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The Problem

dx = b(x) dt + σ(x) dW
x(0) = z ∈ R>0

I W is a one dimensional Wiener process (dW is “white noise”)

I b, σ are smooth and positive.

That is . . .

x = x(t) = x(ω, t) is a stochastic process that verifies

x(t) = z +

∫ t

0
b(x(s)) ds +

∫ t

0
σ(x(s)) dW (s).

If b is not globally Lipschitz, solutions to this problem may explode
in finite time.
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ODE vs. SDE

x(t) x(t)
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Explosions

There exist a stopping time T such
that x(ω, t) is defined in [0,T (ω)),
but

x(ω, t) ↗ +∞ as t ↗ T (ω).

Pablo Groisman UBA

Stochastic Differential Equations with explosions



Introduction Explosions in evolution problems Numerical approximations Adaptive numerical scheme

Fatigue Cracking

I This kind of SDE are used, for
example, to model fatigue
cracking (fatigue failures in solid
materials)

I x(t) represents the evolution of
the length of the largest crack.

I The explosion time corresponds
to the time of ultimate damage
or fatigue failure in the material.
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Explosions in evolution problems

1. ODE: ẋ(t) = b(x(t)). Blow-up ⇐⇒ T =
∫ +∞
x(0)

1
b < ∞. T is

the blow-up time

2. Nonlinear parabolic PDE: ut = ∆u + b(u) .

I There exists solutions with blow-up if
∫ +∞ 1

b < ∞ (Kaplan,
1963. Fujita, 1966).

I No closed criteria to decide if blow-up will occur.
I No explicit formula for the blow-up time.
I The phenomenon is very well understood (blow-up times,

blow-up sets, blow-up rates, numerical computation of
solutions, etc.)
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Explosions in evolution problems

3. SDE: The Feller Test for Explosions provides a precise criteria
to determine, in terms of b and σ whether solutions explode
with probability zero, positive or one.

Examples:

1. dx = (1 + x2) dt + dW → P(explosion in finite time) = 1

2. b and σ globally Lipschitz. → P(exp. in finite time) = 0

3. Poner prob positivia

4.
I 0 < C1 ≤ σ2(s) ≤ C2b(s).

I b(s) is nondecreasing for s > s0 and

∫ ∞ 1

b(s)
ds < ∞

P(explosion in finite time) = 1
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Explosions in evolution problems

4. SPDE: ut = uxx + upẆ .

Blow-up if p > 3/2. Global solutions
if p < 3/2 (C. Mueller, 2000)

Both for SDE and SPDE: No further results on (for example)
the behavior of the explosion time, the set where explosions occur,
numerical computation of the solutions, etc.
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Our work...

I Theoretical study of the regularity of the explosion time

I Numerical approximations for this kind of problems
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Numerical approximations

We assume

I 0 < C1 ≤ σ2(s) ≤ C2b(s).

I b(s) is nondecreasing for s > s0 and

∫ ∞ 1

b(s)
ds < ∞.

Under these conditions, explosions occur with probability one.
Example:

dx = (1 + x2) dt + dW
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What features we expect from a numerical method
for this kind of problems?

I Convergence of the numerical solutions to the continuous one.

I Explosions in the numerical solutions for small choices of the
parameter of the method.

I Convergence of the numerical explosion times to the
continuous one.

Pablo Groisman UBA

Stochastic Differential Equations with explosions



Introduction Explosions in evolution problems Numerical approximations Adaptive numerical scheme

What features we expect from a numerical method
for this kind of problems?

I Convergence of the numerical solutions to the continuous one.

I Explosions in the numerical solutions for small choices of the
parameter of the method.

I Convergence of the numerical explosion times to the
continuous one.

Pablo Groisman UBA

Stochastic Differential Equations with explosions



Introduction Explosions in evolution problems Numerical approximations Adaptive numerical scheme

What features we expect from a numerical method
for this kind of problems?

I Convergence of the numerical solutions to the continuous one.

I Explosions in the numerical solutions for small choices of the
parameter of the method.

I Convergence of the numerical explosion times to the
continuous one.

Pablo Groisman UBA

Stochastic Differential Equations with explosions



Introduction Explosions in evolution problems Numerical approximations Adaptive numerical scheme

What features we expect from a numerical method
for this kind of problems?

I Convergence of the numerical solutions to the continuous one.

I Explosions in the numerical solutions for small choices of the
parameter of the method.

I Convergence of the numerical explosion times to the
continuous one.

Pablo Groisman UBA

Stochastic Differential Equations with explosions



Introduction Explosions in evolution problems Numerical approximations Adaptive numerical scheme

The Euler-Maruyama scheme (for bounded solutions)

dx = b(x) dt + σ(x) dW

0 S t
i
 t

i+1
 

h 

Xi ≈ x(ti )

h = ti+1 − ti , ∆Wi = W (ti+1)−W (ti ).

Xi+1 = Xi + hb(Xi ) + σ(Xi )∆Wi , X0 = x(0) = z ,

Pablo Groisman UBA
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Xi+1 = Xi + hb(Xi ) + σ(Xi )∆Wi

I Not suitable for solutions with explosions! The numerical
solution is defined for every positive time.

I The time step h can not be constant. It must be adapted as
the solution increases.

I We propose hi = h
b(Xi )

. i.e. ti+1 − ti = h
b(Xi )

Xi+1 = Xi + hib(Xi ) + σ(Xi )∆Wi = Xi + h + σ(Xi )∆Wi
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The numerical solution
X (ti ) = Xi ,

X (t) = Xi+(t−ti )b(Xi )+σ(Xi )(W (t)−W (ti )), for t ∈ [ti , ti+1).

is a well defined process up to time

Th =
∞∑
i=1

hi =
∞∑
i=1

h

b(Xi )
.

We say that the numerical solution explode in finite time Th if

Th < ∞
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Mean Square Convergence (while solutions are
bounded)

Theorem 1: Fix a time S > 0 and a constant M > 0. Consider
the stopping times given by

RM := inf{t : x(t) = M} RM
h := inf{t : X (t) = M}

τh = RM ∧ RM
h ∧ S

Then

lim
h→0

E
[

sup
0≤t≤τh

|x(t)− X (t)|2
]

= 0.

Pablo Groisman UBA

Stochastic Differential Equations with explosions



Introduction Explosions in evolution problems Numerical approximations Adaptive numerical scheme

Explosions in the Numerical Scheme
Theorem 2:

1. X (·) explodes in finite time with probability one.

2. For every h > 0 we have,

lim
i→∞

X (ti )

hi
= 1 i.e X (ti ) ∼ hi

(This is the asymptotic behavior of the numerical solution, since
the behavior of

ti =
i−1∑
j=1

h

b(Xj)

can also be computed.)
For example, if b(s) ∼ sp (p > 1), the explosion rate is

X (ti )(Th − ti )
1/(p−1) →

(
1

p − 1

) 1
p−1

as ti ↗ Th.
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Proof:

Xi+1 = Xi + hib(Xi ) + σ(Xi )∆Wi = Xi + h + σ(Xi )∆Wi

Xi+1 = z + ih +
i∑

j=1

σ(Xj)∆Wj

Since “∆Wj ∼ N(0, hj)”,∑i
j=1 σ(Xj)∆Wj

i
∼

∑i
j=1

√
h

b(Xj )
σ(Xj)Zj

i
→ 0, then

Xi
ih → 1 a.s., and hence

∞∑
i=i0

τi =
∞∑

i=i0

h

b(Xi )
∼

∫ ∞

Xi0−1

1

b(u)
du < +∞, a.s.
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Convergence of the Numerical Explosion Times

Theorem 3: For every ε > 0

lim
M→∞

lim
h→0

P(|RM
h − T | > ε) = 0.

RM
h := inf{t : X (t) = M}
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Numerical Experiments

b(s) = |s|1.1 + 0.1

σ(s) =
√
|s|1.1 + 0.1

z = 10

M = 105

1000 sample paths.

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

h=1
h=0.5
h=0.01

Kernel density estimator of RM
h .
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Numerical Experiments

b(s) = |s|1.1 + 0.1
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Asymptotic behavior of the numerical solution.
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Numerical Experiments

Some sample paths
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