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(Deterministic) Reaction-Diffusion equations


ut(x , t) = ∆u(x , t) + f (u(x , t)), x ∈ U, 0 < t < T

u(x , t) = 0, x ∈ ∂U, 0 < t < T

u(x , 0) = u0(x), x ∈ U

Useful to model:

I Chemical reactions,

I Chemotaxis in biological systems,

I Population dynamics,

I etc.
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Explosions

If f is globally Lipschitz, every solution is global, i.e. solutions are
defined for every positive time.

If f is just locally Lipschitz, solutions could be defined just locally
in time.
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Blow-up

There exists a finite time T such that u(x , t) is defined for every
0 ≤ t < T , but

lim
t↗T
‖u(·, t)‖L∞(U) = +∞

Example: The ODE

u̇(t) = u2(t), u(0) = 1

The solution

u(t) = 1
1−t ,

blows up at time T = 1
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In PDEs

ut = ∆u + f (u) in U × (0,T )

If f verifies
I f ≥ 0
I f convex
I
∫∞ 1

f <∞
Then, there exist initial data u0 such that u blows-up in finite
time.
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Remark:

I Solutions are classical up to time T .

I There is no reasonable way to extend the solution after time
T (Complete blow-up).



Stochastic Partial Differential Equations

ut = ∆u + f (u) + σẆ (x , t) in U × (0,T )

Ẇ (x , t) is two parameter white-noise

Heuristically

I Ẇ (x , t) = ∂2

∂x∂t W (x , t), (W =Brownian sheet).

I Ẇ is a zero mean Gaussian field with
Cov(Ẇ (x , t), Ẇ (y , s)) = δ0((x , t)− (y , s)).

Rigourously

{W (A) : A a Borel set of U × R+}

is a centered Gaussian random field with covariance given by

E[W (A)W (B)] = |A ∩ B|

We consider the filtration

Ft = σ{W (A) : A a Borel set of U × [0, t]}
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Cov(Ẇ (x , t), Ẇ (y , s)) = δ0((x , t)− (y , s)).

Rigourously

{W (A) : A a Borel set of U × R+}

is a centered Gaussian random field with covariance given by

E[W (A)W (B)] = |A ∩ B|

We consider the filtration

Ft = σ{W (A) : A a Borel set of U × [0, t]}



Stochastic Partial Differential Equations
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Stochastic Partial Differential Equations

For ϕ(x) = 1A we define∫ ∫
ϕ(x)dW (x , t) := W (A)

and we extend this definition for ϕ ∈ C 2(U) ∩ C0(Ū)



Weak solutions to the SPDE
or what is a solution to ut = ∆u + f (u) + σẆ ?

Let ϕ ∈ C 2(U) ∩ C0(Ū), then formally, for every 0 ≤ t ≤ T

∫
U

u(x , t)ϕ(x) dx −
∫

U
u0(x)ϕ(x) dx =∫ t

0

∫
U

∆uϕ dxds +

∫ t

0

∫
U

f (u)ϕ dxdt +

∫ t

0

∫
U
σϕẆ (x , s) dxds

∫
U

u(x , t)ϕ(x) dx −
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U
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Let ϕ ∈ C 2(U) ∩ C0(Ū), then formally, for every 0 ≤ t ≤ T

∫
U

u(x , t)ϕ(x) dx −
∫

U
u0(x)ϕ(x) dx =∫ t

0

∫
U

∆uϕ dxds +

∫ t

0

∫
U

f (u)ϕ dxdt +

∫ t

0

∫
U
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Solutions to the SPDE
Walsh, 1986, Gyöngy and Pardoux, 1993, Buckdahn and Pardoux,
1989:
This formulation is equivalent to the integral formulation in terms
of the fundamental solution of the Heat Equation.

u(x , t) =

∫
U

G (x − y , t)u0(y) dy +∫ t

0

∫
U

G (x − y , t − s)f (u(s, y)) dsdy +∫ t

0

∫
U

G (x − y , t − s) dW (y , s)

G (x , t) = Fundamental solution of the heat equation

=
1

(2πt)d/2
exp

(
−x2

2t

)
if U = Rd .



Existence and uniqueness

I If f is globally Lipschitz, such an u exists (and is unique) for
every t ≥ 0 but just for dimension one.

I In dimensions higher than one u is not a function and hence,
in fact, do not exist a solution to our problem as a random
function (There exist a solution for f = 0 but as a
distribution).

I So we consider just the one-dimensional case U = (0, 1),
where u is a random function.
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The locally Lipschitz case
Solutions up to an explosion time

If f is just locally Lipschitz, consider for each n ∈ N the globally
Lipschitz function

fn(x) = f (−n)1(−∞,−n] + f (x)1(−n,n) + f (n)1[n,+∞)

and un, the unique solution to

un
t = ∆un + fn(u) + σẆ .

I Tn = inf{t > 0: ‖un(·, t)‖∞ ≥ n}
I un+11{t<Tn} = un1{t<Tn} a.s.
I Tn+1 ≥ Tn (hence T = limn→∞ Tn exists).
I Also u(x , t) = lim un(x , t) exists for t < T and verifies

∫ 1

0
u(x , t ∧ T )ϕ(x) dx −

∫ 1

0
u0(x)ϕ(x) dx =∫ t∧T

0

∫ 1

0
uϕxx dx ds +

∫ t∧T

0

∫ 1

0
f (u)ϕ dx ds +

∫ t∧T

0

∫ 1

0
ϕ dW .
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Remark: If T (ω) <∞ then

lim
t↗T (ω)

‖u(·, t, ω)‖∞ =∞.



Explosions

An important issue is to determine in terms of u0, f and ω whether
T (ω) <∞ or not.
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Deterministic case (σ =0).
Several criteria:

Giga-Kohn, Cortazar-Del Pino-Elgueta, etc.

I Energy methods:

Φ(u)(t) =
1

2

∫ 1

0
u2
x (x , t) dx −

∫ 1

0
F (u(x , t)) dx (F ′ = f ).

u blows up at time T ⇐⇒ limt↗T Φ(u)(t) = −∞ ⇐⇒
Φ(u)(t0) < 0 for some t0 < T

I First eigenfunction method.

I Stationary solutions: Let v the unique positive solution of
vxx + f (v) = 0

I If u0 ≤ v then u(x , t)→ 0 as t → +∞.
I If u0 ≥ v then u blows up in finite time.

I This criteria does not decide for other values of u0
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Stochastic case

Theorem. Let f be a nonnegative, convex locally Lipschitz
function such that ∫ ∞ 1

f
<∞.

Then, for every initial datum u0 and for every positive σ, u
blows-up in a (random) time T with

Pu0(T <∞) = 1.

Very different to the behavior of the deterministic problem σ = 0
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Proof. Let ϕ(x) = 2 sin(πx), which verifies

ϕ′′(x) = −π2ϕ(x)
‖ϕ‖L2(0,1) = 1

ϕ(x) > 0, ∀ x ∈ (0, 1)

Let

Φ(t) :=

∫ 1

0
ϕ(x)u(x , t) dx .

We have

Φ(t) = −π2

∫ t

0
Φ(s) ds+

∫ t

0

∫ 1

0
ϕ(x)f (u(x , s)) dxds+σ

∫ t

0

∫ 1

0
ϕ(x) dW .

As f is convex, by Jensen’s inequality, we get∫ 1

0
ϕ(x)f (u(x , s)) dx ≥ αf

(∫ 1

0
ϕ(x)u(x , s) dx

)
= αf (Φ(s)).
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Moreover, since ϕ is a positive function with L2−norm equal to 1

B(t) :=

∫ t

0

∫ 1

0
ϕ(x) dW (x , s),

is a Brownian motion.

Then Φ verifies the one dimensional stochastic differential
inequality

dΦ(t) ≥
(
− π2Φ(t) + αf (Φ(t))

)
dt + σdB(t).
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Define z(t) to be the one-dimensional process that verifies

dz = (−π2z + αf (z)) dt + σdB, z(0) = z0

Comparison principle → Φ(t) ≥ z(t) as long as Φ is defined.
We have to prove
Lema. Let z be the solution of

dz=(−π2z + f (z)) dt + σdB (1)

z(0) = 0.

Then z explodes in finite time with probability one.
Proof.
Apply the Feller Test for explosions.
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An idea of the reason of the explosion

Let y(t) := z(t)− σB(t)

y verifies a random differential equation (i.e. an Ordinary
differential equation for each ω), in fact

dy = −π2(y(t) + σB(t)) + f (y(t) + σB(t)) dt
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Numerical Approximations

Gyöngy, 1998, 1999 (Globally Lipschitz case) Allen, Novosel and
Zhang, 1998 (Linear case)
Problems:

I Lack of regularity

I Lack of boundedness

I The solution is defined just locally

Known methods for SPDEs are based in discretizations in time and
space with a uniform mesh

Not suitable in this case since we have a singularity at a random
time.

Alternative: Semidiscretization in space.
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Numerical Approximations

We discretize the space variable with second order finite differences
for the drift and integration in space for the noise, arriving to the
following system of SDEs

dui =
1

h2
(ui+1−2ui + ui−1)dt + f (ui )dt +

σ√
h

dwi , 2 ≤ i ≤ n−1.

u1 = un = 0,

ui (0) = u0(ih), 1 ≤ i ≤ n.

Equivalently

dU = (−AU + f (U)) dt +
σ√
h

dW , U(0) = U0. (*)



Properties of the semidiscrete scheme

Theorem
Let f be a nonnegative, convex function such that∫ ∞ 1

f
<∞.

Then, for every nonnegative initial datum U0 ≥ 0 the solution U to
(*) blows-up in finite (random) time T n with

PU0
(T n <∞) = 1.



Convergence of the Numerical Scheme

Theorem
Assume f is a nonnegative convex function with

∫
1
f <∞. Let u

be the solution to (P) and un its (semidiscrete) numerical
approximation given by (*). Then

1. For every p ≥ 1 and for every T > 0 there exists a constant
K = K (p,T ) such that

sup
0≤t≤T

sup
x∈[0,1]

E(|un(t, x)− u(t, x)|2p1{t≤RM∧Rn
M}) ≤

K

np
.

2. For every M ≥ 0 ‖un − u‖L∞([0,T∧RM ]×[0,1]) converges to zero
almost surely as n→∞.



Numerical Approximations

Next we need to integrate the system of SDE

Adaptivity is required!

Fixed time step gives rise to solutions defined for every time. Not
desirable!!
We adapt the time step with the following strategy

∆tj = tj+1 − tj =
λ

f (
∑

ui )

Same questions as before....
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The evolution of the L∞ norm
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A complete picture of the solution
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Future work
In wich sence the perturbed solution is close to the deterministic one?

We want to prove the following

I Assume u0 is such that the solution of the equation with
σ = 0 and initial data u0 blows-up in finite time T (u0), then

Tσ(u0)→ T (u0), (σ → 0).

I Assume u0 is such that the solution is global, then

Tσ(u0)→∞, exponentially fast

Tσ(u0)

E(Tσ(u0))
→ Z .

Z ∼ E(1).

THANKS!
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