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Abstract

In this paper we study numerical approximations for positive solutions of a
nonlinear diffusion equation with a nonlinear boundary condition,





ut = (um)xx (x, t) ∈ (0, L)× [0, T ),
(um)x(0, t) = 0 t ∈ [0, T ),
(um)x(L, t) = up(L, t) t ∈ [0, T ),
u(x, 0) = u0(x) x ∈ (0, L),

where m > 0 and p > 0 are parameters.
We describe in terms of p and m when solutions of a semidiscretization in space

exist globally in time and when they blow up in finite time. We also find the blow-up
rates and the blow-up sets. In particular we prove that regional blow-up it is not
reproduced by the numerical scheme. However in the appropriate variables we can
reproduce the correct blow-up set when the mesh parameter goes to zero.
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1 Introduction.

In this paper we deal with a numerical approximation for the following problem,




ut = (um)xx (x, t) ∈ (0, L)× [0, T ),
(um)x(0, t) = 0 t ∈ [0, T ),
(um)x(L, t) = up(L, t) t ∈ [0, T ),
u(x, 0) = u0(x) x ∈ (0, L),

(1.1)

where m > 0 and p > 0 are parameters. We assume that u0 is positive.

In many problems, like (1.1), solutions exist only for a finite period of time, T < ∞,
in this case u becomes unbounded in finite time and we say that it has blow-up, or it is
defined for all positive t, T = ∞, in this case we call it a global solution. See [FF], [L],
[P], [SGKM] for references on blow-up problems.

In this paper we are interested in numerical approximations of (1.1). Since the solution
u may develop a singularity in finite time, it is an interesting question what can be said
about numerical approximations of this kind of problems. For previous work on numerical
approximations of blowing up solutions we refer to [ALM1], [ALM2], [BB2], [BK], [BHR],
[C], [FBR], [LR], [N], [NU] the survey [BB] and references therein. For (1.1) in the case
m = 1, that is for linear diffusion, we refer to [DER]. Up to our knowledge this is the
first numerical study of (1.1).

In our problem one has a nonlinear source term at the boundary x = L and a nonlinear
diffusion in the equation. The behaviour of the solutions is determined by the different
influence of both terms. This problem was analyzed in [Fi] and the behaviour varies if m
is greater or less than one. Let us summarize the known results for the solutions of (1.1).

If m > 1 the equation is known as porous medium equation. It is proved in [Fi] that
for every positive initial data the solution blows up if and only if p > 1. Moreover the
blow-up rate for increasing initial data is given by,

- ‖u(·, t)‖L∞ ∼ (T − t)−
1

p−1 if 1 < p ≤ m,

- ‖u(·, t)‖L∞ ∼ (T − t)−
1

2p−m−1 if p > m.

For this problem the blow-up set, B(u), i.e., the set of points where u(x, t) becomes
unbounded, is given by,

- B(u) = [0, L] if 1 < p < m (global blow-up),

- B(u) = [0, L] if p = m and L ≤ 2m
m−1

(global blow-up),

- B(u) = [L− 2m
m−1

, L] if p = m and L > 2m
m−1

(regional blow-up),

- B(u) = {L} if p > m (single point blow-up).

This is proved in [Fi] for the cases 1 < p < m and p > m. For the case p = m
we perform the analysis in the Appendix and give a more precise description of blow-up
showing the existence and uniqueness of a profile that gives the asymptotic behaviour of
blowing up solutions when we consider self-similar variables.

In the case 0 < m ≤ 1 (known as fast diffusion equation if 0 < m < 1 or heat equation

for m = 1) the existence of blowing up solutions depends on m and p. In fact every
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positive solution blows up if p > m+1
2

, and if p ≤ m+1
2

every solution is global (see [Fi],
[WD]). In this case the blow-up rate is given by

- ‖u(·, t)‖L∞ ∼ (T − t)−
1

2p−m−1 if p > m+1
2

,

and the blow-up set is

- B(u) = {L} if p > m+1
2

(single point blow-up).

Now we introduce the numerical scheme. We discretize using piecewise linear finite
elements with mass lumping in a uniform mesh for the space variable, it is well known
that this discretization in space coincides with the classic central finite difference second
order scheme.

We denote with U(t) = (u1(t), ...., uN+1(t)) the values of the numerical approximation
at the nodes xi = (i− 1)h, h = L/N , at time t. Then U(t) is a solution of the following
problem (see [Ci]): {

MU ′(t) = −AUm(t) +BU p(t),
U(0) = uI

0,
(1.2)

where M is the mass matrix obtained with lumping, A is the stiffness matrix and uI
0 is the

Lagrange interpolation of the initial data, u0. Writing this equation explicitly we obtain
the following ODE system,





u′1(t) = 2
h2 (u

m
2 (t)− um

1 (t)),

u′k(t) = 1
h2 (u

m
k+1(t)− 2um

k (t) + um
k−1(t)), 2 ≤ k ≤ N,

u′N+1(t) = 2
h2 (u

m
N(t)− um

N+1(t)) + 2
h
up

N+1(t),

uk(0) = u0(xk) > 0, 1 ≤ k ≤ N + 1.

(1.3)

To begin our analysis we prove that numerical approximations given by (1.3) converge
uniformly if we consider a regular bounded solution of the continuous problem. Hence
our scheme is uniformly convergent in sets of the form [0, L]× [0, T − τ ].

Our main results concern the behaviour of the numerical approximations given by
(1.3). Significant differences appear between the continuous and the discrete problem.

First we prove that positive solutions of the numerical problem blow up if and only if
p > 1. Hence, in the case 0 < m < 1 with m+1

2
< p ≤ 1 the continuos solutions blow up

in finite time while the numerical approximations are globally defined.

Next, we turn our attention to the blow-up rate. For increasing in space solutions we
find that the blow-up rate for the numerical scheme is given by

- ‖U(·, t)‖∞ ∼ (Th − t)−
1

p−1 if p > 1.

Therefore the blow-up rate does not coincide in the range of parameters given by
p > m > 1 or p > 1 with 0 < m ≤ 1, and coincides in the range m > 1 with 1 < p ≤ m.

Concerning the blow-up set for the numerical approximations we prove that

- B(U) = [0, L] if 1 < p ≤ m (global blow-up).

3



- B(U) = [L−Kh,L] if p > m > 1 or p > 1 with 0 < m ≤ 1. Where the constant K
depends only on m and p. K is the integer that verifies

∑K+1
i=0 mi

∑K
i=0m

i
< p ≤

∑K
i=0m

i

∑K−1
i=0 mi

.

In the range 1 < p < m the numerical and the continuous blow-up sets coincide.

In the range p > m > 1 or p > 1 with 0 < m ≤ 1, the blow-up set can be larger than
a single point, x = L, but our results show that

B(U) = [L−Kh,L] = B(u) + [−Kh, 0],

and hence
B(U) → B(u), as h→ 0.

In the case p = m > 1 with L large a mayor difference appears concerning the blow-up
sets. The continuous problem blows up in the subinterval [L− 2m

m−1
, L], strictly contained

in [0, L], but the numerical solution blows up in the whole interval [0, L]. There is no
regional blow-up for the numerical scheme.

However, in this case we can recover regional blow-up for the numerical scheme taking
into account the correct self-similar variables and letting h go to zero. We prove that
the numerical method blows up at nodes that lies in [0, L− 2m

m−1
) at a blow-up rate that

goes to zero as h goes to zero while for nodes that belongs to [L − 2m
m−1

, L] the blow-up
rate does not vanish as h goes to zero. Hence we have recovered the regional blow-up by
looking at the different blow-up rates of the solution at different nodes when the mesh
parameter goes to zero.

To summarize our results; we observe that when computing numerical approximations
of a blow-up problem significant differences appear. The continuous problem can blow up
while the numerical scheme has global solutions. Moreover, in case that both problems
blow up the blow-up rate and the blow-up set can be different. We remark that regional
blow-up is impossible for a numerical scheme with a fixed mesh, however if we look at the
right variables we can recover regional blow-up when the mesh parameter goes to zero.

Organization of the paper. In Section 2 we describe some properties of the numerical
scheme and prove the convergence of the method. In Section 3 we prove the numerical
blow-up results and find the numerical blow-up rates. Section 4 is devoted to the numerical
blow-up sets. In Section 5 we present some numerical experiments. Finally we include
an Appendix with some results on stability and uniqueness of the asymptotic profile for
solutions of the continuous problem (1.1) in self-similar variables.

2 Properties of the numerical scheme

In this section we collect some preliminary results on our numerical method. In particular
we prove convergence for regular solutions.
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First, we want to prove a comparison Lemma. To do this we need the following
definition,

Definition: We will call U a supersolution if it satisfies





u′1(t) ≥ 2
h2 (u

m
2 (t)− um

1 (t)),

u′k(t) ≥ 1
h2 (u

m
k+1(t)− 2um

k (t) + um
k−1(t)), 2 ≤ k ≤ N,

u′N+1(t) ≥ 2
h2 (u

m
N(t)− um

N+1(t)) + 2
h
up

N+1(t),

uk(0) ≥ u0(xk), 1 ≤ k ≤ N + 1.

(2.1)

Analogously, we say that U is a subsolution if it satisfies (2.1) with the reverse inequalities.

Lemma 2.1 Let U and U be a superolution and a subsolution respectively, then

U(t) ≥ U(t) ≥ U(t).

Proof. By an approximation procedure we can assume that we have strict inequalities
in (2.1). Let us prove that U(t) > U(t). We argue by contradiction. Let us assume that
there exists a first time t0 and a node j such that uj(t0) = uj(t0) then if 1 < j < N + 1,

0 ≥ u′j(t0)− u′j(t0) >
1

h2
(um

j+1(t0)− um
j+1(t0) + um

j−1(t0)− um
j−1(t0)) ≥ 0,

a contradiction. In case j = 1 we get

0 ≥ u′1(t)− u′1(t0) >
2

h2
(um

2 (t0)− um
2 (t0)) ≥ 0,

again a contradiction. Finally, if j = N + 1 we have

0 ≥ u′N+1(t0)− u′N+1(t0) >
2

h2
(um

N(t0)− um
N(t0)) ≥ 0.

This contradiction proves that U(t) > U(t).

The inequality U(t) ≥ U(t) can be handled in a similar way. 2

Now we prove our convergence result for regular solutions up to t = T − τ .

Theorem 2.1 Let u(x, t) ∈ C4,1([0, L] × [0, T − τ ]) be a positive solution of (1.1) and

U(t) the numerical approximation given by (1.3). Then, there exists a constant C, that

depends on the C4,1([0, L] × [0, T − τ ]) norm of u, such that for every h small enough it

holds

max
t∈[0,T−τ ]

max
k
|u(xk, t)− uk(t)| ≤ Ch2.
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Proof. In the course of this proof we will denote by Ci a constant independent on h
which can be different in different occurrences.

If we rewrite the system (1.3) in terms of Z = Um we obtain





(z
1/m
1 )′(t) = 2

h2 (z2(t)− z1(t)),

(z
1/m
k )′(t) = 1

h2 (zk+1(t)− 2zk(t) + zk−1(t)), 2 ≤ k ≤ N,

(z
1/m
N+1)

′(t) = 2
h2 (zN(t)− zN+1(t)) + 2

h
z

p/m
N+1(t),

zk(0) = u
1/m
0 (xk) > 0, 1 ≤ k ≤ N + 1.

Let vk(t) = um(xk, t) where u is the solution of the continuous problem (1.1). We define
the error function as

ek = zk − vk.

Let
t0 = max{t ∈ [0, T − τ ] : |ek|(t) ≤ c/2}

where c = min{vk(t) : 1 ≤ k ≤ N + 1 and 0 ≤ t ≤ T − τ}. We perform the following
calculations with t ∈ [0, t0] and we will prove at the end that t0 = T − τ for every h small
enough.

The error function satisfies that, for 2 ≤ k ≤ N ,

1

m
z

(1−m)/m
k e′k =

1

h2
(ek+1 − 2ek + ek−1)−

1

m
(z

(1−m)/m
k − v

(1−m)/m
k ) v′k + C1h

2

≤ 1

h2
(ek+1 − 2ek + ek−1) + C1h

2 + C2ξ
(1−2m)/m)
k |ek|,

where ξk is an intermediate value between zk and vk. Taking into account that there exist
constants, c and C, such that c ≤ zk(t) ≤ C for every t ∈ [0, t0] we have

e′k ≤
C1

h2
(ek+1 − 2ek + ek−1) + C2|ek|+ C3h

2. (2.2)

Making analogous calculations for the first and the last nodes, we get

e′1 ≤
C1

h
(e2 − e1) + C2|e1|+ C3h

2, (2.3)

e′N+1 ≤
C1

h2
(eN − eN+1) + C2h

2 − C3ξ
(1−2m)/meN+1 +

C4

h
η(p−m)/meN+1. (2.4)

Where η is an intermediate value between zN+1 and vN+1. Now we use a comparison
argument. We remark that the system (2.2), (2.3), (2.4), has a comparison principle, that
can be proved as in Lemma 2.1. Let us look for a supersolution of the form

wk(t) = ϕ(t)
(
eCxk − C xk

)
,
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where ϕ(t) is a solution of {
ϕ′(t) = C1ϕ(t) + C2h

2

ϕ(0) = C3h
2.

That is
ϕ(t) = h2

(
C1e

C2t + C3

)
.

A direct calculation shows that we can choose the constant C large but independent of h
such that, W (t) is a supersolution. Hence,

ek(t) ≤ wk(t) ≤ C1h
2eC2T .

Arguing in the same way with −ek we obtain

|ek(t)| ≤ wk(t) ≤ C1h
2eC2T .

From this inequality it is easy to see that t0 = T − τ for every h small enough and the
Theorem is proved. 2

To finish this Section, we state a Lemma that says that an increasing in space initial
data gives an increasing solution. This will be used in the following Sections to ensure
that the maximum of U(t) is attained at the last node, xN+1.

Lemma 2.2 Let U be a solution of (1.3) with uk(0) ≤ uk+1(0), k = 1, ...., N then

uk(t) < uk+1(t), 1 ≤ k ≤ N.

Proof. We argue by contradiction, let us assume there exists a first time t0 and two
consecutive nodes where the Lemma fails, let us call them j, j + 1. We can assume that
uj−1(t0) < uj(t0). Indeed, if all the nodes have the same value then all of them have null
derivative except the last one, which verifies u′N+1(t0) > 0, but this is not possible. Then
we can assume that

uj−1(t0) < uj(t0) = uj+1(t0) ≤ uj+2(t0),

hence we obtain
u′j(t0) < 0, u′j+1(t0) ≥ 0,

which is a contradiction. We observe that if at time t = 0 we have this situation then
instantaneously we have uj(t) < uj+1(t). 2

3 Numerical blow-up.

In this Section we prove that solutions of the numerical problem blow up if and only if
p > 1 and we find the blow-up rate in this case.

Theorem 3.1 If p > 1 then every positive solution of (1.3) blows up. Moreover, if U(0)
is increasing, then there exist two constants, C1 = C1(h) and C2 = C2(h), such that

C1

(Th − t)1/(p−1)
≤ ‖U(t)‖∞ ≤ C2

(Th − t)1/(p−1)
.

where Th is the blow-up time of U .
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Proof. Let us begin with an increasing initial data U(0). By Lemma 2.2 U(t) is increasing
and then its maximum will be uN+1(t).

We define the function

w(t) :=
1

2
u1(t) +

N∑

j=2

uj(t) +
1

2
uN+1(t),

which satisfies

w′(t) =
1

h
up

N+1(t).

Since U(t) is a monotone vector it has its maximum at uN+1(t). Hence there exists two
positive constants, c = c(h) and C = C(h), such that

cw(t) ≤ uN+1(t) ≤ Cw(t).

Therefore, the function w(t) verifies

w′(t) ≤ Cwp(t), w′(t) ≥ cwp(t). (3.1)

From the second inequality we get that w (and hence U) blows up if p > 1 at a time Th,
and from the first one, if p ≤ 1, w (and therefore U) must be global. This blow-up result
is valid for every initial data as we can use a comparison argument with an increasing
super or subsolution.

Now we find the blow-up rate. By integration of (3.1) we obtain that

C1

(Th − t)1/(p−1)
≤ w(t) ≤ C2

(Th − t)1/(p−1)
.

In terms of uN+1 we get

C1

(Th − t)1/(p−1)
≤ uN+1(t) = ‖U(t)‖∞ ≤ C2

(Th − t)1/(p−1)
.

Note that the blow-up phenomena occurs if and only if p > 1 and the blow-up rate is
independent of the parameter m. 2

We remark that this rate coincides with the blow-up rate of the continuous problem
(1.1) if 1 < p ≤ m, but it is different in the case p > m > 1 or 0 < m ≤ 1 and p > 1.

4 Numerical blow-up set.

Now we turn our interest to the blow-up set of the numerical solution. For a fixed h we
want to look at the set of nodes, xk, such that uk(t) → +∞ as t ↗ Th. To do this we
introduce the self-similar variables given by





yk(s) = (Th − t)
1

p−1uk(t),

(Th − t) = e−s.

(4.1)
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In this new variables Y = (yk(s)), problem (1.3) reads,





y′1(s) = 2
h2 e

m−p

p−1
s(ym

2 (s)− ym
1 (s))− 1

p−1
y1(s),

y′k(s) = 2
h2 e

m−p

p−1
s(ym

k+1(s)− 2ym
k (s) + ym

k−1(s))− 1
p−1

yk(s), 2 ≤ k ≤ N,

y′N+1(s) = 2
h2 e

m−p

p−1
s(ym

N (s)− ym
N+1(s)) + 2

h
yp

N+1(s)− 1
p−1

yN+1(s),

yk(− ln(Th)) = (Th)
1

p−1u0(xk), 1 ≤ k ≤ N + 1.

(4.2)

We observe that, from the blow-up rates proved in Theorem 3.1, the vector Y is
bounded and there exists a subsequence such that

lim
sj→∞

yN+1(sj) = aN+1 6= 0.

Theorem 4.1 If 1 < p < m then we have uniform global blow-up, that is

uk(t) ∼
C

(Th − t)
1

p−1

1 ≤ k ≤ N,

therefore

B(U) = [0, L].

Proof. Since yN+1(s) is bounded we have that y′N+1(s) can not go to infinity as s→∞.
From (4.2)

y′N+1(s) =
2

h2
e

m−p

p−1
s(ym

N (s)− ym
N+1(s)) +

2

h
yp

N+1(s)−
1

p− 1
yN+1(s),

as p < m there exists a subsequence {sj}, such that

ym
N (sj)− ym

N+1(sj) → 0.

Now, we can take again a subsequence such that yN(sj) → aN+1. Applying the same
argument with yk we obtain that yk−1(sj) → aN+1 for all 2 ≤ k < N .

Therefore, in the context of the variable U(t) we have that all nodes blow up in finite
time Th with the same rate. 2

Theorem 4.2 If p > max{m, 1}, then U blows up at exactly K nodes near L, i.e.

B(U) = [L−Kh,L],

where K is determined only by p and m in the following way: K is the unique integer

such that ∑K+1
i=0 mi

∑K
i=0m

i
< p ≤

∑K
i=0m

i

∑K−1
i=0 mi

.
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Moreover, the asymptotic behaviour of the blowing up nodes is given by

uN+1−i(t) ∼ (Th − t)γi , γi = − mi

p− 1
+

i∑

l=0

ml, if p 6=
∑K

i=0m
i

∑K−1
i=0 mi

or i 6= k

and by

uK(t) ∼ ln(Th − t), if p =

∑K
i=0m

i

∑K−1
i=0 mi

.

Proof. As Y is bounded and p > m, we have that for s large enough

y′N+1(s) ∼
2

h
yp

N+1(s)−
1

p− 1
yN+1(s).

So, for s large the function yN+1(s) is monotone and it has a positive limit as s→∞.
On the other hand, if we return to the variable U(t), we have that

u′N(t) =
1

h2
(um

N+1(t)− 2um
N(t) + um

N−1(t)) ≤
1

h2
(um

N+1(t) + um
N−1(t))

≤ C(Th − t)−
m

p−1

and by integration

uN(t) ≤





C(Th − t)
p−1−m

p−1 p < m+ 1,
−C ln(Th − t) p = m+ 1,
C p > m+ 1.

If we translate this inequality in terms of Y , we get

0 ≤ yN(s) ≤





C e−
p−m

p−1
s p < m+ 1,

C s e−
1

p−1
s p = m+ 1,

C e−
1

p−1
s p > m+ 1.

Notice that in all cases yN(s) → 0. Repeating the argument we obtain that

yk(s) → 0, for all k ≤ N.

Moreover, for s large

y′N(s) =
2

h2
e

m−p

p−1
s(ym

N+1(s)− 2ym
N (s) + ym

N−1(s))−
1

p− 1
yN(s)

∼ Ce
m−p

p−1
s − 1

p− 1
yN(s).

Integrating we obtain the asymptotic behaviour of yN ,

yN(s) ∼
{
C1e

−
1

p−1
s + C2e

m−p

p−1
s

C1e
−

1
p−1

s + C2se
−

1
p−1

s
∼

{
C2e

m−p

p−1
s p < m+ 1,

C2se
−

1
p−1

s p = m+ 1.
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Translating this behaviour to the context of U(t),

uN(t) ∼
{
C(Th − t)

p−m−1
p−1 p < m+ 1,

−C ln(Th − t) p = m+ 1.

Therefore, if p ≤ 1 + m the node uN(t) blows up with different rate than uN+1, and for
p > m+ 1 it is bounded.

Repeating this argument with the nodes N − 1, N − 2, . . . we obtain the asymptotic
behaviour of each node and the result follows. 2

Theorem 4.3 If p = m every node is a blow-up point. Moreover in the self-similar

variables,

Y (s) → W, as s→∞,

where W = (w1, ..., wN+1) is the unique positive stationary solution of (4.2). Hence the

asymptotic behaviour of uk is given by

uk(t) ∼ (Th − t)−
1

p−1wk.

Proof. In this case, if we write the numerical problem (4.2) in matrix form (1.2), we have
a Lyapunov functional. In fact,

Φ(Y )(s) = −1

2
〈A1/2Y m, A1/2Y m〉 − 1

2m
BY 2m +

1

(p− 1)(m+ 1)
MY m+1

satisfies
Φ′(Y )(s) = 〈MY ′, Y m−1Y ′〉 ≥ 0.

Hence, the orbit Y (t) goes to a stationary state, see [H]. Therefore we turn our
attention to the study of stationary solutions of (4.2), which satisfies





0 = 2
h2 (w

m
2 − wm

1 )− 1
m−1

w1,

0 = 1
h2 (w

m
k+1 − 2wm

k + wm
k−1)− 1

m−1
wk, 2 ≤ k ≤ N,

0 = 2
h2 (w

m
N − wm

N+1) + 2
h
wm

N+1 − 1
m−1

wN+1.

(4.3)

Moreover, if we begin with an increasing data U(0) then for a fixed s the vector
Y (s) is positive and increasing, hence we have to look to nonnegative and nondecreasing
stationary solutions.

On the other hand, from the blow-up rate we know that yN+1 ≥ C(h) > 0, then W
is not the trivial solution. We claim that wk must be positive for all k. To prove this
claim just suppose that there exists some j with wj = 0. Since W is non-negative and
non-decreasing we have that w1 = 0, but in this case w2 = 0 and therefore wk = 0 for all
k. This contradiction proves the claim.

11



In order to prove the uniqueness of W , we observe that the functions wk are increasing
with respect to w1. Indeed, from (4.3) we have that w2 is increasing. Now, let us suppose
that wj is increasing for j = 2, . . . , J

wm
J+1 − wm

J = wm
J − wm

J−1 +
h2

m− 1
wJ

= wm
2 − wm

1 +
h2

m− 1

l=J∑

l=2

wl.

Therefore,

wm
J+1 = wm

J +
h2

2(m− 1)
w1 +

h2

m− 1

l=J∑

l=2

wl.

So the function wJ+1 is an increasing function of w1.

Therefore, if there exists two stationary solutions, W̃ and W , then we can assume that
W̃ > W . But this is imposible since in the original variable t the corresponding solutions
Ũ(t) and U(t) given by

Ũ(t) = (Th − t)−
1

p−1 W̃ , U(t) = (Th − t)−
1

p−1W

verify Ũ(t) > U(t) and have the same blow-up time. 2

Now our goal is to recover regional blow-up by looking carefully at the behaviour of
the stationary solution as the parameter h goes to zero.

When h goes to zero we expect that Z = Wm converges to a solution of the following
problem 




wxx − 1
m−1

w
1
m = 0, x ∈ (0, L),

wx(0) = 0,
wx(L) = w(L).

(4.4)

This is the content of our next Lemma. We remark that since m > 1 a non Lipschitz
function appears in (4.4).

Lemma 4.1 Let W be the solution of (4.3) and let w(x) be the unique stationary solution

of (4.4). Then

Z = Wm → w(x), as h→ 0.

Proof. Multiplying the equation satisfied by Z by

(zk+1 − zk) + (zk − zk−1)

2

and summing we get

0 =
(zN+1 − zN)2

h2
− (z2 − z1)

2

h2
− 1

m− 1

N∑

l=2

z
1
m

l

(zl+1 − zl−1)

2
.

12



Hence

0 =
(zN+1 − zN)2

h2
− (z2 − z1)

2

h2
− m

m2 − 1
(z

m+1
m

N+1 − z
m+1

m

1 ) +O(h).

Using the first and the last equations of (4.3) we get that zN+1 and z1 must verify the
following polynomial,

0 =
1

2
z2

N+1 −
m

m2 − 1
z

1+m
m

N+1 +
m

m2 − 1
z

1+m
m

1 +O(h). (4.5)

Therefore, z1 must be bounded. Then we can take a subsequence of h such that z1 →
Γ ≥ 0.

We consider two different cases,

L <
2m

m− 1
and L ≥ 2m

m− 1
.

In the first case, if Γ > 0 we consider the auxiliary initial value problem





w′′ =
1

m− 1
w1/m, x ∈ [0, L],

w(0) = Γ,
w′(0) = 0.

This problem has a unique solution. Moreover, for x ∈ [0, L] the function w(x) is increas-
ing. Then, by general theory (see [J]) we get that in this case

Z = Wm → w(x), as h→ 0.

Moreover by (4.5) we have that

0 =
1

2
w(L)2 − m

m2 − 1
w(L)

1+m
m +

m

m2 − 1
Γ

1+m
m .

So, the constant Γ must be the only constant such that w is a solution of





w′′ = 1
m−1

w1/m, x ∈ [0, L],

w′(0) = 0,
w′(L) = wp/m(L).

For the existence and uniqueness results for this problem we refer to the Appendix.
On the other hand, if we assume that Γ = 0 we arrive to a contradiction. By (4.5) we

obtain that zN+1 → A, where A is the only positive root of

0 =
1

2
w(L)2 − m

m2 − 1
w(L)

1+m
m .

That is

A =

(
2m

m2 − 1

) m
m−1

. (4.6)
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Hence, we consider the problem





w′′ =
1

m− 1
w1/m x ∈ [0, L],

w(L) = A,
w′(L) = −Ap/m.

(4.7)

By classical theory we have that in the interval where w is positive, (L− 2m
m−1

, L],

Z = Wm → w(x), as h→ 0.

Since L < 2m
m−1

we have that w(x) is positive in [0, L] (see the Appendix). Hence, z1 →
w(0) > 0, which is a contradiction. This proves that Γ must be positive.

In the second case, L ≥ 2m
m−1

. If Γ > 0 we arrive to a contradiction, as by the previous
argument zN+1 → w(L) with w(L) is a root of

0 =
1

2
w(L)2 − m

m2 − 1
w(L)

1+m
m +

m

m2 − 1
Γ

1+m
m .

But this contradicts the uniqueness result given in the Appendix. Hence Γ = 0 and
therefore

zN+1 → w(L) = A,

where A is given by (4.6). Now we consider the problem (4.7). When the solution w is
positive we can again apply the standard theory to find that

Z = Wm → w(x), as h→ 0.

On the other hand, since Z is increasing, we have that for h small enough,

zk ≤ w

(
L− 2m

m− 1
+ δ

)
≤ ε, ∀xk < L− 2m

m− 1
+ δ.

Then, Z = Wm → w(x) in all the interval [0, L]. 2

Remark. As a consequence of Lemma 4.1 if L > 2m
m−1

we have that

W → 0, in

[
0, L− 2m

m− 1

]
,

and we recover the regional blow-up in the sense that the constants that appear in the
blow-up rate for the nodes that lie in [0, L− 2m

m−1
] go to zero as h goes to zero, i.e.,

uk(t) ∼ (Th − t)−
1

p−1wk

with wk → 0 as h→ 0 for every k such that xk ∈ [0, L− 2m
m−1

].
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5 Numerical experiments.

In this Section we present some numerical experiments. Our goal is to show that the
results presented in the previous sections can be observed when one perform numerical
computations. For the numerical experiments we use an adaptive ODE solver to integrate
(1.3).

We start with the case p < m, in Figure 1 global blow-up can be appreciated.

L 

0 

T
h
 

U(t) 

t 

Figure 1.

Next, in the case p = m we look for regional blow-up. In Figure 2 the numerical
solution blows up in every node but the behavior of the stationary solution imposes for
xi < Lc = L− 2m

m−1
a slower rate.
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L
c
 

L 

T
h
 

0 

U(t) 

Figure 2.

The next picture (Figure 3) shows the profile of the numerical solution near the
numerical blow-up time, Th, in self similar variables. As it was proved this profile is close
to the continuous stationary profile, which is drawn in the same picture.

numerical approximation
continuous solution    

L L
c
 

w 

0 

Figure 3.
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Figure 4 shows the evolution of the first node (the minimum), which is blowing up.

t 

u
1
 

Figure 4.

Finally, we consider the case p > m, Figures 5, 6 and 7. When p = 2 and m = 3,
Theorem 4.2 says that just two nodes blow up. The first picture shows the numerical
solution, U(t). The second one, the profile at time t0 close to Th. In the last one, we draw
the evolution of the nodes N − 1 and N , uN−1(t) is bounded while uN(t) is blowing up.

Nodes
t 

T
h
 

U(t) 

Figure 5.
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0 L 

U(t
0
) 

Node N−1
Node N  

T
h
 t 

Figure 6. Figure 7.

6 Appendix.

In this Appendix we study the continuous problem (1.1) in the range of parameters p = m.

In this case the blow-up rate is (T − t)−
1

p−1 , [Fi]. We concentrate in the blow-up set and
in addition we find the blow-up profile in self-similar variables.

Lemma 6.1 In the region p = m > 1 the blow-up set is given by

B(u) =





[0, L] if L < 2m
m−1

,

[
L− 2m

m−1
, L

]
if L ≥ 2m

m−1
.

Proof. The proof of this result is given in several steps.
First, we introduce the self-similar variables

v(x, τ) = (T − t)
1

m−1u(x, t), τ = − ln(T − t). (6.1)

This function v(x, τ) satisfies the following problem,




vτ = (vm)xx − 1
m−1

v (x, τ) ∈ (0, L)× (0,+∞),

(vm)x(0, τ) = 0 τ ∈ (0,+∞),
(vm)x(L, τ) = vm(L, τ) τ ∈ (0,+∞),

v(x, 0) = T
1

m−1u0(x) x ∈ (0, L).

(6.2)

The second step consists in proving that v(x, τ) converges (in terms of ω-limits) to a
stationary state. For this we multiply the equation by (vm)τ and integrate with respect
to x to obtain ∫ L

0

(vm)tvt = − d

dt
F (v),

where

F (v) =

∫ L

0

(vm)2
x

2
(s, τ) ds+

m

m2 − 1

∫ L

0

vm−1(s, τ) ds− 1

2
v2m(L, τ).

18



Hence F (v) is a Lyapunov functional for problem (6.2).
Therefore, we have that the ω−limit set of v(x, τ) consists of nontrivial stationary

solutions of (6.2). Now we claim that for each L there exists only one nonnegative and
nontrivial stationary solution.
Accepting this claim, we have that the ω−limit set has only one element, w(x), hence

v(x, τ) → w(x), τ →∞.

The third step is to prove the claim. We consider the stationary problem





(wm)xx − 1
m−1

w = 0, x ∈ (0, L),

(wm)x(0) = 0,
(wm)x(L) = wm(L).

(6.3)

If L ≥ 2m
m−1

this problem has a unique compactly supported solution (see [V]),

w(x) =

(
m− 1

2m(m+ 1)

) 1
m−1

(
2m

m− 1
+ (x− L)

) 2
m−1

+

, (6.4)

and if L < 2m
m−1

there is no compactly supported solution.

To study the existence of other solutions of (6.3) we use ideas from [ChFQ]. We
set w̃ = wm and look for a shooting argument beginning with w̃(0) = ρ, w̃x(0) = 0.
Integrating the equation we get

w̃2
x

2
− m

m2 − 1
w̃

1+m
m = − m

m2 − 1
ρ

1+m
m .

Evaluating at x = L and using the boundary condition, we observe that w̃(L) must be a
root of the following polinomial

P (z) =
z2

2
− m

m2 − 1
z

1+m
m +

m

m2 − 1
ρ

1+m
m .

As

P ′(z) = z − 1

m− 1
z

1
m ,

P attains a unique minimum at the point

z0 =

(
1

m− 1

)m−1
m

.

In order to guarantee that P (z) has a root we need that P (z0) ≤ 0, this imposes the
following restriction on ρ,

ρ ≤ ρc =

(
1

m− 1

) m
m−1

(
1− m+ 1

2m

) m
m+1

.
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For those values of ρ we have two roots R1(ρ), R2(ρ). As P (ρ) ≥ 0 we conclude that

ρ ≤ R1(ρ) ≤ R2(ρ).

On the other hand, if we integrate again the equation we have, using that w̃x ≥ 0,

∫ w̃(x)

ρ

ds√
s

1+m
m − ρ

1+m
m

=

√
2m

m2 − 1
x.

At x = L this reads ∫ w̃(L)

ρ

ds√
s

1+m
m − ρ

1+m
m

=

√
2m

m2 − 1
L.

Hence for each root Ri(ρ) we have a solution of (6.3) in an interval [0, Li(ρ)] where Li(ρ)
is given by

Li(ρ) =

√
m2 − 1

2m
ρ

1−m
2m

∫ Ri(ρ)

ρ

1

ds√
s

1+m
m − 1

.

Now we observe that, as R1(ρ) ≤ R2(ρ) we have that L1(ρ) ≤ L2(ρ).
In order to prove the uniqueness of the solution of (6.3) in the interval [0, L] we study

the monotonicity of the functions Li(ρ).

First we observe that L1(ρ) is increasing with ρ because R1(ρ)/ρ increases with ρ, in
fact a direct calculation shows that

d

dρ

(
Ri(ρ)

ρ

)
= −

(
m− 1

2m

)
R2

i (ρ)

ρ2((m− 1)Ri(ρ)−R
1
m

i (ρ))
.

Notice that ρ2((m−1)Ri(ρ)−R
1
m

i (ρ)) = (m−1)P ′(Ri(ρ)). To see that L2(ρ) is decreasing
we just observe, after differentiating and simplifying the resulting expression that this is
equivalent to

ψ(ρ) =

∫ x

1

dv√
vp+1 − 1

− x
√
xp+1 − 1((m− 1)−R

1−m
m

2 )
≤ 0

where we have set x = R2(ρ)/ρ. In fact one can check that

d

dρ
L2(ρ) = ρ−

m+1
2m ψ(ρ).

We note that R2(ρ) ≥ (m − 1)−
m

m−1 and also x(ρ) is a decreasing function of ρ, so
x(ρ) ≥ x(ρc) = ( 2m

m−1
)

m
m+1 . In that range of values it is easy to check that ψ′(ρ) < 0 for

ρ > 0 and also that ψ(0) = 0, therefore ψ(ρ) < 0 and we conclude that L2(ρ) is decreasing.

We want to get a bound for L2(ρ), 0 ≤ ρ ≤ ρc. As

R2(ρ) →
(

2m

m2 − 1

) m
m−1

, ρ→ 0,

20



a direct computation shows that

lim
ρ→0

L2(ρ) =
2m

m− 1
.

Therefore L2 attains a maximum at ρ = 0 that is L2(0) = 2m
m−1

, which is exactly the
support of the explicit solution (6.4).

Since R1(ρc) = R2(ρc) we have L1(ρc) = L2(ρc). Also, as R1(ρ) → 0 when ρ→ 0, one
can easily check that L1(0) = 0.

We conclude that for L ≥ 2m
m−1

we have a unique solution of (6.3) that is given by (6.4)

and has compact support, and for L < 2m
m−1

, problem (6.3) has only one positive solution.
This proves the claim and finishes our study of the stationary problem.

In the fourth step we show that v(x, τ) goes to zero exponentially in every compact
set included in [0, 2m

m−1
). More precisely:

Let v a solution of (6.2) that goes to zero in an interval of the form [a− δ, b+ δ], then
there exists a constant C such that

v(x, τ) ≤ Ce−
1

m−1
τ x ∈ [a, b].

In order to see this we use ideas from [CDE], [V]. We will only sketch the arguments
and refer to those works for details.

Since v(x, τ) goes to zero in [a− δ, b+ δ], we can use a solution of




pτ = (pm)xx − 1
m−1

p (x, τ) ∈ [a− δ, b+ δ]× (0,+∞),

p(a− δ, τ) = ε τ ∈ (0,+∞),
p(b+ δ, τ) = ε τ ∈ (0,+∞),
v(x, 0) = ε x ∈ (a− δ, b+ δ).

(6.5)

as a supersolution of our problem.
To finish the proof we only have to observe that solutions p of (6.5) goes exponentially

to a stationary solution that has the form

h(x) =





C(m)(a− x)
2

m−1 x < a,
0 a ≤ x ≤ b,

C(m)(x− b)
2

m−1 x > b.

If ε is small, h(x) has a dead core that includes the interval [a, b] and the result follows.

Finally, if we translate the behaviour of v(x, τ) in terms of the function u(x, t), we
obtain the desired result. 2
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