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The best Sobolev trace constant
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The immersion H1(Q) — L2(9) is compact and hence there
exist extremals. These are weak solutions to

Au=u in

A = Lagrange multiplier
% = Au on 02
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Let A C 2, |A] = a > 0 and consider

Jo |Vul? + [u]? dz
Joq [ul? dS
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If A is closed, the extremals for S4 are weak solutions to

([ Au=u in Q\A,

$ 9= )w indQ\ 4,

u=020 on A.
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PROBLEM
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|A*| = o minimizing among all measurable subsets A C €2
with |A] = a.
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They introduce the problem and prove

1. Existence

2. Symmetry properties of A*

3. Interior regularity of the boundary of A*



Related problems

o Aguilera-Alt-Caffarelli (1986) — minimize the Dirich-
let integral among functions vanishing in a subset with pre-
scribed volume

o Faber-Krahn (1923-
25) — The ball minimizes the first eigenvalue of the Laplace-
Dirichlet operator.

Henrot (survey) — J. Evol. Equ. 3 (2003)

o Oudet (survey) — ESAIM Control
Optim. Calc. Var. (2004)



Our main:

To compute the shape derivative of A\1(A) with respect to the
hole A. This allows us to

1. Given a set A, to decide if it is (not) optimal.

2. Numerical methods to compute A*, Syx.
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We perturb the hole A in the direction V

A= (Id+tV)A={z+tV(z), v € A}

and consider the function
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and consider the function

Thm: is differentiable at ¢t = 0 and verifies
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u IS a normalized eigenfunction associated to the eigenvalue
A (A).



Thm: is differentiable at ¢t = O and verifies

” 2
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w IS a normalized eigenfunction associated to the eigenvalue
A (A).

Idea of the proof:
1. Differentiability: General theory of Type A operators.

2. Change variables in the weak formulation to keep the domain
fixed (y =z + tV(x)) and differentiate.



THE BALL: Q = B(0, R)

Is the ball B(0,r) of measure o« an optimal hole?

e It is spherically symmetric as proved by FB-R-W.
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e It is spherically symmetric as proved by FB-R-W.
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BUT IT IS NOT OPTIMAL



Let v the (radial) extremal associated
to B(0,r) and let us consider

Ly — (331 — 1,9, "'7mN)7 U(t)($> — ’U(fl?t).

The function U(t) vanishes at A; := B(0,r)(Id + teq)

(it can be used as test function for A;)

et us call
| INUGP + U@ deo
Br

P(t) =
fy V@R ds




We have,
d(0) = A1 (A).
As &® is an even function,
®’(0) = 0.
But

N-—1
A — A7| < 0.

2
®"(0) = =X |1 —
(0) VM
Hence, for small ¢

A (Ap) < P(t) < P(0) = A1 (A)



Finite Element Method

V, C H1(QQ) piecewise linear continuous

T, =11} 1 1<j<J UT) =2}
J

Let us consider the class O” of “numerical holes of measure o .
Oh = {Ah LAy = Uij};, Ayl > a, |Ay — ij;| < « for some k}

We call

M p(Ap) = inf {/Q Vol 4+ 02de 1 v eV, [ollp2pg) =1 and vl = o}.



The numerical optimal hole is

A1n(Ap) = "gihn A1,n(A4p)-

Thm:

Moreover, for any sequencer hj — 0, there exists hjk: — 0 and
uw € H1(Q) such that

The function u verifies A* := {u = 0} is optimal for A{(A) and
u iS an eigenfunction associated to A1 (A*). Finally,



Algorithm to find Ay j,(A})
1. Choose an initial hole Ag c Oh,

2. Compute AlJAQ42) and the extremal u%.

ou?
h o)
3. Compute —/t on 0Aj.

4. Remove the triangles with larger normal derivative from the
hole and add (to the hole) triangles in regions of the boundary
where the normal derivative is small to obtain a new hole

Al € OL.

5. Go to 2.
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Convergence of the algorithm to the discrete optimal hole
for fixed h is not proved.

An adequate method should be used to compute the eigen-
function for a fixed hole Ay,.

Changes in the topology of the hole are allowed by the
method.

The method, as described, seems better suited to find the
location of the hole rather than the fine resolution of its
boundary. Adaptivity should be used to achieve this goal.



