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The problem:

ut = λ∆u + up, Ω× (0, T ),
u = 0, ∂Ω× (0, T ),
u(x,0) = u0(x), Ω.

The domain Ω ⊂ Rn is bounded and smooth,

and p is superlineal and subcritical, i.e.,

1 < p < ps = (n + 2)/(n− 2).

The initial datum u0 is smooth, nonnegative

and nontrivial (u0 6≡ 0).

This model is used e.g. to describe heat prop-

agation with constant thermal conductivity in

a medium with a nonlinear source due, for ex-

ample, to chemical reaction.



1. Existence, uniqueness and regularity for

small times.

2. There is a maximal time of existence, T .

If T < ∞

lim
t↗T

‖u(·, t)‖L∞(Ω) = +∞.

In this case we say that the solution blows up

at time T = T (λ, p, u0).

Several authors proved that u0 7→ T is con-

tinuos under different assumptions and using

different techniques, e.g.

Baras, P.; Cohen, L. J. Funct. Anal. (1987)

Merle, F. Comm. Pure Appl. Math. (1992)

Quittner, P. Houton J. Math. To appear.



MAIN RESULTS

1. We extend this results finding a modulus of

continuity for η = (λ, p, u0) 7→ T which has the

form

|T (η)− T (η0)| ≤ C(η0)‖η − η0‖
γ, γ > 0.

2. We improve this result for perturbations on

the initial data proving

|T (u0 + h)− T (u0)| ≤ C‖h‖L∞| ln(‖h‖L∞)|θ

3. In the second part of the talk we analyze

the relation between this modulus of continu-

ity and the rate of convergence for the blow-up

time in numerical approximations for this prob-

lem.



Some facts about solutions of this equa-

tion:

1. The energy functional

Φ(u)(t) =
λ

2

∫

Ω
|∇u|2 ds−

∫

Ω

up+1

p + 1
ds,

characterize the solutions with blow-up in the

sense that

Φ(u)(t0) < 0 for some t0 ⇐⇒ T < ∞.

(This fact proved that the set composed of

solutions with blow-up si open)

Giga, Y.; Kohn, R.V. Indiana Univ. Math. J.

(1987).

Cortazar; Del Pino; Elgueta. Comm. Partial

Differential Equations (1999).



2. If u blows up at time T

‖u(·, t)‖L∞(Ω) ∼ (T − t)
− 1

p−1

in the sense that there exist κ, κ̃ = κ̃(λ, p, u0)

such that

κ(T − t)
− 1

p−1 ≤ ‖u(·, t)‖L∞(Ω) ≤ κ̃(T − t)
− 1

p−1

κ = (p − 1)
− 1

p−1, κ̃ can be taken locally inde-

pendent of λ, p, u0.

This is the key for our arguments!!

Giga; Kohn. (1987)

F. Kammerer, C.; Zaag, H. Nonlinearity. (2000)

3. Maximum Principle.



Idea of the proof: perturbations in the initial

datum.

The perturbed problem

(uh)t = ∆uh + u
p
h, Ω× (0, Th),

uh = 0, ∂Ω× (0, Th),
uh(x,0) = u0(x) + h(x), Ω.

When h = 0 we denote u, T the solution and

the blow-up time of this problem. So we define

the error function

e(x, t) = uh(x, t)− u(x, t),

which verifies

et = ∆e + u
p
h − up, Ω× (0, T̃ ),

e = 0, ∂Ω× (0, T̃ ),
e(x,0) = h(x), Ω.



Let t0 the first time such that ‖e(·, t0)‖∞ = 1.

In [0, t0] e verifies

et = ∆e +
u

p
h − up

uh − u
e

≤ ∆e + C(T − t)−1e

e(x,0) ≤ h(x).

By comparison arguments

e(x, t) ≤ C‖h‖L∞(T − t)−C.

The error remains small until times very close

to the blow-up time if ‖h‖L∞ is small enough.

From this bound we can obtain

|T − Th| ≤ C (‖h‖L∞)1/C
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The exponent γ in

|T − Th| ≤ C‖h‖
γ
L∞

depends on the uniform constant that bounds

the blow-up rate

u(x, t) ≤
κ̃

(T − t)
1

p−1

To obtain a sharper estimate for the modulus

of continuity it is necessary to have a better

knowledge of this constant.

Merle and Zaag (2000) found the best con-

stant κ = (p − 1)−1/(p−1) and a bound for a

second term of lower order

uh(x, t) ≤ κ(Th−t)
− 1

p−1+

(

nκ

2p
+ ε

)

(Th − t)
− 1

p−1

| ln(Th − t)|
.

This allows us to obtain

|T − Th| ≤ C‖h‖L∞| ln(‖h‖L∞)|
n+2
2 +ε
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Conjecture:

|T − Th| ≤ C‖h‖L∞

i.e u0 7→ T is Lipschitz.



Numerical Approximations

Order of convergence ↔ Regularity

A numerical semi-discrete approximation of this

problem is a vector U(t) = (u1(t), . . . , uN(t))

that approximates the solution u(x, t) at some

fixed nodes {x1, . . . , xN} ⊂ Ω.

This vector U(t) must verify a system like

MU ′(t) = −AU(t) + MU(t)p

ui(0) = u0(xi), 1 ≤ i ≤ N.

M is the mass matrix obtained with lumping

and A is the stiffness matrix.



Example: the one dimensional case.
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u1(t) = 0,

u′i(t) = 1
h2(ui+1(t)− 2ui(t) + ui−1(t)) + u

p
i (t),

uN+1(t) = 0,

ui(0) = u0(xi), 1 ≤ i ≤ N + 1.

It can be proved that continuous solutions with

blow-up produce numerical approximations that

also blow-up (and with the same blow-up rate)

if the parameter of the method, h, is small

enough.

‖U(t)‖∞ ≤ C(Th − t)
− 1

p−1.



As before we can define the error function

E(t) = (e1(t), . . . , eN(t)).

ei(t) = ui(t)− u(xi, t).

Under adequate assumptions on the matrices

A and M similar bounds for this error function

can be obtained.

E′(t) ≤
C

T − t
E(t) + Chα(T − t)−θ

E(0) ≤ ‖E(0)‖∞.

And hence,

E(t) ≤ Ch(T − t)−C.

Arguing as before we get

|Th − T | ≤ Chγ.
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