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Introduction Explosions in evolution problems The explosion time

The Problem

dx = b(x) dt + σ(x) dW
x(0) = z ∈ R>0

I W is a one dimensional Wiener process (dW is “white noise”)

I b, σ are smooth and positive.

That is . . .

x = x(t) = x(ω, t) is a stochastic process that verifies

x(t) = z +

∫ t

0
b(x(s)) ds +

∫ t

0
σ(x(s)) dW (s).

If b is not globally Lipschitz, solutions to this problem may explode
in finite time.
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Explosions

There exist a stopping time T such
that x(ω, t) is defined in [0,T (ω)),
but

x(ω, t) ↗ +∞ as t ↗ T (ω).
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Explosions in evolution problems

1. One dimensional ODE: ẋ(t) = b(x(t)).
Blow-up ⇐⇒ T =

∫ +∞
x(0)

1
b < ∞. T is the blow-up time

2. N-dimensional ODE: ẋ(t) = f (x(t)), x(t) ∈ RN .
No general criteria. Several results for systems with specific
structure.
Example

u̇(t) = Au(t) + b(u(t)), A ∈ RN×N = Discrete Laplacian

There exist solutions with blow-up (Rossi, G. 2000).
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Explosions in evolution problems

3. Nonlinear parabolic PDE: ut = ∆u + b(u), x ∈ D ⊂ RN .
· Dirichlet boundary conditions.

I There exists solutions with blow-up if
∫ +∞ 1

b < ∞ (Kaplan,
1963. Fujita, 1966).

I No closed criteria to decide if blow-up will occur.
I No explicit formula for the blow-up time.
I The phenomenon is very well understood (blow-up times,

blow-up sets, blow-up rates, numerical computation of
solutions, etc.) Galaktionov-Vázquez, 2002 (survey).
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Explosions in evolution problems

4. One dimensional SDE: The Feller Test for Explosions
provides a precise criteria to determine, in terms of b and σ
whether solutions explode with probability zero, positive or
one.

Examples:

I dx = (1 + x2) dt + dW → P(explosion in finite time) = 1

I b and σ globally Lipschitz. → P(exp. in finite time) = 0

No general criteria in higher dimensions
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Explosions in evolution problems

5. SPDE: ut = uxx + upẆ , x ∈ [0, 1]

I Ẇ = Ẇ (t, x) is 2-parameter white noise.
I Dirichlet boundary conditions are imposed.

Blow-up if p > 3/2. Global solutions if p < 3/2 (C. Mueller,
2000)
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I Ẇ = Ẇ (t, x) is 2-parameter white noise.
I Dirichlet boundary conditions are imposed.

Blow-up if p > 3/2. Global solutions if p < 3/2 (C. Mueller,
2000)

Pablo Groisman UBA

Stochastic Differential Equations with explosions



Introduction Explosions in evolution problems The explosion time

Explosions in evolution problems

Some questions...

1. Does blow-up occur?

2. When? (explosion time)

3. Where? (blow-up set)

4. How? (blow-up rate)

5. What happens when perturbing the problem? (regularity of
the explosion time)

6. How to compute it numerically?

Almost all of these questions are open in the stochastic case
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Regularity of the explosion time

Consider the stochastic differential equation

dx = b(x) dt + σ(x) ◦ dW (1)

x(0) = x0.

Theorem 1. Assume b/σ is nondecreasing, x(t) is a solution to
(1) with initial datum x0 and xn(t) is a solution to (1) with initial
datum xn

0 . Let T and Tn be the explosion times for x(t) and xn(t)
respectively. If xn

0 → x0 a.s. (in probability) then Tn → T a.s. (in
probability)

Theorem 2. For additive or multiplicative noise, under adequate
hypotheses, if bn → b and σn → σ then Tn → T a.s.
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An abstract result (Rossi, Souplet, Zaag, G. 2003)
Let Tn, T be real numbers and un, u functions with values on a
Banach space equipped with a norm ‖ · ‖ such that the following
hypotheses hold:

Continuation property:

lim
t→T

‖u(t)‖ = ∞, lim
t→Tn

‖un(t)‖ = ∞. (H1)

Continuous dependence:

For every t < T it holds lim
n→∞

sup
s∈[0,t]

‖un(s)− u(s)‖ = 0. (H2)

Uniform upper explosion estimate: There exists a nondecreasing
continuous function G , independent of n, such that

‖un(t)‖ ≤ G
( 1

Tn − t

)
. (H3)
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Theorem. If (H1)–(H3) hold, then

lim
n→∞

Tn = T .

Proof (idea).

I Consider the error en(t) := ‖un(t)− u(t)‖.
I Estimate the first time tn at which en(tn) = 1.

I Prove that these times verify tn → T and Tn − tn → 0.

Hence, |Tn − T | ≤ |T − tn|+ |tn − T | �
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Application to stochastic differential equations
Pathwise solutions of the SDE (Doss-Sussmann)

dx = b(x) dt + σ(x) ◦ dW . (1)

φ̇(t, z) = σ(φ(t, z)), φ(0, z) = z .

Let

H(z , t) :=
b(φ(t, z))σ(z)

σ(φ(t, z))
=

b(φ(t, z))

∂zφ(t, z)
.

ż = H(z(t),W (t, ω)).

Then x(t, ω) := φ(W (t, ω), z(t)) solves (1).

If σ is globally Lipschitz, φ(t, z) is globally defined and the
explosion times of x and z coincide
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Continuity respect to the initial data

S := sup
n≥1
{Tn;T}, P(S < ∞) = 1.

AK ,M := {ω ∈ Ω : S(ω) ≤ K and |W (t, ω)| ≤ M, for t ∈ [0,K+1]}.

We prove that (H1)–(H3) hold for ω ∈ AK ,M .

(H1) In 1-d ODE the occurrence of blow-up does not depend on
the initial datum.

(H2) Continuity of the solutions respect to the initial data.

(H3)
żn(t) = H(zn(t),W (t)) ≥ H(zn(t),−M).
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Continuity respect to the initial data

Integrating we obtain∫ Tn

t

żn(t)

H(zn(s),−M)
≥ Tn − t,

and changing variables,∫ +∞

zn(t)

du

H(u,−M)
≥ Tn − t.

Let

g(ξ) :=

(∫ +∞

ξ

du

H(u,−M)

)−1

.

Since g is increasing, its inverse G := g−1 is also increasing and
then we have
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Continuity respect to the initial data

zn(t) ≤ G

(
1

Tn − t

)
.

Hence we have a uniform bound for the blow-up rate and the result
follows. �
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