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Sobolev trace theorem:

S‖u‖2
L2(∂Ω) ≤ ‖u‖2

H1(Ω)

The best Sobolev trace constant

S = inf
u∈H1(Ω)\H1

0(Ω)

∫
Ω |∇u|2 + |u|2 dx(∫

∂Ω |u|2 dS
)

The immersion H1(Ω) ↪→ L2(∂Ω) is compact and hence there

exist extremals. These are weak solutions to




∆u = u in Ω

∂u
∂ν = λu on ∂Ω

, λ = Lagrange multiplier
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Let A ⊂ Ω, |A| = α > 0 and consider

SA = inf

{∫
Ω |∇u|2 + |u|2 dx∫

∂Ω |u|2 dS
| u ∈ H1(Ω), u = 0 a.e. in A

}

If A is closed, the exremals for SA are weak solutions to




∆u = u en Ω \A,

∂u
∂ν = u en ∂Ω \A,

u = 0 en A.

SA = λ1 = λ1(A)
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PROBLEM

Given 0 < α < |Ω|, find a subset A∗ with Lebesgue measure
|A∗| = α minimizing λ1(A) among all measurable subsets A ⊂ Ω
with |A| = α.

(F. Bonder, Rossi and Wolanski)

They introduce the problem and prove

1. Existence

2. Symmetry properties of A∗

3. Interior regularity of the boundary of A∗



PROBLEM

Given 0 < α < |Ω|, find a subset A∗ with Lebesgue measure
|A∗| = α minimizing λ1(A) among all measurable subsets A ⊂ Ω
with |A| = α.

(F. Bonder, Rossi and Wolanski)

They introduce the problem and prove

1. Existence

2. Symmetry properties of A∗

3. Interior regularity of the boundary of A∗



Related problems

• Regularity Aguilera-Alt-Caffarelli (1986)→minimize the Dirich-
let integral among functions vanishing in a subset with pre-
scribed volume

• Optimal design for eigenvalue problems Faber-Krahn (1923-
25) → The ball minimizes the first eigenvalue of the Laplace-
Dirichlet operator.

Henrot (survey) → J. Evol. Equ. 3 (2003)

• Numerical computation Oudet (survey) → ESAIM Control
Optim. Calc. Var. (2004)



Our main:

To compute the shape derivative of λ1(A) with respect to the

hole A. This allows us to

1. Given a set A, to decide if it is (not) optimal.

2. Numerical methods to compute A∗, SA∗.

a

a



SHAPE DERIVATIVE (Hadamard)

V : RN → RN , supp(V ) ⊂ Ω,
∫

Ω
div V = 0 V ∈ C1.

We perturb the hole A in the direction V

At := (Id + tV )A = {x + tV (x), x ∈ A}
and consider the function λ1(At).

Thm: λ1(At) is differentiable at t = 0 and verifies

d

dt
λ1(At)|t=0 = λ′1(A) = −

∫

∂A

(
∂u

∂ν

)2
〈V, ν〉 dS,

u is a normalized eigenfunction associated to the eigenvalue

λ1(A).
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Thm: λ1(At) is differentiable at t = 0 and verifies

d

dt
λ1(At)|t=0 = λ′1(A) = −

∫

∂A

(
∂u

∂ν

)2
〈V, ν〉 dS,

u is a normalized eigenfunction associated to the eigenvalue

λ1(A).

Idea of the proof:

1. Differentiability: General theory of Type A operators.

2. Change variables in the weak formulation to keep the domain

fixed (y = x + tV (x)) and differentiate.



THE BALL: Ω = B(0, R)

Is the ball B(0, r) of measure α an optimal hole?

• It is spherically symmetric as proved by FB-R-W.

• If A = B(0, r), λ1(A) is simple ⇒ u is radial ⇒

λ′1(A) = −
∫

∂A

(
∂u

∂ν

)2
〈V, ν〉 dS = −C2

∫

∂A
〈V, ν〉 dS = C2

∫

A
div(V ) dx = 0.

BUT IT IS NOT OPTIMAL
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Proof:

Let v the (radial) extremal associated
to B(0, r) and let us consider

xt = (x1 − t, x2, ..., xN), U(t)(x) = v(xt).

The function U(t) vanishes at At := B(0, r)(Id + te1)

(it can be used as test function for At)

Let us call

Φ(t) :=

∫

BR

|∇U(t)|2 + |U(t)|2 dx
∫

∂BR

|U(t)|2 dS
.



We have,

Φ(0) = λ1(A).

As Φ is an even function,

Φ′(0) = 0.

But

Φ′′(0) =
2

N
λ1

[
1− N − 1

R
λ1 − λ2

1

]
< 0.

Hence, for small t

λ1(At) ≤ Φ(t) < Φ(0) = λ1(A)



NUMERICAL APROXIMATION
Finite Element Method

Vh ⊂ H1(Ω) piecewise linear continuous

Th := {Th
j : 1 ≤ j ≤ Jh,

⋃

j

Th
j = Ω}

Let us consider the class Oh
α of “numerical holes of measure α”.

Oh
α :=

{
Ah : Ah = ∪kTh

jk
, |Ah| ≥ α, |Ah − Th

jk
| < α for some k

}

We call

λ1,h(Ah) := inf
{∫

Ω
|∇v|2 + v2 dx : v ∈ Vh, ‖v‖L2(∂Ω) = 1 and v|Ah

≡ 0
}

.



The numerical optimal hole is

λ1,h(A
∗
h) = min

Oh
λ1,h(Ah).

Thm:

lim
h→0

λ1,h(A
∗
h) = λ1(A

∗).

Moreover, for any sequencer hj → 0, there exists hjk → 0 and
u ∈ H1(Ω) such that

uhjk
→ u strongly inH1(Ω).

The function u verifies A∗ := {u = 0} is optimal for λ1(A) and
u is an eigenfunction associated to λ1(A

∗). Finally,

|A∗hjk
4A∗| → 0, as k →∞.



Algorithm to find λ1,h(A
∗
h)

1. Choose an initial hole A0
h ∈ Oh

α.

2. Compute λ1,h(A
0
h) and the extremal u0

h.

3. Compute
∂u0

h
∂ν on ∂A0

h.

4. Remove the triangles with larger normal derivative from the

hole and add (to the hole) triangles in regions of the boundary

where the normal derivative is small to obtain a new hole

A1
h ∈ Oh

α.

5. Go to 2.



Numerical Experiments
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Behavior of the numerical optimal hole as h → 0.

h=0.80 h=0.50 h=0.25 h=0.1



Some comments on the method.

• Convergence of the algorithm to the discrete optimal hole
for fixed h is not proved.

• An adequate method should be used to compute the eigen-
function for a fixed hole Ah.

• Changes in the topology of the hole are allowed by the
method.

• The method, as described, seems better suited to find the
location of the hole rather than the fine resolution of its
boundary. Adaptivity should be used to achieve this goal.


