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What is blow-up?

Ut — ]:(u)

The operator F is defined in certain functional space FE.

Blow-up occurs when the solution uw = u(-,t) grows up to infinity
as t approaches some finite time T (the blow-up time).



Examples:

1. The ODE
w(t) =uP(t),u(0) =uy  p>1

T he solution
u(t) = Cp(T — 1)~ 1/ @D,

= ugl(lp—l)’ Cp = (p— 1)~/ =1,

blows up at time T

u(t)




The PDE

2.

Q x (0,T),
02 x (0,7T),

wr = Au + uP,
u(z,0) = up(z), 2.

u=20

Y

th and large enough

IS SMOO

If ug

IS regular

the solution u

for every O <t < T but

lu( O oo () = oo

lim
t—T

Kaplan, 63



What do we study when we study blow-up?
1. Does blow-up occur?

2. When?

3. Where?

4. How?

5. What happens when perturbing the problem?

6. How to compute it numerically?



1. Does blow-up occur?

For a specific problem,

T he solution blows up or is globally defined?

Every solution blows up or just the ones in a certain class?

Is it possible to characterize this class?



2. When~?

What can we say about the maximal existence time 1" where a
solution blows up?

Is it posible to estimate T in terms of the parameters, the initial
data or the evolution of the solution as time goes forward?



3. Where?

If a solution uw blows up at time T, we define the blow-up set

B(u) = {z € Q/3(zn,tn),zn — x,tn /T ,u(xn,tn) — co}.

Any information about this set is welcome: dimension, number
of points, location, measure, etc.



4. How?

Which is the behavior of the solution near the blow-up time 717
(blow-up rate)

For example, solutions with blow-up to the problem

1
behave like Cp(T —t) P-1

Ut:Au—l-’U,p, 2 X (O7T)7 . . . .
w=0, 09 x (0,T), i.e. if = is a blow-up point

u(x,0) = upg(x), 2.

t
w(x,t) . 1.

Cp(T—t) P~1

Giga-Kohn, 85, 87, 89



6. How to compute it numerically?

(This thesis)

How a numerical method should be in order to get similar
answers to the previous questions for both the continuous
problem and the numerical approximations?



Some references:

Blow-up in parabolic PDEs

Kaplan 63, Fujita 66, 68 Ushijima, Nakagawa 75,76,77
Giga-Kohn 85, 87,89, etc. - Chen 86

Bandle-Brunner (survery) 98 - Berger-Kohn 88
Galaktionov-Vazquez (survey) 99 - Budd et. al. 96

Smarskii et. al. (book), 95 Duran-Etcheverry-Rossi 98



Why blow-up iIs not just a singularity?

u(t) = u”(t), p>1 w(t) = Cp(T — )~ 1/(—1)

Cp=(p—1)~H/ D

u(0) = ug u(0) =ug+¢
T — 11 T. = 1 < T
ug ~ (p—1) 7 (upte)P1(p-1)

The error function e(t) = us(t) — u(t) blows up at time Tz < T,
where v is regular.

=



Hence

- Standard convergence results does not hold in this case.

- We can not (a priori) expect the numerical approximations of
blow-up problems to reproduce every property of the continuous

solution.

- Usual techniques for regular problems or even those for prob-
lems with fixed singularities do not apply for these problems.

- New methods have to be developed in order to get the asymp-
totic properties of the solution.



A standard numerical scheme:;

the method of lines.

Ut = Ugx + uP in (0,1) x [0,T),
uw(1l,t) = u(0,t) =0 on [0,T),
u(x,0) = wug(z) >0 on [0, 1].

h
0 X X4 1
[ ui(t) =0,

un41(t) =0,

Wi() = 2 (uigr (1) — 2ui(t) + uim1 (1)) + (D),

| ui(0) =ug(z),  1<i<N+1.



Coincidences and differences.

Continuous solutions <« Numerical approximations

7 1,
B(u) B(up)



1. Heat equation with a source.

-Convergence of the method

w = Au 4+ uP, Q x (0,7), -Similar conditions to get blow-up
w=0, Q x (0,T), -Same blow-up rate
u(z,0) = ug(z), Q. -Convergence of the numerical
blow-up times
Ty, —T| < Ch7, ~>0

-The blow-up propagates
in numerical approximations

u 0( X )/ // \\

/ \ = B(u) = {0},  B(up) = [-Kh, Kh], K= [1]

If p~ 1 B(uy) is much bigger than B(u). However B(uy,) (h —0) B(u).

—



2. Porous medium equation a source. 2 = (—L, L)

ur = (u")zz +u, 2 x(0,T), -Similar conditions to get blow-up

u =1, 02 x (0,T), -Same blow-up rate

u(z,0) = ug(x), : -Convergence of the numerical blow-up
times to the continuous one
-Big differences in the blow-up sets
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Regional blow-up
in the continuous solution



The numerical scheme

u_ N (t) =1 1,
uy (t) = ﬁ(uf'kﬂl(t) — 2up'(t) +up 1 (1)) + up'(t),
un(t) =1,

up(0) = p(z), ~N+1<k<N-1



The numerical scheme

u_ N (t) =11,

u (1) = ﬁ(uf'kﬂl(t) —2up (t) +up (1)) +up (t),
un(t) =1,

up(0) = o(xy),  ~N+1<k<N-1.

Every node behaves like

() ~ wp(B)(Ty, — ¢) T

But...



The numerical scheme

u_ N (t) =11,

u (1) = ﬁ(uf'kﬂl(t) —2up (t) +up (1)) +up (t),
un(t) =1,

up(0) = o(xy),  ~N+1<k<N-1.

Every node behaves like

() ~ wp(B)(Ty, — ¢) T

But...

wy.(h) (h=0) ¢ ur(t) should not blow-up.

—



The numerical scheme
u_n(t) =1,
uy (t) = h—z(u}liul(t) — 2up'(t) +up 1 (1)) + up'(t),

un(t) =1,
’U,k(O) (CEk), —N—I—l SICSN— .
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3. Heat equation with nonlinear boundary conditions.

U = Ugy (0,1) x [0,T), -Every solution blows up [DER]

uz(0,t) =0 [0,T7), -1T,— T [DER]

ur(1,t) = uP(1,1), p>1][0,T), -Blow-up propagates

u(x,0) = ug(xz) >0 (0,1). -Different blow-up rates!
Continuous solutions Numerical solutions

. C
luCDllLeo(o,1) ~ Gpi726-D lenCDlireo0,0) ~ G



3. Heat equation with nonlinear boundary conditions.

U = Ugy (0,1) x [0,T), -Every solution blows up [DER]
uz(0,t) =0 [0,T7), -1T,— T [DER]
ur(1,t) = uP(1,1), p>1][0,T), -Blow-up propagates
u(x,0) = ug(xz) >0 (0,1). -Different blow-up rates!
Continuous solutions Numerical solutions
C C
w0 Loo0,1) ~ (T—D1/2G—D) Jur ()l pee(o,1) ~ (T—DL/G=1)

A mesh adaptive algorithm is requiered



The fixed mesh method

u(t)

=
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If we want to get the correct
rate un(t) ~ C(T), — t)~1/2(r=1) we need

1 1

/
un(t) ~ (un(2))Y, g such that = : qg=2p—1.
Y ¢—1 2(p-1)

We impose

Aoy e ane1(® = un®) 452 (un (D)

ud ) uy”(0)

€1



Moving points method

ITN-1 Yk YK
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Blow-up rates, p =2
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The problem:

ur = Au + uP, Q x (0,7T),
u =0, 02 x (0,T), p is subcritical
u(z,0) = ug(z) > 0, Q.

uy, the solution of the same problem replacing ug(x) by ug(x) + h(x).

T~ T3 < Clhl} iy 7> 0.



Using that w and u; have the same blow-up rate (independent
of h) this techniques can be applied to bound |T — Tj| < Ch”Y in

- Numerical approximations for blow-up problems

- Perturbations of the continuous problem (initial datum, reac-
tion power, diffusion coefficient, etc.)

In case of perturbations of the initial datum the bound can be
improved

T (ug 4+ k) — T(ug)| < C||h||goo| IN(||R|| 00)|?

The map ug — T(ug) is “almost Lipschitz".
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