x)

Proposition.

(i)

∫
ψ dλN(ξ) ≤ C1 + C2

∫
maxi ξ

2(i)

N
dλN(ξ)

(ii)

∫
max

i
ξ2(i) dλN(ξ) ≤ C (ε)(logN)4+ε

Corollary.

(iii)

∫
ψ dλN(ξ) ≤ κ

(iv)λN(K (α)c) ≤ κ

α



λN(K (α))

Let

K (α) := {ξ : ψ(η) ≤ α} ψ(η(ξ, x)) :=

∑
x2η(ξ, x)∑
xη(ξ, x)

Proposition.

(i)

∫
ψ dλN(ξ) ≤ C1 + C2

∫
maxi ξ

2(i)

N
dλN(ξ)

(ii)

∫
max

i
ξ2(i) dλN(ξ) ≤ C (ε)(logN)4+ε

Corollary.

(iii)

∫
ψ dλN(ξ) ≤ κ

(iv)λN(K (α)c) ≤ κ

α



λN(K (α))

Let

K (α) := {ξ : ψ(η) ≤ α} ψ(η(ξ, x)) :=

∑
x2η(ξ, x)∑
xη(ξ, x)

Proposition.

(i)

∫
ψ dλN(ξ) ≤ C1 + C2

∫
maxi ξ

2(i)

N
dλN(ξ)

(ii)

∫
max

i
ξ2(i) dλN(ξ) ≤ C (ε)(logN)4+ε

Corollary.

(iii)

∫
ψ dλN(ξ) ≤ κ

(iv)λN(K (α)c) ≤ κ

α



λN(K (α))

Let

K (α) := {ξ : ψ(η) ≤ α} ψ(η(ξ, x)) :=

∑
x2η(ξ, x)∑
xη(ξ, x)

Proposition.

(i)

∫
ψ dλN(ξ) ≤ C1 + C2

∫
maxi ξ

2(i)

N
dλN(ξ)

(ii)

∫
max

i
ξ2(i) dλN(ξ) ≤ C (ε)(logN)4+ε

Corollary.

(iii)

∫
ψ dλN(ξ) ≤ κ

(iv)λN(K (α)c) ≤ κ

α



λN(K (α))

Let

K (α) := {ξ : ψ(η) ≤ α} ψ(η(ξ, x)) :=

∑
x2η(ξ, x)∑
xη(ξ, x)

Proposition.

(i)

∫
ψ dλN(ξ) ≤ C1 + C2

∫
maxi ξ

2(i)

N
dλN(ξ)

(ii)

∫
max

i
ξ2(i) dλN(ξ) ≤ C (ε)(logN)4+ε

Corollary.

(iii)

∫
ψ dλN(ξ) ≤ κ

(iv)λN(K (α)c) ≤ κ

α



λN(K (α))

Let

K (α) := {ξ : ψ(η) ≤ α} ψ(η(ξ, x)) :=

∑
x2η(ξ, x)∑
xη(ξ, x)

Proposition.

(i)

∫
ψ dλN(ξ) ≤ C1 + C2

∫
maxi ξ

2(i)

N
dλN(ξ)

(ii)

∫
max

i
ξ2(i) dλN(ξ) ≤ C (ε)(logN)4+ε

Corollary.

(iii)

∫
ψ dλN(ξ) ≤ κ

(iv)λN(K (α)c) ≤ κ

α



λN(K (α))
Large deviations, another coupling and drift inequalities

Proposition. The Fleming-Viot process can be embedded in a
Multitype Branching Markov Chain (MBMC) driven by Z but
avoiding the jumps to 0 (Z̃ ).

Corollary. The bounds obtained for the (reflected) driving process
Z̃ also hold for the Fleming-Viot process but with a factor eCt .
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Graphical construction II
The Multitype Branching Markov Chain

I We have a marked PP ωV
i with rate C := sup q(x , 0) for each

particle. The marks are uniform in [0, 1]× {1, . . . ,N} \ {i}
I The types are 1, . . . ,N, each one associated to a particle.

I We start with N individuals, one of each type.

I Individual of type i starts at ξ0(i).

I If ωV
i rings and the mark points to j , then every type j

individual dies and has two children: one of type i and one of
type j .

I Individuals evolve spatially according to Z̃ .
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1. (i) Fleming-Viot driven by subcritical branching is ergodic for
each N.

2. (ii) We have drift inequalities for maxi ξ
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Open problems

Same result for general Q.
In particular, is open when Q is a birth and death process with
constant rates.



THANKS.


