Optimization of the first Steklov eigenvalue in domains with holes.

Joint work with
Julián Fernández Bonder, U. de Buenos Aires Julio D. Rossi, U. de Buenos Aires \& CSIC (España)

Discontinuous change in behavior issues in partial differential equations
Crete, June 2006

Sobolev trace theorem:

$$
S\|u\|_{L^{2}(\partial \Omega)}^{2} \leq\|u\|_{H^{1}(\Omega)}^{2}
$$

Sobolev trace theorem:

$$
S\|u\|_{L^{2}(\partial \Omega)}^{2} \leq\|u\|_{H^{1}(\Omega)}^{2}
$$

The best Sobolev trace constant

$$
S=\inf _{u \in H^{1}(\Omega) \backslash H_{0}^{1}(\Omega)} \frac{\int_{\Omega}|\nabla u|^{2}+|u|^{2} d x}{\left(\int_{\partial \Omega}|u|^{2} d S\right)}
$$

Sobolev trace theorem:

$$
S\|u\|_{L^{2}(\partial \Omega)}^{2} \leq\|u\|_{H^{1}(\Omega)}^{2}
$$

The best Sobolev trace constant

$$
S=\inf _{u \in H^{1}(\Omega) \backslash H_{0}^{1}(\Omega)} \frac{\int_{\Omega}|\nabla u|^{2}+|u|^{2} d x}{\left(\int_{\partial \Omega}|u|^{2} d S\right)}
$$

The immersion $H^{1}(\Omega) \hookrightarrow L^{2}(\partial \Omega)$ is compact and hence there exist extremals. These are weak solutions to

$$
\left\{\begin{array}{ll}
\Delta u=u & \text { in } \Omega \\
\frac{\partial u}{\partial \nu}=\lambda u & \text { on } \partial \Omega
\end{array} \quad \lambda=\right.\text { Lagrange multiplier }
$$

Let $A \subset \Omega,|A|=\alpha>0$ and consider

$$
S_{A}=\inf \left\{\left.\frac{\int_{\Omega}|\nabla u|^{2}+|u|^{2} d x}{\int_{\partial \Omega}|u|^{2} d S} \right\rvert\, u \in H^{1}(\Omega), u=0 \text { a.e. in } A\right\}
$$

Let $A \subset \Omega,|A|=\alpha>0$ and consider

$$
S_{A}=\inf \left\{\left.\frac{\int_{\Omega}|\nabla u|^{2}+|u|^{2} d x}{\int_{\partial \Omega}|u|^{2} d S} \right\rvert\, u \in H^{1}(\Omega), u=0 \text { a.e. in } A\right\}
$$

If A is closed, the extremals for S_{A} are weak solutions to

$$
\begin{cases}\Delta u=u & \text { in } \Omega \backslash A \\ \frac{\partial u}{\partial \nu}=\lambda u & \text { in } \partial \Omega \backslash A \\ u=0 & \text { on } A\end{cases}
$$

PROBLEM

Given $0<\alpha<|\Omega|$, find a subset A^{*} with Lebesgue measure $\left|A^{*}\right|=\alpha$ minimizing $\lambda_{1}(A)$ among all measurable subsets $A \subset \Omega$ with $|A|=\alpha$.
(F. Bonder, Rossi and Wolanski)

PROBLEM

Given $0<\alpha<|\Omega|$, find a subset A^{*} with Lebesgue measure $\left|A^{*}\right|=\alpha$ minimizing $\lambda_{1}(A)$ among all measurable subsets $A \subset \Omega$ with $|A|=\alpha$.
(F. Bonder, Rossi and Wolanski)

They introduce the problem and prove

1. Existence
2. Symmetry properties of A^{*}
3. Interior regularity of the boundary of A^{*}

Related problems

- Regularity Aguilera-Alt-Caffarelli (1986) \rightarrow minimize the Dirichlet integral among functions vanishing in a subset with prescribed volume
- Optimal design for eigenvalue problems Faber-Krahn (192325) \rightarrow The ball minimizes the first eigenvalue of the LaplaceDirichlet operator.

Henrot (survey) \rightarrow J. Evol. Equ. 3 (2003)

- Numerical computation Oudet (survey) \rightarrow ESAIM Control Optim. Calc. Var. (2004)

Our main:

To compute the shape derivative of $\lambda_{1}(A)$ with respect to the hole A. This allows us to

1. Given a set A, to decide if it is (not) optimal.
2. Numerical methods to compute $A^{*}, S_{A^{*}}$.

SHAPE DERIVATIVE (Hadamard)

$$
V: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}, \quad \operatorname{supp}(V) \subset \Omega, \quad \int_{\Omega} \operatorname{div} V=0 \quad V \in C^{1}
$$

We perturb the hole A in the direction V

$$
A_{t}:=(I d+t V) A=\{x+t V(x), x \in A\}
$$

and consider the function $\lambda_{1}\left(A_{t}\right)$.

SHAPE DERIVATIVE (Hadamard)

$$
V: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}, \quad \operatorname{supp}(V) \subset \Omega, \quad \int_{\Omega} \operatorname{div} V=0 \quad V \in C^{1}
$$

We perturb the hole A in the direction V

$$
A_{t}:=(I d+t V) A=\{x+t V(x), x \in A\}
$$

and consider the function $\lambda_{1}\left(A_{t}\right)$.

Thm: $\lambda_{1}\left(A_{t}\right)$ is differentiable at $t=0$ and verifies

$$
\left.\frac{d}{d t} \lambda_{1}\left(A_{t}\right)\right|_{t=0}=\lambda_{1}^{\prime}(A)=-\int_{\partial A}\left(\frac{\partial u}{\partial \nu}\right)^{2}\langle V, \nu\rangle d S
$$

u is a normalized eigenfunction associated to the eigenvalue $\lambda_{1}(A)$.

Thm: $\lambda_{1}\left(A_{t}\right)$ is differentiable at $t=0$ and verifies

$$
\left.\frac{d}{d t} \lambda_{1}\left(A_{t}\right)\right|_{t=0}=\lambda_{1}^{\prime}(A)=-\int_{\partial A}\left(\frac{\partial u}{\partial \nu}\right)^{2}\langle V, \nu\rangle d S
$$

u is a normalized eigenfunction associated to the eigenvalue $\lambda_{1}(A)$.

Idea of the proof:

1. Differentiability: General theory of Type A operators.
2. Change variables in the weak formulation to keep the domain fixed $(y=x+t V(x))$ and differentiate.

THE BALL: $\Omega=B(0, R)$
Is the ball $B(0, r)$ of measure α an optimal hole?

- It is spherically symmetric as proved by FB-R-W.

THE BALL: $\Omega=B(0, R)$

Is the ball $B(0, r)$ of measure α an optimal hole?

- It is spherically symmetric as proved by FB-R-W.
- If $A=B(0, r), \lambda_{1}(A)$ is simple $\Rightarrow u$ is radial \Rightarrow

THE BALL: $\Omega=B(0, R)$

Is the ball $B(0, r)$ of measure α an optimal hole?

- It is spherically symmetric as proved by FB-R-W.
- If $A=B(0, r), \lambda_{1}(A)$ is simple $\Rightarrow u$ is radial \Rightarrow

$$
\lambda_{1}^{\prime}(A)=-\int_{\partial A}\left(\frac{\partial u}{\partial \nu}\right)^{2}\langle V, \nu\rangle d S=-C^{2} \int_{\partial A}\langle V, \nu\rangle d S=C^{2} \int_{A} \operatorname{div}(V) d x=0
$$

THE BALL: $\Omega=B(0, R)$

Is the ball $B(0, r)$ of measure α an optimal hole?

- It is spherically symmetric as proved by FB-R-W.
- If $A=B(0, r), \lambda_{1}(A)$ is simple $\Rightarrow u$ is radial \Rightarrow

$$
\lambda_{1}^{\prime}(A)=-\int_{\partial A}\left(\frac{\partial u}{\partial \nu}\right)^{2}\langle V, \nu\rangle d S=-C^{2} \int_{\partial A}\langle V, \nu\rangle d S=C^{2} \int_{A} \operatorname{div}(V) d x=0
$$

BUT IT IS NOT OPTIMAL

Proof:

Let v the (radial) extremal associated to $B(0, r)$ and let us consider

$$
x_{t}=\left(x_{1}-t, x_{2}, \ldots, x_{N}\right), \quad U(t)(x)=v\left(x_{t}\right)
$$

The function $U(t)$ vanishes at $A_{t}:=B(0, r)\left(I d+t e_{1}\right)$
(it can be used as test function for A_{t})
Let us call

$$
\Phi(t):=\frac{\int_{B_{R}}|\nabla U(t)|^{2}+|U(t)|^{2} d x}{\int_{\partial B_{R}}|U(t)|^{2} d S}
$$

We have,

$$
\Phi(0)=\lambda_{1}(A)
$$

As Φ is an even function,

$$
\Phi^{\prime}(0)=0
$$

But

$$
\Phi^{\prime \prime}(0)=\frac{2}{N} \lambda_{1}\left[1-\frac{N-1}{R} \lambda_{1}-\lambda_{1}^{2}\right]<0 .
$$

Hence, for small t

$$
\lambda_{1}\left(A_{t}\right) \leq \Phi(t)<\Phi(0)=\lambda_{1}(A)
$$

NUMERICAL APROXIMATION

Finite Element Method

$\mathcal{V}_{h} \subset H^{1}(\Omega)$ piecewise linear continuous

$$
\mathcal{T}_{h}:=\left\{T_{j}^{h}: 1 \leq j \leq J_{h}, \bigcup_{j} T_{j}^{h}=\Omega\right\}
$$

Let us consider the class \mathcal{O}_{α}^{h} of "numerical holes of measure α ".

$$
\mathcal{O}_{\alpha}^{h}:=\left\{A_{h}: A_{h}=\cup_{k} T_{j_{k}}^{h},\left|A_{h}\right| \geq \alpha,\left|A_{h}-T_{j_{k}}^{h}\right|<\alpha \text { for some } k\right\}
$$

We call
$\lambda_{1, h}\left(A_{h}\right):=\inf \left\{\int_{\Omega}|\nabla v|^{2}+v^{2} d x: v \in \mathcal{V}_{h},\|v\|_{L^{2}(\partial \Omega)}=1\right.$ and $\left.\left.v\right|_{A_{h}} \equiv 0\right\}$.

The numerical optimal hole is

$$
\lambda_{1, h}\left(A_{h}^{*}\right)=\min _{\mathcal{O}^{h}} \lambda_{1, h}\left(A_{h}\right) .
$$

Thm:

$$
\lim _{h \rightarrow 0} \lambda_{1, h}\left(A_{h}^{*}\right)=\lambda_{1}\left(A^{*}\right)
$$

Moreover, for any sequencer $h_{j} \rightarrow 0$, there exists $h_{j_{k}} \rightarrow 0$ and $u \in H^{1}(\Omega)$ such that

$$
u_{h_{j_{k}}} \rightarrow u \quad \text { strongly } \operatorname{in} H^{1}(\Omega)
$$

The function u verifies $A^{*}:=\{u=0\}$ is optimal for $\lambda_{1}(A)$ and u is an eigenfunction associated to $\lambda_{1}\left(A^{*}\right)$. Finally,

$$
\left|A_{h_{j_{k}}}^{*} \triangle A^{*}\right| \rightarrow 0, \quad \text { as } k \rightarrow \infty
$$

Algorithm to find $\lambda_{1, h}\left(A_{h}^{*}\right)$

1. Choose an initial hole $A_{h}^{0} \in \mathcal{O}_{\alpha}^{h}$.
2. Compute $\lambda_{1, h}\left(A_{h}^{0}\right)$ and the extremal u_{h}^{0}.
3. Compute $\frac{\partial u_{h}^{0}}{\partial \nu}$ on ∂A_{h}^{0}.
4. Remove the triangles with larger normal derivative from the hole and add (to the hole) triangles in regions of the boundary where the normal derivative is small to obtain a new hole $A_{h}^{1} \in \mathcal{O}_{\alpha}^{h}$.
5. Go to 2 .

Numerical Experiments

Numerical Experiments

Numerical Experiments

Numerical Experiments

Behavior of the numerical optimal hole as $h \rightarrow 0$.

$h=0.80$

$h=0.50$

$h=0.25$

$$
h=0.1
$$

- Convergence of the algorithm to the discrete optimal hole for fixed h is not proved.
- An adequate method should be used to compute the eigenfunction for a fixed hole A_{h}.
- Changes in the topology of the hole are allowed by the method.
- The method, as described, seems better suited to find the location of the hole rather than the fine resolution of its boundary. Adaptivity should be used to achieve this goal.

