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c©J. B. Tenenbaum, V. de Silva, J. C. Langford, Science (2000)



Motivation: MNIST Dataset

c©MNIST Dataset



Motivation: Speaker Identification



Motivation: A problem at Aristas SRL

Problem

Clustering of high dimensional chemical formulas
Distance between them in terms of e.g. olfactory properties

Data size

106 formulas
Dimension d ∼ 4000



A curse of dimensionality

Let ωD(r) = ωD(1)rD be the volume of the ball of radius r in RD.

ωD(1)− ωD(1− ε)
ωD(1) = 1− (1− ε)D D→∞−−−−→ 1

In high dimensional Euclidean spaces every two points of a
typical large set are at similar distance.
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Clustering: K-means, DBSCAN, etc.

c©scikit-learn developers



Dimensionality Reduction: Isomap

Constructs the k-nn graph and finds the optimal path. The weight
of an edge is given |qi − qj |.

c©J. B. Tenenbaum, V. de Silva, J. C. Langford, Science (2000).



Dimensionality Reduction: Isomap

Theorem
Given ε > 0 and δ > 0, for n large enough

P
(

1− ε ≤ dgeodesic(x, y)
dgraph(x, y) ≤ 1 + ε

)
> 1− δ.

[Bernstein, de Silva, Langford, Tenenbaum (2000)].

c©J. B. Tenenbaum, V. de Silva, J. C. Langford, Science (2000).



Motivation

In most unsupervised learning tasks, a notion of similarity
between data points is both crucial and usually not directly
available as an input.

The efficiency of tasks like dimensionality reduction and
clustering might crucially depend on the distance chosen.
Since the data lies in an (unknown) lower dimensional surface,
this distance has to be inferred from the data itself.
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Motivation

We look for a distance that takes into account the
underlying structure (surface) of the data and the underlying
density from which the points are sampled.



The Problem

Let M ⊆ RD be a d-dimensional surface (we expect d� D).

Consider n independent points on M with common density
f :M 7→ R≥0.

¿Can we learn the structure of M?
Dimension, distances between points, etc.
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Sample Fermat’s distance

α ≥ 1 a parameter, X = a discrete set of points q, x, y ∈ X

rxy = (q1, . . . , qK) an X-path from x to y

T (rxy) =
K−1∑
j=1
|qi+1 − qi|α, DX(x, y) = inf T (rxy)

The optimal path for α = 1.5, α = 3 and α = 6.

The density of points X in Ω1 is higher than in Ω2.
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Fermat’s Distance

f : M → R a density.

For x, y ∈M and β ≥ 0 we define Fermat’s distance by

D(x, y) = inf
Γ

∫
Γ

1
fβ
d`,

the minimization is over all curves Γ from x to y.
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Fermat’s principle

In optics, the path taken between two points by a ray of light is an
extreme of the functional

Γ 7→
∫
Γ

n(x)d`, n = refractive index

D(x, y) = inf
Γ
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1
fβ

f−β ∼ n

c©S.Thorgerson - Pink Floyd, The Dark Side of the Moon (1973), Harvest, Capitol.
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Fermat’s distance

Theorem
For x, y ∈M and Xn i.i.d ∼ f we have

lim
n→∞

nβDXn(x, y) = D(x, y)

with β = (α− 1)/d.

Heuristics:

r = (q1, . . . , qk) a path∑
|qi+1 − qi|α =

∑
|qi+1 − qi|α−1|qi+1 − qi|



Fermat’s distance

Theorem
For x, y ∈M and Xn i.i.d ∼ f we have

lim
n→∞

nβDXn(x, y) = D(x, y)

with β = (α− 1)/d.

Heuristics:

r = (q1, . . . , qk) a path∑
|qi+1 − qi|α =

∑
|qi+1 − qi|α−1|qi+1 − qi|



Heuristics:

r = (q1, . . . , qk) a path∑
|qi+1 − qi|α =

∑
|qi+1 − qi|α−1|qi+1 − qi|

ncd|qi+1 − qi|df(qi) � 1 ⇐⇒ n1/d|qi+1 − qi| � c
1

f(qi)1/d

n(α−1)/d|qi+1 − qi|α−1 � c 1
f(qi)(α−1)/d

inf
r
n(α−1)/d∑ |qi+1 − qi|α � inf

Γ

∫
Γ

1
fβ

d`. �



Heuristics:

r = (q1, . . . , qk) a path∑
|qi+1 − qi|α =

∑
|qi+1 − qi|α−1|qi+1 − qi|

ncd|qi+1 − qi|df(qi) �

1 ⇐⇒ n1/d|qi+1 − qi| � c
1

f(qi)1/d

n(α−1)/d|qi+1 − qi|α−1 � c 1
f(qi)(α−1)/d

inf
r
n(α−1)/d∑ |qi+1 − qi|α � inf

Γ

∫
Γ

1
fβ

d`. �



Heuristics:

r = (q1, . . . , qk) a path∑
|qi+1 − qi|α =

∑
|qi+1 − qi|α−1|qi+1 − qi|

ncd|qi+1 − qi|df(qi) � 1 ⇐⇒

n1/d|qi+1 − qi| � c
1

f(qi)1/d

n(α−1)/d|qi+1 − qi|α−1 � c 1
f(qi)(α−1)/d

inf
r
n(α−1)/d∑ |qi+1 − qi|α � inf

Γ

∫
Γ

1
fβ

d`. �



Heuristics:

r = (q1, . . . , qk) a path∑
|qi+1 − qi|α =

∑
|qi+1 − qi|α−1|qi+1 − qi|

ncd|qi+1 − qi|df(qi) � 1 ⇐⇒ n1/d|qi+1 − qi| � c
1

f(qi)1/d

n(α−1)/d|qi+1 − qi|α−1 � c 1
f(qi)(α−1)/d

inf
r
n(α−1)/d∑ |qi+1 − qi|α � inf

Γ

∫
Γ

1
fβ

d`. �



Heuristics:

r = (q1, . . . , qk) a path∑
|qi+1 − qi|α =

∑
|qi+1 − qi|α−1|qi+1 − qi|

ncd|qi+1 − qi|df(qi) � 1 ⇐⇒ n1/d|qi+1 − qi| � c
1

f(qi)1/d

n(α−1)/d|qi+1 − qi|α−1 � c 1
f(qi)(α−1)/d

inf
r
n(α−1)/d∑ |qi+1 − qi|α � inf

Γ

∫
Γ

1
fβ

d`. �



Heuristics:

r = (q1, . . . , qk) a path∑
|qi+1 − qi|α =

∑
|qi+1 − qi|α−1|qi+1 − qi|

ncd|qi+1 − qi|df(qi) � 1 ⇐⇒ n1/d|qi+1 − qi| � c
1

f(qi)1/d

n(α−1)/d|qi+1 − qi|α−1 � c 1
f(qi)(α−1)/d

inf
r
n(α−1)/d∑ |qi+1 − qi|α � inf

Γ

∫
Γ

1
fβ

d`.

�



Heuristics:

r = (q1, . . . , qk) a path∑
|qi+1 − qi|α =

∑
|qi+1 − qi|α−1|qi+1 − qi|

ncd|qi+1 − qi|df(qi) � 1 ⇐⇒ n1/d|qi+1 − qi| � c
1

f(qi)1/d

n(α−1)/d|qi+1 − qi|α−1 � c 1
f(qi)(α−1)/d

inf
r
n(α−1)/d∑ |qi+1 − qi|α � inf

Γ

∫
Γ

1
fβ

d`. �



Clustering with Fermat K-medoids in the Swiss roll

(a) 2D data (c) Adjusted mutual
information

(e) Adjusted Rand in-
dex

(b) 3D data (d) Accuracy (f) F1 score



Clustering with Fermat t-SNE



Algorithmic considerations

Restricted Fermat’s distance:

D(k)
X (x, y) = inf

r = (q1, . . . , qK)
qi+1 ∈ Nk(qi)

K−1∑
k=1
|qi+1 − qi|α.

Proposition: Given ε > 0, we can choose k = O (log(n/ε)) such
that

P
(
D

(k)
Xn

(x, y) = DXn(x, y)
)
> 1− ε.

→ We can reduce the running time from O (n3) to O (n2(logn)2).
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Conclusions

• We have introduced Fermat’s distance and way to estimate it
with a sample.

• It defines a notion of distance between sample points that
takes into account the geometry of the clouds of point,
including possible non-homogeneities.
• We have proved that this estimator in fact approximates

Fermat’s distance, which is a good way to measure distance in
this (general) setting.
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Download

A prototype implementation is available at

https://github.com/facusapienza21/Fermat_distance

https://github.com/facusapienza21/Fermat_distance


Thanks!
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