Pablo Groisman
U. of Buenos Aires

INHOMOGENEOUS RANDOM SYSTEMS
IHP Paris, 24 January 2012



Z = (Z;,t >0), a purejump Markov process in AU {0}

Q = (g(x,y),x,y € NU{0} the rates.)

A is an irreducible class.

1 is the intial ditribution.

0 is absorbing (i.e. g(0,y) =0 for all y € A)
Absorption is certain: P, (Z; = 0, for some t > 0) = 1.

Unique invariant distribution: dg. In this case we study the
conditioned evlution
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" is the unique solution to the Kolmogorov forward equations
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The for the measure p is defined by
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if the limit exists and is a probability on A.
A (@sp) for Q is a probability
measure v on A that is invariant under {¢;, t > 0}, that is

v

oy =v, forall t>0.

If the Yaglom limit exists, it is known to be a QsD (and a QSD is
a Yaglom limit).



Non-linear semigroup.

It is non-attractive, even if Z is.

Markov process theory can not be applied.

In particular: the number of quasi-stationary distributions can
be 0, 1 or co.

There is no obvious way to simulate neither the QSD nor the
conditioned evolution for large times.



glx,x+1)=px,  q(x,x—1)=(1-p)x

There is a one parameter family of QsSD if p < % and no one
if p= 3. (Seneta-Vere-Jones, 1966. Cavender, 1978)



Let T be the aborption time and assume A = N.

Assume lim Ps (T < t) =0, then

X—00

There exists a QsD <= E(e’T) < oo, for some 6 > 0.



We have N particles, each particle moves independently of the
others as a continuous time Markov process with rates @, but
when it attempts to jump to state 0, it comes back immediately to
A by jumping to the position of one of the other particles chosen
uniformly at random.

& = dv,go = (&(1),...,&(N)) € AN the state of the process
at time t.
n(&, x) the number of & particles at site x.

my(§) = L,\,X) x € N\ the empirical measure.
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We have
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Introduced by Burdzy, Holyst, Ingemar and March with Brownian
Motion in a bounded domain as driving process (1996, 2000).
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Important contributions and generalizations by

(general diffusions).

In the countable state space setting
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1. Convergence of %NX) to ¢} (x) as N — oo in finite time
intervals.

2. Existence of an invariant measure AN for Fv and convergence
to equilibrium for each .

/‘ n(&.x) _ ‘d)\"’(g) 0, vaQsD. (which?)

FV inherits the difficulties of the conditioned process.



Problem 1: Particles correlations
Evolution of the empirical profile

% => aqly,x) +> aly,0)

yEN yEeN






% =D aly.x) +> q(y,0)

G X+ X0

yen y€eN

So verifies

= D iz ) D D L

yen yeN



% =D aly.x) +> q(y,0)

G X+ X0

yen y€eN

So verifies

= D iz ) D D L

yen yeN



(Ferrari-Mari¢, 2006)
For each t > 0, and any x,y € \

e [E [mx(&e)my (€0)] — B [mx (&) ES[my (€0)]] <



(Ferrari-Mari¢, 2006)
For each t > 0, and any x,y € \

sup. [ [m(&e)m, (€)] — ES[mi(€0)] ES[m, (€0)]] < -
genN

Follows from
[B(&e(i) = x, &) = ¥) = Bl&eli) = ) B&l) = y)| < S

which can be proved by coupling.
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Under reasonable assumptions on @, Gronwall’s inequality gives us

eCt

E(llm(&:) - ¢ l2) < 57



Let be the offspring distribution. We consider
A =N and {g(x,y); x,y € N} of the form

and q(x,y) = 0 otherwise.
We assume

<0 (and exponential moments)

(Seneta-Vere-Jones 1966,
Cavender 1978, Van Doorn 1991)



The Vmin has generating function given by
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and is the Yaglom limit of every initial distribution p with finite
mean.




The Vmin has generating function given by

S z du
G(Vminiz) =1 p( /OZ,-ZOP(")“"—Z)’

and is the Yaglom limit of every initial distribution p with finite
mean.

Also it has the minimum expected absorption time.



(Asselah, Ferrari, G., Jonckheere)
For each N > 1, the Fleming-Viot process driven by subcritical
branching is ergodic with invariant measure AN and for each x € N
we have

im / m(€) — V()] dAV(E) = 0.

N— oo



/ | M1(E)—vimin ()] AN (E) = / Im(€6) = vmin ()] AV (E)
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Let

> x*n(€,x)
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The Fleming-Viot process can be embedded in a
Multitype Branching Markov Chain (MBMC) driven by Z but
avoiding the jumps to 0 (Z).



The Fleming-Viot process can be embedded in a
Multitype Branching Markov Chain (MBMC) driven by Z but
avoiding the jumps to 0 (Z).

The bounds obtained for the (reflected) driving process

Z also hold for the Fleming-Viot process but with a factor et.



Graphical construction ||
The Multitype Branching Markov Chain
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We have a marked PP w) with rate C := sup q(x, 0) for each
particle. The marks are uniform in [0,1] x {1,..., N} \ {i}

The types are 1,..., N, each one associated to a particle.
We start with N individuals, one of each type.
Individual of type / starts at &o(/).

If w,-V rings and the mark points to j, then every type j
individual dies and has two children: one of type i and one of
type J.

Individuals evolve spatially according to Z.



Graphical construction ||
The embedded Fleming-Viot



Particle i follows the trajectory of the unique type / individual.



Particle i follows the trajectory of the unique type / individual.
If wY rings and the mark U < q(&(i),0)/C then particle i (is
absorbed and) jumps over the type i individual branched at
that time from particle .
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Let 6 > 1 and a time T such that Tp(0) < /4. Then

P <sup maxmin |£5(7) — e & ()| > 5) < NePOT
s<T ! J

(i) Fleming-Viot driven by subcritical branching is ergodic for
each N.

(i) We have drift inequalities for max; £2(/)



Same result for general Q.
In particular, is open when @ is a birth and death process with
constant rates.



THANKS.



