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Chapter 1Introdu
tionThese notes are dedi
ated to Ted Harris who taught us how to 
onstru
tparti
le systems using random graphs, 
utting and pasting pie
es so that toput in eviden
e, in the most elementary way, the properties of the pro
ess.The purpose of these notes is to explain in an elementary way how 
ou-pling and regeneration 
an be used to 
onstru
t and study 
hains of in�niteorder. These are sto
hasti
 pro
esses taking values on a �nite alphabet inwhi
h the 
hoi
e of ea
h new symbol depends on the whole past history.This is in 
ontrast with Markov 
hains, in whi
h the 
hoi
e depends on onlya �xed �nite number of pre
eding values. Our approa
h does not use mea-sure theory as it adopts a 
onstru
tive point of view inherent to the notionof simulation and 
oupling of random variables or pro
esses.Chains of in�nite order seem to have been �rst studied by Oni
es
u andMiho
 (1935a) who 
alled them 
hains with 
omplete 
onne
tions (
hâ�nes �aliaisons 
ompl�etes). Their study was soon taken up by Doeblin and Fortet(1937) who proved the �rst results on speed of 
onvergen
e towards theinvariant measure. The name 
hains of in�nite order was 
oined by Harris(1955) . We refer the reader to Iosifes
u and Grigores
u (1990) for a 
ompletesurvey.To 
ouple two random variables means to 
onstru
t them simultaneouslyusing the same random me
hanism. More informally: 
oupling is just to7



8 CHAPTER 1. INTRODUCTIONsimulate two random variables using the same random numbers. The �rst
oupling was introdu
ed by Doeblin (1938) to show the 
onvergen
e to equi-librium of a Markov 
hain. Doeblin 
onsidered two independent traje
toriesof the pro
ess, one of them starting with an arbitrary distribution and theother with the invariant measure and showed that the traje
tories meet in a�nite time. For a des
ription of Doeblin's 
ontributions to probability theorywe refer the reader to Lindvall (1991).Perhaps due to the premature and tragi
al death of Doeblin and the ex-treme originality of his ideas, the notion of 
oupling only 
ome ba
k to theliterature with Harris (1955). Coupling be
ome a 
entral tool in intera
tingparti
le systems, subje
t proposed by Spitzer (1970), Harris (1972) and thesovieti
 s
hool of Dobrushin, Toom, Piatevsky-Shapiro, Vaserstein and oth-ers. This names gave rise to a new area in sto
hasti
 pro
esses developedextensively by Harris, Holley, Liggett, Durrett, Gri�eath, Kipnis and others.We refer the interested reader to the books by Liggett (1985), (1999) and Kip-nis and Landim (1999) for re
ent developments in the �eld. Liggett (1994)reviews the use of the 
oupling te
hnique for intera
ting Markov systems.Our 
onstru
tive approa
h 
omes dire
tly from the graphi
al 
onstru
tionof intera
ting parti
le systems introdu
ed by Harris (1972, 1978). The waywe 
ouple 
hains 
an be tra
ed ba
k to Dobrushin (1956), even when thereis no 
oupling in his paper. A 
oupling approa
h related to what to do inChapter 8 has been used by Marton (1996).Coupling te
hniques had a somehow independent development for \
lassi-
al" pro
esses. The books of Lindvall (1992) and the re
ent book of Thorisson(2000) are ex
ellent sour
es for these developments.The art of 
oupling 
onsists in looking for the best way to simultaneously
onstru
t two pro
esses or, more generally, two probability measures. Forinstan
e, to study the 
onvergen
e of a Markov 
hain, we 
onstru
t simulta-neously two traje
tories of the same pro
ess starting at di�erent states andestimate the time they need to meet. This time depends on the joint lawof the traje
tories. The issue is then to �nd the 
onstru
tion \minimizing"the meeting time. In the original Doeblin's 
oupling the traje
tories evolvedindependently. This 
oupling is a priori not the best one in the sense that it



9is not aimed to redu
e the meeting time. But on
e one realizes that 
ouplingis useful, many other 
onstru
tions are possible. We present some of themin these notes.The 
entral idea behind 
oupling 
an be presented through a very simpleexample. Suppose we toss two 
oins, and that the probability to obtain a\head" is p for the �rst 
oin and q for the se
ond 
oin with 0 < p < q < 1. Wewant to 
onstru
t a random me
hanism simulating the simultaneous tossingof the two 
oins in su
h a way that when the 
oin asso
iated to the probabilityp shows \head", so does the other (asso
iated to q). Let us 
all X and Ythe results of the �rst and se
ond 
oin, respe
tively; X; Y 2 f0; 1g, with the
onvention that \head" = 1. We want to 
onstru
t a random ve
tor (X; Y )in su
h a way that P(X = 1) = p = 1� P(X = 0)P(Y = 1) = q = 1� P(Y = 0)X � Y:The �rst two 
onditions just say that the marginal distribution of X and Yreally express the result of two 
oins having probabilities p and q of being\head". The third 
ondition is the property we want the 
oupling to have.This 
ondition implies in parti
ular that the eventfX = 1; Y = 0g;
orresponding to a head for the �rst 
oin and a tail for the se
ond, hasprobability zero.To 
onstru
t su
h a random ve
tor, we use an auxiliary random variableU , uniformly distributed in the interval [0; 1℄ and de�neX := 1fU � pg and Y := 1fU � qg:where 1A is the indi
ator fun
tion of the set A. It is immediate that theve
tor (X; Y ) so de�ned satis�es the three 
onditions above. This 
ouplingis a prototype of the 
ouplings we use in this notes.With the same idea we 
onstru
t sto
hasti
 pro
esses (sequen
es of ran-dom variables) and 
ouple them. One important produ
t of this approa
h is



10 CHAPTER 1. INTRODUCTIONthe regenerative 
onstru
tion of sto
hasti
 pro
esses. For instan
e, supposewe have a sequen
e (Un : n 2 Z) of independent, identi
ally distributed uni-form random variables in [0; 1℄. Then we 
onstru
t a pro
ess (Xn : n 2 Z)on f0; 1gZ, using the ruleXn := 1fUn > h(Xn�1)g (1.1)where h(0) < h(1) 2 (0; 1) are arbitrary. We say that there is a regenerationtime at n if Un 2 [0; h(0)℄[ [h(1); 1℄. Indeed, at those times the law of Xn isgiven by P(Xn = 1 j Un 2 [0; h(0)℄ [ [h(1); 1℄) = 1� h(1)h(0) + 1� h(1) (1.2)independently of the past. De�nition (1.1) is in
omplete in the sense thatwe need to know Xn�1 in order to 
ompute Xn using Un. But, if we go ba
kin time up to �(n) := maxfk � n : Uk 2 [0; h(0)℄ [ [h(1); 1℄g, then we 
an
onstru
t the pro
ess from time �(n) on. Sin
e this 
an be done for all n 2 Z,we have 
onstru
ted a stationary pro
ess satisfying:P(Xn = y jXn�1 = x) = Q(x; y) (1.3)where Q(0; 0) = h(0) Q(0; 1) = 1� h(0)Q(1; 0) = h(1) Q(1; 1) = 1� h(1) : (1.4)Pro
esses with this kind of property are 
alledMarkov 
hains. The prin
i-pal 
onsequen
e of 
onstru
tion (1.1) is that the pie
es of the pro
ess betweentwo regeneration times are independent random ve
tors (of random length).We use this approa
h to 
onstru
t perfe
t simulation algorithms not only forMarkov 
hain but, more generally, for 
hains of in�nite order, with a suitablememory-loss rate.Regenerative s
hemes have a long history, starting with Harris (1956)approa
h to re
urrent Markov 
hains in non 
ountable state-spa
es passingby the basi
 papers by Athreya and Ney (1978) and Nummelin (1978). Werefer the reader to Thorisson (2000) for a 
omplete review. Perfe
t simulationwas re
ently proposed by Propp and Wilson (1996) and be
ome very fast animportant issue of resear
h. See Wilson (1998) .



11In these notes we adopt the graphi
 
onstru
tion philosophy introdu
edby Ted Harris to deal with intera
ting parti
le systems. Our �rst elementarysystemati
 presentation of Harris' point of view is 
ontained in the bookletA
oplamento em Pro
essos Esto
�asti
os in Portuguese for a mini-
ourse towof us o�ered at the XXI Coloquio Brasileiro de Matem�ati
a, held in Rio deJaneiro in July of 1997 (Ferrari and Galves 1997), followed by Constru
tion ofSto
hasti
 pro
esses, Coupling and Regeneration (Ferrari and Galves 2000),notes for the XIII Es
uela Venezolana de Matem�ati
as. In these referen
es,Markov pro
esses were the main 
on
ern. In the present set of le
tureswe fo
us instead on re
ent results on 
hains of in�nite order presented inBressaud, Fern�andez and Galves (1999a, 1999b) and Comets, Fern�andez andFerrari (2000). We refer the reader to these papers for further te
hni
aldetails and more extensive referen
es.A
knowledgementsA number of 
ollaborators and 
olleagues helped us to learn and understandmany of the issues of thee notes. We like to express our warm thanks toMiguel Abadi, Xavier Bressaud, Jean-Ren�e Chazottes, Pierre Collet, Fran
isComets, Denise Duarte, Davide Gabriele, Jes�us Gar
��a, Daniela Guiol, Nan
yLopes Gar
ia, Alejandro Maass, Gr�egory Maillard, Servet Martinez, PeterNey Bernard S
hmitt and Paul Shields.This �nal version of the notes has bene�ted from the sharp 
omments,questions and 
riti
ism of the audien
e of the V EBP. We thank spe
iallyChristian Borgs, David Brillinger, Jennifer Chayes, Tom Kurtz, Steve Lalley,Jesper M�ller, Erri
o Presutti, . . . . We also thank the enthusiasti
 studentsthat pointed out a number of errors and impre
isions.The authors thank FINEP, FAPESP, CNPq and an agreement USP-COFECUB for support during the writing of these notes.We owe spe
ial thanks to the Zentrum f�ur interdisziplin�aire Fors
hung(ZiF) of the University of Bielefeld who o�ered us support and an extraordi-nary s
ienti�
 and human environment during the 
ompletion of these notes.
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Chapter 2Basi
 de�nitions
2.1 Simulation algorithmsWe 
onsider an evolution in dis
rete time Z taking values in a �nite alphabetA. The evolution is random, that is, its possible realizations are des
ribed bya family of random variables (Xn)n2Z, with images in A, de�ned on a 
ertainmeasure spa
e.The existen
e of a probability spa
e in whi
h a given sto
hasti
 pro
ess
an be de�ned is a basi
 issue in probability theory. One of the advantagesof Harris' 
onstru
tive approa
h is that it shows that the pro
esses 
onsid-ered in these notes, and many others, 
an be rigorously 
onstru
ted usingonly a double in�nite sequen
e of independent random variables uniformlydistributed in [0; 1℄. The existen
e of su
h a sequen
e is the only measure-theoreti
al fa
t we will need in these le
tures. This sequen
e will be denoted(Un; n 2 Z). In some appli
ations the uniform variables will be relabelledso that ea
h Un will in fa
t 
orrespond to a N -tuple of independent randomvariables U (1)n ; � � � ; U (N)n , with N �xed. People that do not feel 
omfortablewith measure theory should simply think these variables as the out
omes ofa random number generator in a 
omputer simulation.The only probability spa
e we shall be 
on
ern with is the one in whi
hthe variables (Un) are de�ned. Let us 
all it (
;F ;P) and use E for the13



14 CHAPTER 2. BASIC DEFINITIONS
orresponding expe
tation.The value of Xn is interpreted as the \state" of the pro
ess at \time" n.The out
omes of su
h an evolution 
orresponds to strings of symbols x =(xn)n2Z 2 AZ whi
h we shall 
all a path of the pro
ess. The theory isdeveloped purely in terms of the path spa
e AZ, and the spe
i�
 
hoi
e forthe spa
e of de�nition of the Xn plays no role. Formally this is be
auseevolutions are des
ribed in terms of joint laws of the variables Xn.The traditional way to introdu
e a sto
hasti
 pro
ess is starting fromthe family of joint probability distributions or, equivalently, by a probabilitymeasure on AZ 
orresponding to the joint laws. This has two drawba
ks.First, the existen
e of a pro
ess so de�ned is not an easy matter. Se
ond,these measures are seldomly dire
tly a

esible. Rather, the starting obje
tsare 
onditional probabilities of the formP (Xn+` = xn+`; � � � ; Xn = xnjXn�1 = xn�1; Xn�2 = xn�2; � � �) ; (2.1)whi
h are either expli
itly de�ned from modelling 
onsiderations or esti-mated from a
tual outputs. For pro
ess of truly in�nite order, some 
aremust be taken to give a rigorous meaning to (2.1) be
ause the 
ondition-ning usually refers to an event of probability zero. A possible formalization,adopted for instan
e by Lalley (1986) , is to de�ne a pro
ess as a measure forwhi
h the 
onditional probabilities on �nite pasts, P (Xn+` = xn+`; � � � ; Xn =xnjXn�1 = xn�1; � � � ; Xn�s = xn�s) have a well de�ned limit as s ! �1.This is a natural setup when des
ribing experien
es started at some initialtime before whi
h there is no meaningful past [eg. in Oni
es
u and Miho
(1935a)℄. The limit s! �1 
orresponds to pushing this initial time to theremote past. The only 
on
eptual disadvantage of this approa
h is that thelimit s! �1 depends, in prin
iple, on the pro
ess 
onsidered, that is on theina

essible joint measure of the random variables. This makes the approa
hless dire
t from the 
omputational point of view.We introdu
e now the formal de�nitions ne
essary for Harris' approa
h.We leave for Se
tion 2.2 the presentation of the \traditional" formalism interms of obje
ts like (2.1). The relation between both apprao
hes is dis
ussedin Se
tion 2.3.



2.1. SIMULATION ALGORITHMS 15To state the ne
essary de�nitions we need some notation. For k � n 2 Zlet xnk denote the sequen
e xk; � � � ; xn, and let Ank denote the set of su
hsequen
es. Likewise, let xn�1 denote the sequen
e (xi)i�n |histories up totime n| and An�1 the 
orresponding spa
e. Full sequen
es will be denotedwithout sub or supers
ripts, x 2 A. The notation ymn+1xnk indi
ates thesequen
e that takes values xk; � � � ; xn; yn+1; � � � ; ym.Remark 2.2 Before starting with the de�nitions, let us insist that in thesenotes we do not wish to make an issue of measurability. We shall mention theword \measurable" only sparingly and always in a 
ontext su
h that: (i) the�-algebra in question is the natural one, and (ii) the measurability require-ment is pra
ti
ally a formality, as every fun
tion used for the 
orrespondingappli
ation will invariably be measurable. Readers 
an safely ignore mea-surability issues, and 
on
entrate instead on the algorithmi
 aspe
ts of our
onstru
tions and proofs.Let us now de�ne the 
entral obje
ts of our approa
h.De�nition 2.3 A simulation algorithm is a family of measurable fun
-tions (fn)n2Z, where fn : [0; 1℄�An�1 �! A.For 
ompleteness (but see Remark 2.2), let us state for the �rst and lasttime that the �-algebra� of [0; 1℄ is the Lebesgue �-algebra,� of (�nite or in�nite) produ
ts of A is the produ
t of the dis
rete �-algebra of A,� of produ
ts of these spa
es is the 
orresponding produ
t �-algebra.De�nition 2.4 A simulation algorithm (fn) is time-homogeneous if thefun
tions fn 
oin
ide up to a shift. That is, if xn�1 2 An�1 and yn+1�1 2 An+1�1are su
h that xi = yi+1 for i � n, thenfn+1(u; yn+1�1 ) = fn(u; xn�1) : (2.5)In this 
ase, we will eliminate the subs
ript from fn.



16 CHAPTER 2. BASIC DEFINITIONSDe�nition 2.6 A sto
hasti
 pro
ess with alphabet A is a sequen
e of A-valued random variables (=measurable fun
tions) (Xn)n2Z de�ned in our oneand only spa
e (
;F ;P). The pro
ess is stationary if P(Xn+kn = xk0) isindependent of n for ea
h k 2 N and ea
h xk0 2 Ak0.De�nition 2.7 A sto
hasti
 pro
ess de�ned by the simulation algo-rithm (fn)n2Z is a sequen
e of random variables (Xn)n2Z su
h thatXn = fn(Un; Xn�1�1 ) : (2.8)The variable Un is, in general, a �nite family U (1)n ; � � � ; U (N)n of uniform ran-dom variables, with N �xed. All the random variables U (i)j are independent.De�nition 2.9 A sto
hasti
 pro
ess is aMarkov 
hain if the fn are lo
al intheir se
ond 
oordinate, that is if there exist a �xed k, su
h that fn(u; yn�1) =fn(u; xn�1) whenever xnn�k = ynn�k. The integer k is 
alled the order of theMarkov 
hain.Chains of in�nite order are more general pro
ess for whi
h there mayexist no su
h k. They are usually required to satisfy some 
ontinuity andnon-nullness hypotheses. We defer formal de�nitions to Chapter 3.Pres
ription (2.8) is not enough to 
onstru
t the pro
ess. We need astarting past from whi
h to apply it iteratively.De�nition 2.10 For ` 2 Z and z�̀1 2 A�̀1, the sto
hasti
 pro
ess with�xed past z�̀1 de�ned by the simulation algorithm (fn) is the se-quen
e of random variables (Xn[z�̀1℄)n2Z de�ned byXn[z�̀1℄ = zn for n � ` ;X`+1[z�̀1℄ = f`+1(U`+1; z�̀1) andXn[z�̀1℄ = fn(Un; Xn�1`+1 [z�̀1℄ z�̀1) for n > `+ 1 : (2.11)While these �xed-past pro
esses (Xn[z�̀1℄)n>` are always well de�ned,they are not pro
esses in the sense of De�nition 2.7 be
ause they verify



2.2. TRANSITION PROBABILITIES 17(2.8) only for times larger than `. The existen
e problem of the theory ofsto
hasti
 pro
esses is, pre
isely, to obtain pro
ess without a �xed past forthe given algorithm (fn). That is, to determine variables (Xn)n2Z su
h thatXn = fn(Un; Xn�1�1 ) for all n 2 Z. A se
ond 
entral issue in the theory ofsto
hasti
 pro
esses, is the uniqueness problem, namely whether there exista unique su
h pro
ess (Xn)n2Z or several (phase transitions!). The approa
hwe shall use here to solve the existen
e problem is to 
onstru
t the fun
tionf in su
h a way that for ea
h realization of the uniform random variables(Un) a realization of the pro
ess 
an be 
onstru
ted in any �nite interval.We will show that this 
onstru
tion 
oin
ides with the pro
ess obtained asa limit of �xed-past pro
esses. Furthermore, for the pro
esses 
onsidered inthese notes, uniqueness 
orresponds to su
h a limit being independent of the�xed past 
hosen. We shall use two main tools to analyze limits of �xed-pastpro
esses and their insensitivity to the past: (1) regeneration s
hemes, and(2) 
oupling te
hniques. The former s
hemes are the subje
t of next 
hapter.The formal de�nition of the notion of 
oupling will be dis
ussed in Se
tion2.4.2.2 Transition probabilitiesTo make the 
onne
tion with the traditional approa
h, based on the obje
ts(2.1), let us brie
y formalize the basi
 de�nitions on whi
h the latter relies.De�nition 2.12 A system of transition probabilities is a family fPn( � j � ) :n 2 Zg of fun
tions Pn : A�An�1�1 �! [0; 1℄, su
h that the following 
ondi-tions hold for ea
h n 2 Z:(i) Measurability: For ea
h xn 2 A the fun
tion Pn(xnj � ) is measurablewith respe
t to the produ
t �-algebra.(ii) Normalization: For ea
h xn�1�1 2 An�1�1Xxn2APn(xnjxn�1�1) = 1 : (2.13)



18 CHAPTER 2. BASIC DEFINITIONSIn the following de�nition we 
onsider ex
ep
ionally an abstra
t proba-bility spa
e that nevertheless we denote (
;F ;P) as before.De�nition 2.14 A sto
hasti
 pro
ess de�ned on (
;F ;P) is 
onsistentwith a system of transition probabilities (Pn) ifP(Xn = xnjXn�1�1 = xn�1�1) = Pn(xnjxn�1�1) (2.15)for all n 2 Z, x 2 AZ.Equation (2.15) means that the fun
tions Pn are regular versions of the
onditional probabilities with respe
t to the natural �ltration Fn = �(Xn�1).Equivalently, a sto
hasti
 pro
ess is 
onsistent with a system of transitionprobabilities (Pn) i�Ehg(Xn�1)i = EhXyn2A g(ynXn�1�1 )Pn(ynjXn�1�1 )i (2.16)for every n 2 Z and g measurable with respe
t to Fn.The transition probabilities of De�nition 2.12 
an be thought as next-move transition probabilities. They 
an be used to 
onstru
t the `-movetransitions (` � 1) probabilitiesP[n;n+`℄(xn+`n jxn�1�1) := Ỳi=1 Pn+i(xn+ijxn+i�1�1 ) : (2.17)[We adopt the 
onvention P[n;n℄ :=Pn.℄ These transitions satisfy the 
onsis-ten
y 
onditionXxn+`n 2An+`n P[n;n+`℄(xn+`n jxn�1�1) Xyn+jn+i2An+jn+i g(yn+jn+ixn+i�1�1 )P[n+i;n+j℄(yn+jn+i jxn+i�1�1 )= Xxn+`n 2An+`n g(xn+j�1)P[n;n+`℄(xn+`n jxn�1�1) (2.18)



2.2. TRANSITION PROBABILITIES 19for all n 2 Z, i; j; ` 2 N , 0 � i � j � `, x 2 A and all Fn+j-measurablefun
tions f . Furthermore, (2.16) implies thatEhg(Xn+`�1 )i = Eh Xyn+`n 2An+`n g(yn+`n Xn�1�1 )P[n;n+`℄(yn+`n jXn�1�1 )i (2.19)for every n 2 Z, ` 2 N , and g measurable with respe
t to Fn+`. The veri�-
ation of formulas (2.17){(2.19) is left as an straightforward exer
ise to thereader. Condition (2.18) implies that the kernels P[n;n+`℄( � j � ) 
onstitute theone-sided analogous of a statisti
al me
hani
al spe
i�
ation, while identities(2.19) are the analogous of the DLR equations [see, for instan
e, Georgii(1988) for the statisti
al me
hani
al framework℄.The basi
 mathemati
al problem of the theory of sto
hasti
 pro
esses is,pre
isely, to 
onstru
t and 
hara
terize the pro
esses 
onsistent with a givensystem of transition probabilities. The 
omments of the end of Se
tion 2.1
an be trans
ribed in this framework in a natural way. In parti
ular, we 
antrans
ribe notions related with �xed pasts.De�nition 2.20 Given a system of transition probabilities fPn( � j � ) : n 2Zg, an ` 2 Z and a z�̀1 2 A�̀1, the system of transition probabilitieswith �xed past z�̀1 is the family of fun
tionsP z�̀1n : A�An�1�1 �! [0; 1℄ ; (2.21)de�ned asP z�̀1n (xnjxn�1`+1 ) = ( Pn(xnjxn�1`+1 z�̀1) 1[x�̀1 = z�̀1℄ for n � `+ 11[xn�1 = zn�1℄ for n � ` : (2.22)It is simple to 
he
k that these fun
tions qualify as transition probabilities,as they satisfy requirements (i) and (ii) of De�nition 2.12. It is also easy toverify that su
h a system de�nes a unique pro
ess.De�nition 2.23 For ` 2 Z and z�̀1 2 A�̀1, the pro
ess 
onsistent withthe system (2.22) is 
alled the sto
hasti
 pro
ess with �xed past z�̀1
onsistent with a system of transition probabilities (Pn).



20 CHAPTER 2. BASIC DEFINITIONS2.3 Simulation algorithms and transition prob-abilitiesLet us now establish the equivalen
e of the simulation-oriented (Harris') ap-proa
h of Se
tion 2.1 with the transition-probability (\traditional") approa
hof Se
tion 2.2.Given a simulation algorithm (fn)n2Z, the pres
riptionPn(ajxn�1�1) = Pffn(Un; xn�1�1 ) = ag ; (2.24)de�nes a system of transition probabilities (Exer
ise 2.48).Now let fPn( � j � ) : n 2 Zg be a system of transition probabilities. We
onstru
t a simulation algorithm by mimi
king the way su
h transition prob-abilities would be simulated in a 
omputer, namely by partitioning the in-terval [0; 1℄ into intervals of length equal to the probabilities. For ea
h xn�1�1let us 
onsider a partition of [0; 1℄Pxn�1�1 = fIxn�1�1a : a 2 Ag ; (2.25)ea
h of the sets Ixn�1�1a being a union of intervals, su
h thatlength�Ixn�1�1a � = Pn(ajxn�1�1) : (2.26)The pres
ription fn(u; xn�1) = a i� u 2 Ixn�1�1a (2.27)de�nes a simulation algorithm.The previous 
onsiderations amount to a pro
edure to trans
ribe simu-lation algorithms into transition probabilities and vi
eversa. The followingproposition summarizes its main features. It proofs is basi
ally 
ontained inthe pre
eding dis
ussion, ex
ept for some minor mathemati
al details left tothe reader.Proposition 2.28 (i) For a given a simulation algorithm (fn)n2Z, pre-s
ription (2.24) de�nes a system of transition probabilities fPn( � j � ) :n 2 Zg



2.3. SIMULATION ALGORITHMS ANDTRANSITION PROBABILITIES21(ii) For a given system of transition probabilities fPn( � j � ) : n 2 Zg, ea
h
hoi
e of partitions fPxn�1�1 : n 2 Z; xn�1�1 2 An�1�1g satisfying (2.26)de�nes, through (2.27), a simulation algorithm (fn)n2Z su
h that:(ii.a) every pro
ess 
onsistent with (Pn) is de�ned by (fn), and(ii.b) the system of transition probabilities 
onstru
ted from su
h (fn)by the pro
edure of part (i) is the original (Pn).Remark 2.29 In part (i) there is no 
laim that every pro
ess de�ned by(fn)n2Z be 
onsistent withPn(ajxn�1�1) := Pffn(Un; xn�1�1) = ag (2.30)By (2.16), this would require that su
h a pro
ess verifyEhg(Xn�1)i = Ehg�fn(Un; Xn�1�1 ) ; Xn�1�1 )�i (2.31)for n 2 Z and g measurable with respe
t to Fn. This may fail to be true unlessthe algorithm (fn) satisfy some suitable properties. However, we remark that,by 
onstru
tion, the 
onsisten
y (2.31) holds for �xed-past pro
esses.Proposition 2.28 allows the trans
ription of properties de�ned for simu-lation algorithms to properties of transition probabilities and vi
eversa. Forinstan
e, the system of transition probabilities isMarkovian of orderk if for ea
h xn 2 A the fun
tion Pn(xnj � ) depends only on the k pre
edingsymbols, that is ifPn(xnjxn�1n�k yn�k�1 ) = Pn(xnjxn�1n�k zn�k�1 ) =: Pn(xnjxn�1n�k) (2.32)for every yn�k�1 ; zn�k�1 2 An�k�1 . We leave to the reader the exer
ise of de�ninga time-homogeneous system, trans
ribing property (2.5) (Exer
ise 2.49).In the sequel we shall only 
onsider time-homogeneous 
hains and denotesimply f the fun
tion in (2.8). In this 
ase, it is enough to work with thetransitions at time zero, i.e.P (ajx�1�1) = P(X0 = ajX�1�1 = a�1�1) : (2.33)To simplify we shall denote x = x�1�1, X = X�1�1 and A = A�1�1.



22 CHAPTER 2. BASIC DEFINITIONS2.4 Coupling and 
oupling algorithmsLet us now present the main tool used in these notes.De�nition 2.34 A 
oupling of the sto
hasti
 pro
esses(X [1℄n )n2Z; � � � ; (X [k℄n )n2Zis a sto
hasti
 pro
ess ( eXn)n2Z with alphabet Ak whose marginal distributionsare those of the pro
esses (X [i℄n ). That is, su
h that for ea
h i = 1; : : : ; k andea
h xml 2 Aml , l � m 2 Z, the probabilities of 
ylinders satisfyP�i-th 
omponent of eXml = xml � = P�(X [i℄)ml = xml � : (2.35)Couplings will be de�ned via simulation algorithms.De�nition 2.36 A 
oupling algorithm of sto
hasti
 pro
esses(X [1℄n )n2Z; � � � ; (X [k℄n )n2Zis a simulation algorithm ( efn)n2Z for the pro
ess (X [1℄n ; � � � ; X [k℄n )n2Z. Ex-pli
itly, efn is a fun
tion of the form (f [1℄n ; � � � ; f [k℄n ), with ea
h f [i℄ : [0; 1℄ �(Ak)n�1 !A, su
h thatX [i℄n = f [i℄n �Un; (X [1℄; � � � ; X [k℄)n�1�1� (2.37)for i = 1; � � � ; k, for the 
ommon (ve
tor) independent uniform variables Un.Thus, a 
oupling algorithm produ
es at time n simultaneously the time-n state of all the pro
esses (X [i℄n ) using the same random number Un forall of them. There is 
onsiderable freedom and some potential danger, inthe 
onstru
tion of 
oupling algorithms. On the one hand 
ondition (2.37)leaves plenty of room for designing algorithms with features suited to ea
hparti
ular appli
ation. These notes will repeatedly illustrate this fa
t. On



2.4. COUPLING AND COUPLING ALGORITHMS 23the other hand, the algorithm ( efn) may de�ne several pro
esses in Ak, andsome of them may fail to be a 
oupling of the target pro
esses (X [i℄) |thatis, (2.35) may not hold.>From a 
onstru
tive point of view De�nition 2.36 does not look veryinformative. Indeed, pro
esses are seldomly given dire
tly. Rather, in thesele
tures they are 
onstru
ted starting from simulation algorithms. What wewould need, then, are pres
riptions on how to 
onstru
t a 
oupling algorithmstarting from the simulation arguments of the individual pro
esses.Let us settle these issues while doing at the same time the 
onne
tionwith the transition-probability framework.De�nition 2.38 A 
oupling of the systems of transition probabili-ties P [1℄n ( � j � ); � � � ; P [k℄n ( � j � ) is a system of transition probabilities ePn : Ak �(An�1�1)k �! [0; 1℄ su
h thatXx[1℄n ;���;x[j�1℄n 2Ax[j+1℄n ;���;x[k℄n 2A ePn�x[1℄n ; : : : ; x[k℄n ��� (x[1℄)n�1�1 ; : : : ; (x[k℄)n�1�1� = P [j℄n �x[j℄n ��� (x[j℄)n�1�1�(2.39)for all j = 1; : : : ; k, all x[j℄n 2 A and all (x[1℄)n�1�1 ; : : : ; (x[k℄)n�1�1 2 An�1�1 .[This de�nition is, in fa
t, a parti
ular instan
e of the notion of 
ouplingamong probability measures.℄Every 
oupling of transition probabilities produ
es a 
oupling algorithmthrough the pres
ription (2.26){(2.27). First one must 
hoose partitions of[0; 1℄ in Lebesgue measurable setsnI(x[1℄)n�1�1 ��� (x[k℄)n�1�1a[1℄���a[k℄ : a[i℄ 2 A; (x[i℄)n�1�1 2 An�1�1 ; i = 1; : : : ; ko ; (2.40)su
h thatlength�I(x[1℄)n�1�1 ��� (x[k℄)n�1�1a[1℄���a[k℄ � = ePn�a[1℄; : : : ; a[k℄ ��� (x[1℄)n�1�1 ; : : : ; (x[k℄)n�1�1� :(2.41)



24 CHAPTER 2. BASIC DEFINITIONSThe 
oupling algorithm is then de�ned byefn�u; (x[1℄)n�1�1 ; � � � ; (x[k℄)n�1�1� = (a[1℄; � � � ; a[k℄)i� u 2 I(x[1℄)n�1�1 ��� (x[k℄)n�1�1a[1℄���a[k℄ : (2.42)A possible strategy to 
onstru
t a 
oupling algorithm would, in prin
iple,involve two steps:Step 1: Constru
t a 
oupled transition ( ePn) starting from the individualtransition probabilities (P [i℄) (or, equivalently, from the individual sim-ulation algorithms)Step 2: Take the algorithm de�ned in (2.42).We shall adopt, however, a more e
onomi
al graphi
al pro
edure whi
hyield dire
tly the partitions (2.40), hen
e the 
oupling algorithm, bypassingthe de�nition of 
oupling transitions [whi
h, of 
ourse, 
an be obtained fromthe 
oupling algorithm by (2.24)℄. Furthermore, the 
oupling algorithms \fa
-tor" in the sense that ea
h 
omponent (f [i℄n ) is itself a simulation algorithmof (X [i℄n ). That is, relation (2.37) is satis�ed in the parti
ular formX [i℄n = f [i℄n �Un; X [i℄� : (2.43)This 
an be a
hieved in the following fashion.First: First, for ea
h j = 1; : : : ; k and ea
h (x[1℄)n�1�1 ; : : : ; (x[k℄)n�1�1 2 An�1�1 ,�nd partitions nI(x[j℄)n�1�1 j (x[1℄)n�1�1 ��� (x[k℄)n�1�1a : a 2 Ao ; (2.44)formed by unions of intervals su
h thatlength�I(x[j℄)n�1�1 j (x[1℄)n�1�1 ��� (x[k℄)n�1�1a � = P [j℄n �a ��� (x[j℄)n�1�1� (2.45)whatever the 
hoi
e of (x[i℄)n�1�1 for i 6= j.



2.4. COUPLING AND COUPLING ALGORITHMS 25Se
ond: Take the algorithm de�ned, by (2.42), by the setsI(x[1℄)n�1�1 ��� (x[k℄)n�1�1a[1℄���a[k℄ = k\j=1 I(x[j℄)n�1�1 j (x[1℄)n�1�1 ��� (x[k℄)n�1�1a[j℄ : (2.46)Noti
e that 
ondition (2.45) implies (2.43).The sets of the partitions (2.44) 
an be visualized as obtained by \
uttingand pasting" parts of intervals of length P [j℄n (aj(x[j℄)n�1�1) in a manner thatdepends on the other transitions. We observe that the 
oupling of transi-tion probabilities obtained from the interse
tions (2.46) by the pres
ription(2.24) is in general di�erent from the mere produ
t of the individual tran-sitions. In parti
ular it gives probability zero to states a[1℄ � � �a[k℄ for whi
hthe interse
tions (2.46) are empty.De�nition 2.47 Partitions de�ned by (2.44){(2.46) are 
alled a graphi
alpro
edure to 
onstru
t a 
oupling algorithm among pro
esses 
onsistent withtransition probabilities (P [1℄n ); � � � ; (P [k℄n ).As 
ommented above, the graphi
al pro
edure does not, in general, settlethe issue of �nding an a
tual 
oupling among the target pro
esses. We musta
tually 
onstru
t a pro
ess de�ned by the 
oupling algorithm. Furthermore,we may have to 
hoose properly if there are several su
h pro
esses. This
hoi
e is a
tually unne
essary if ea
h of the transitions (P [i℄n ) admits a unique
onsistent pro
ess. This will be the situation for all the pro
esses studied inthese notes.It is apparent that there is 
onsiderable freedom in the 
hoi
e of thepartitions de�ning a simulation algorithms. This freedom 
an be exploited todesign partitions adapted to parti
ular mathemati
al or numeri
al purposes.The above te
hnique 
an be applied, without modi�
ation, to 
ountablefamilies of pro
esses (X [i℄n ) (and 
ountable alphabets).



26 CHAPTER 2. BASIC DEFINITIONS2.5 Exer
isesExer
ise 2.48 Verify that, if (fn)n2Z is a simulation algorithm, pres
ription(2.30) indeed de�nes a system of transition probabilities.Exer
ise 2.49 De�ne a time-homogeneous system of transition probabili-ties. Establish the relation with property (2.5) and explain why it is enoughto 
onsider the obje
ts P (ajx�1�1) de�ned in (2.33).Exer
ise 2.50 Consider a time-homogeneous system of transition probabil-ities. Show that (2.16) is equivalent to the existen
e of measures �n on An�1su
h that ZAn�1 �n(dxn�1)Pn+1( � jxn�1) = �n+1( � ) : (2.51)Exer
ise 2.52 (a) Che
k that the �xed-past transitions (2.22) verify 
on-ditions (i) and (ii) of De�nition 2.12.(b) Show that they de�ne a unique 
onsistent pro
ess.



Chapter 3Types of 
hains of in�niteorder. ExamplesBefore passing to examples, let us spell out the di�erent types of hypothe-ses we will be demanding for the pro
esses studied in these notes. Thesehypotheses are best expressed in terms of transition probabilities and theyrefer to (i) 
ontinuity with respe
t to histories, and (ii) stri
t positivity. Inturns, suitable 
ombinations of these hypotheses give rise to three standardnotions of 
hains of in�nite order.3.1 Continuity hypothesesDe�nition 3.1 A system of transition probabilities is 
ontinuous if thefun
tions Pn(xnj � ) are 
ontinuous for ea
h n 2 Z and ea
h xn 2 A or,equivalently, if�s := supn2Z supx;y ���Pn(xnjxn�1�1)� Pn(xnjxn�1n�s yn�s�1�1 )����!s!1 0 : (3.2)The sequen
e (�s)s2N is 
alled the 
ontinuity rate.27



28CHAPTER 3. TYPES OF CHAINS OF INFINITE ORDER. EXAMPLESThe existen
e problem is not a problem for 
ontinuous transitions:Proposition 3.3 A system of 
ontinuous transition probabilities has at leastone sto
hasti
 pro
ess 
onsistent with it.Proof. To be written (uses 
ompa
tness).The following stronger notion of 
ontinuity has also been introdu
ed:De�nition 3.4 A system of transition probabilities is log-
ontinuous if
s := supn2Z supx;y ���� Pn(xnjxn�1�1)Pn(xnjxn�1n�s yn�s�1�1 ) � 1�����!s!1 0 : (3.5)The sequen
e (
s)s2N is 
alled the log-
ontinuity rate.The strongest notion of 
ontinuity refers to the `-move transitions (2.17):De�nition 3.6 A system of transition probabilities is multiple-move log-
ontinuous if�s := supn2Z;`2N supx;y ���� P[n;n+`℄(xn+`n jxn�1�1)P[n;n+`℄(xn+`n jxn�1n�s yn�s�1�1 ) � 1�����!s!1 0 : (3.7)The sequen
e (�s)s2N is 
alled the multiple-move log-
ontinuity rate.3.2 Non-nullness hypotheses and types of 
hainsTwo kinds of non-nullness hypotheses are used.De�nition 3.8 A system of transition probabilities is weakly non-null ifinfn2ZXyn2A infx Pn(ynjxn�1�1) > 0 : (3.9)



3.3. EXAMPLES 29De�nition 3.10 A system of transition probabilities is strongly non-nullif infn2Zinfx Pn(ynjxn�1�1) > 0 : (3.11)We are �nally ready to de�ne the di�erent types of 
hains to be dis
ussedin the sequel.De�nition 3.12 A sto
hasti
 pro
ess is a 
hain of in�nite order(i) of type A if it is 
onsistent with a system of transition probabilitiesthat is 
ontinuous and weakly non-null.(ii) of type B if it is 
onsistent with a system of transition probabilitiesthat is log-
ontinuous and strongly non-null.(iii) of type C if it is 
onsistent with a system of transition probabilitiesthat is multiple-move log-
ontinuous and strongly non-null.Types A and B were already 
onsidered by Doeblin and Fortet (1937).Type C was introdu
ed, as far as we know, by Lalley (1986).3.3 ExamplesThe following two examples are more than just illustrations. In fa
t, a 
entralaspe
t of these le
tures is to show that large families of 
hains 
an be writtenin any of these forms.Countable mixtures of Markov 
hains (CMMC) These are 
hainswhose transition probabilities are 
ountable 
onvex 
ombinations of Markovtransitions of in
reasing order. That is, they are of the formP (ajx) = �0 P (0)(a) + 1Xk=1 �k P (k)(ajx�1�k) (3.13)



30CHAPTER 3. TYPES OF CHAINS OF INFINITE ORDER. EXAMPLESwhere �k � 0, P1k=0 �k = 1, and ea
h P (k)(ajx�1�k) is a Markov transitionof order k for k � 1, while P (0) is a probability measure. The transitions(3.13) 
an be thought as resulting of two independent random steps. First,an integer k � 0 is 
hosen with probability �k, and, se
ond, a symbol is
hosen with the order-k transition probability P (k). Thus, ea
h transitiona
tually depends on a �nite, but random, number of pre
eding states. Toour knowledge, an expression like (3.13) |but with k ranging over �nitelymany values and P (k)(ajx�1�k) = g(k)(a; x�k)| was �rst studied by Raftery(1985a, 1985b) under the name of mixture transition distribution (MTD)model (see also Raftery and Tavar�e, 1994)).As we shall see in Chapter 7 that, under suitable hypotheses on the family(�k), a 
hain 
onsistent with transitions of the form (3.13) has the renewalproperty : There exists a sequen
e of random times (ti)i2Z, with independentin
rements ti+1� ti, su
h that for ea
h i 2 Z the distribution of the variablesfXn : n � tig is independent of the variables fXn : n < tig. This is anexample of a regeneration s
heme. At the same Chapter 7 we shall showthat any 
hain of in�nite order with not-too-slow 
ontinuity rates [see (3.2)℄is a
tually a CMMC.Variable-length Markov 
hains (VLMC) The transition probabilitiesof these 
hains also depend on a �nite number of pre
eding states, but thisnumber is determined by the past history. More pre
isely, there exists a lagfun
tion ` : A �! f0;�1;�2; � � � ;1g (3.14)su
h that P (ajx) = P (ajx�1`(x)) (3.15)with the 
onvention that when `(x) = 0, the transition probability is a
tuallyindependent of the past.This type of pro
esses was introdu
ed by B�uhlman and Wyner (1999),albeit for bounded fun
tions `. In Chapter 7 we shall show that 
hainsof in�nite order with not-too-slow 
ontinuity rates 
an be embedded into aVLMC.



3.3. EXAMPLES 31The following example illustrates the di�eren
es between the di�erenttypes of 
hains introdu
ed above.Sparse VLMC This is an in�nite-order version of example (M5) of B�uhlmanand Wyner (1999). It has a two-symbol alphabet, for instan
e A = f0; 1g,and a lag fun
tion`(x) = ` if x�1 = 0 = � � � = x�`; x�`�1 = 1 : (3.16)The transition probabilities are de�ned byP (1jx) = q`(x) (3.17)with 0 < qk < 1. We leave to the reader (Exer
ise 3.24 the veri�
ation of thefollowing fa
ts:(a) If limk qk does not exists or it is di�erent from q1, the system is not
ontinuous.(b) If limk qk = q1 and there exist 
onstants 0 < 
 � d < 1 su
h thatqk 2 [
; d℄ for all k, then the system is log-
ontinuous and stri
tly non-null.(
) If limk qk = q1 = 0 then the system is 
ontinuous but not log-
ontinuous.Furthermore, it is weakly but not strongly non-null.Sparse VLMC are 
losely related to renewal pro
esses on Z. In fa
t, letus de�ne (Tk)k2Z the su

esive times in whi
h the sparse VLMC (Xn) takesthe value 1, i.e. ...T0 = supfn � 0 : Xn = 1gT1 = inffn > 0 : Xn = 1gT2 = inffn > T1 : Xn = 1g... (3.18)Then, the point pro
ess (Tk)k2Z is a renewal pro
ess, that is,



32CHAPTER 3. TYPES OF CHAINS OF INFINITE ORDER. EXAMPLES(i) the random in
rements (Tk � Tk�1)k2Z are independent, and(ii) the random in
rements (Tk � Tk�1)k 6=0 are identi
ally distributed.We 
on
lude with some well known families of pro
esses that �t in ourframework.Hidden Markov models (HMM) These models refer to a pro
ess (Xn),with values on an alphabet A, whi
h is de�ned in terms of a Markov pro
ess(Sn) with values in a �nite set of states S |the hidden pro
ess. This modelssituations in whi
h there is a simple but ina

esible pro
ess 
ontaining allthe information about the problem, and the observer has a

ess only to animpoverished ersatz of it.Examples of pro
esses (Xn) of this type were introdu
ed by Shannon(1948) under the name Markov sour
es. These pro
esses are de�ned by the
oordinate-by-
oordinate transformation Xn = f(Sn) of an order-1 Markov
hain (Sn). We leave to the reader the veri�
ation that su
h a pro
ess maynot be a Markov 
hain (Exer
ise 3.25).The pro
esses were reintrodu
ed, with a di�erent 
avor, by Baum andPetrie (1966) and were later intensively used in the theory of spee
h re
og-nition (see, for instan
e Jelinek, 1999). In this formulation, there is a familyof probability measures f�s : s 2 Sg on A establishing the relation betweenthe pro
esses (Xn) and (Sn) through the relationsP(Xnm = xnmjSnm = snm) = nYi=m�si(xi) (3.19)valid for ea
h 
hoi
e of xnm 2 Anm and snm 2 Snm, for ea
h m;n 2 Z, m � n.Therefore the observable pro
ess (Xn) is a 
oordinate-by-
oordinate randomtransformation of the hidden Markov 
hain (Sn).In fa
t, Markov sour
es and hidden Markov models are equivalent notions.The proof of this fa
t is left as an exer
ise to the reader (Exer
ise 3.26below). The fa
t that hidden Markov models are 
hains of in�nite order with
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ontinuous transition probabilities is also left as an exer
ise (Exer
ise 7.22).The proof uses a regeneration property of Markov 
hains. This propertyfollows from exer
ise 6.40 or as a parti
ular isntan
e of the mu
h more generaltheory developed in Chapters 6{4 for 
hains of in�nite orders.Binary autoregressions Let G be the two-points set, for instan
e G =f�1;+1g, �0 a real number and (�k; k � 1) a summable real sequen
e. Letq : R 7!℄0; 1[ be stri
tly in
reasing and 
ontinuously di�erentiable. De�neP ( � jw) is the Bernoulli law on f�1;+1g with parameter q��0+Xk�1 �kw�k� ;(3.20)i.e., P (+1jw) = q(�0 +Pk�1 �kw�k) = 1 � P (�1jw). Su
h a pro
ess is thebinary version of autoregressive (long memory) pro
esses used in statisti
sand e
onometri
s. It des
ribes binary responses when 
ovariates are histori
alvalues of the pro
ess (see M
Gullagh and Nelder, 1989, Se
t. 4.3). A popular
hoi
e for q is the logisti
 fun
tionq(x) = exp x2 
osh x = 12(1 + exp�2x) : (3.21)Random systems with 
omplete 
onne
tions These are pro
essesformed by pairs of 
hains evolving in an inter-related manner, used to modela number of pra
ti
al problems. Appli
ations in
lude urn models, the theoryof 
ontinuous fun
tions, learning models, et
. We refer the reader to Iosifes
uand Grigores
u (1990) for a survey. Of the two 
hains, one is Markov, butin a 
ompli
ated \alphabet", or with 
ompli
ated transition fun
tions, whilethe other is of in�nite order in a simpler alphabet. The latter 
hain is, inpra
ti
e, used to infer properties of the 
ompli
ated Markov 
hain. As anexample, let us present the Markov 
hains de�ned by D-ary expansionsThese are pro
ess having the unit interval as \alphabet", I = [0; 1℄, andde�ned through another, auxiliary, pro
ess with a �nite alphabet. Formally,a family of maps is established between sequen
es of a �nite alphabet G =



34CHAPTER 3. TYPES OF CHAINS OF INFINITE ORDER. EXAMPLESf0; 1; � � � ; D�1g and real numbers in I via D-ary expansions: For ea
h n 2 ZXn : GZ �! I(�(i) : i 2 Z) 7! xn =P1j=1 �(n� j)=Dj : (3.22)This map indu
es a natural map from probability kernels P : G � G�N� 7![0; 1℄ to probability kernels F : I � I�N� 7! [0; 1℄: For ea
h x 2 I, given anw 2 G�N� with x = X0(w)F�X1 = g + xD ��� X0 = x� = P (gjw) : (3.23)Interest fo
uses on the existen
e and properties of measures on the Boreliansof IZ 
ompatible with su
h a probability kernel F .Maps (3.22){(3.23) have been already introdu
ed by Borel in 1909 fori.i.d. �(i). The general 
ase in whi
h the �(i) form a 
hain with long memoryis the obje
t of Harris (1955) seminal paper.3.4 Exer
isesExer
ise 3.24 Verify fa
ts (a), (b) and (
) for the spar
e VLMC de�ned by(3.16){(3.17).Exer
ise 3.25 Consider a Markov sour
e, that is a pro
ess (Xn) de�nedby the 
oordinate-by-
oordinate transformation Xn = f(Sn) of an order-1Markov 
hain (Sn) taking values in a �nite set of states S. Show that, ingeneral, su
h a pro
ess is not a Markov 
hain.Exer
ise 3.26 Observe that every Markov sour
e is trivially a HMM. Con-versely, prove that every HMM 
an be written as a Markov sour
e. Hint:Consider the pro
ess Zn = (Sn; Xn).Exer
ise 3.27 Prove that for a sparse VLMC (Xn), the times (Tk) de�nedin (3.18) form a renewal pro
ess. Hint:P(Tk � Tk�1 = `) = q` `�1Yi=1(1� qi) : (3.28)



Chapter 4A regeneration s
heme forCMMC
4.1 Random orders and regeneration timesLet us re
all that a CMMC is de�ned by a system of transition probabilitieswhi
h 
an be de
omposed asP (ajx) = �0 P (0)(a) + 1Xk=1 �k P (k)(ajx�1�k) (4.1)where ea
h P (k)(ajx�1�k) is a Markov transition of order k for k � 1, P (0)is a probability measure, and the �k are non-negative real numbers withP1k=0 �k = 1.We shall use a simulation algorithm for these transitions 
onstru
ted onthe basis of a double sequen
e of uniform random variables (U (1)n ; U (2)n ) whi
hwe simply denote(Ui; Vi)i2Z.De�nition 4.2 A CMMC simulation algorithm is an algorithm of theform Xn = 1Xk=0 1f�k�1 � Un � �kg f (k)(Vn; Xn�1n�k) : (4.3)35



36 CHAPTER 4. A REGENERATION SCHEME FOR CMMCwhere the f (k) are simulation algorithms of order-k Markov 
hains and (�k) isan in
reasing non-negative sequen
e with �k % 1. (By 
onvention ��1 = 0.)We leave the reader the task of verifying that (4.4) is a simulation algo-rithm for a pro
ess (Xn) 
onsistent with (4.1) if(i) f (k) are the simulation algorithms of the Markov 
hains with transitionsP (k) [de�ned, for instan
e, as in (2.26){(2.27)℄, and(ii) �k = kXi=0 �i : (4.4)(Exer
ise 4.49).In this se
tion we shall study properties of pro
esses de�ned by this sim-ulation algorithm. In Se
tion 4.2 we dis
uss the existen
e problem and the(non-trivial) issue of whether su
h pro
esses are in fa
t 
onsistent with (4.1).In fa
t, the variables (Un) de�ne in (4.3) an auxiliary pro
ess whi
h playsa key role in the sequel.De�nition 4.5 Let us 
all random orders, or random-order pro
ess tothe independent random variables (Ln)n2Z, de�ned asLn = 1Xk=0 k 1f�k�1 � Un � �kg : (4.6)It is 
ru
ial to observe that the random orders are 
onstru
ted with totalindependen
e of the rest of the pro
edure. The variable Ln indi
ates howmany instants in the past are a
tually used to determine Xn: substitutingthe de�nition of Ln in (4.3), the simulation algorithm readsXn = 1Xk=0 1fLn = kg f (k)(Vn; Xn�1n�k) : (4.7)



4.1. RANDOM ORDERS AND REGENERATION TIMES 37In other words, Ln = k implies Xn = f (k)(Vn; Xn�1n�k) (4.8)if k � 1, while for k = 0Ln = 0 implies Xn = f (0)(Vn) (4.9)whi
h is independent of the past. The variables Ln 
an be visualized asarrows pointing from the instant n to the instant n�Ln. Ea
h realization ofrandom orders determines the \genealogy" of the state at ea
h instant. Thestate at time n is determined by the 
on�guration on the interval [n�Ln; n℄;ea
h i 2 [n � Ln; n℄ is in turns determined by the states at the interval[i � Li; i℄ and so on. This ba
k-referen
ing pro
edure 
an lead us to one oftwo situations:(i) the pro
edure 
ontinues forever and take us to �1,(ii) the pro
edure a
tually stops at a time � [n℄ su
h that no arrow startingfrom n or its \an
estors" 
rosses it. In parti
ular, the 
on�guration at� [n℄ must be independent of the past, that is L� [n℄ = 0.In the se
ond 
ase, the values assumed by the pro
ess before � [n℄ are irrele-vant for the determination of Xn. This time � [n℄ is a regeneration time forthe instant n.More generally, we 
an 
onsider windows (Xl; : : : ; Xm), for two integersl < m and analyze the possibility of 
onstru
ting it knowing only a �nitepart of the past history of the pro
ess. In other words, we want to �nd the
losest past time � [l; m℄ su
h that the window (Xl; : : : ; Xm) is independent ofthe variables fXi : i < � [l; m℄g. This random time 
an be bounded throughthe random-order pro
ess (Ln).De�nition 4.10 The regeneration time for the window (Xl; : : : ; Xm)is � [l; m℄ := maxnt � l : t � n� Ln; for all n 2 [t;m℄o (4.11)with the 
onvention � [l; m℄ = �1 if the set in the right-hand side is empty.In 
ase l = m we write � [l℄ := � [l; l℄.



38 CHAPTER 4. A REGENERATION SCHEME FOR CMMCNoti
e that, by the de�nition (4.6) of the variables Ln,� [l; m℄ = maxnt � l : Un � �n�t; for all n 2 [t;m℄o : (4.12)To be sure, de�nition (4.11) refers to the worst-
ase s
enario, where ea
horder-k Markov transition probability depends on all the k pre
eding times.For less drasti
 dependen
es, the a
tual regeneration times 
an be 
loser tothe window than the one de�ned by (4.11). An extreme example is whenthe di�erent Markov transitions depend on only one site in the past |P (k)(ajx�1�k) = g(k)(a; x�k). In this 
ase, the state at ea
h time dependsof exa
tly one an
estor and regeneration 
an take pla
e at times mu
h 
loserthan (4.11).For �xed l, the sequen
e of regeneration times � [l; m℄ for m � l is de-
reasing. In parti
ular, a regeneration time for a given interval [l; m℄ is not,in general, a regeneration time for a larger interval [l; m0℄ with m0 > m.The monotoni
ity of the sequen
e (� [l; m℄)m implies the existen
e of thelimit � [l;+1[ := limm!1 � [l; m℄ : (4.13)De�nition 4.14 If � [l;+1[<1 we 
all it a renewal time for the CMMCalgorithm.We remark that � [l; m℄ = minl�i�m � [i℄ (4.15)and � [l;+1[ = infl�i � [i℄ : (4.16)The 
onsiderations of this se
tion 
learly indi
ate the strategy to followfor the study of CMMC:(1) Determine the distribution of regeneration times. This depends onlyon the random-order pro
ess, that is on the parameters (�k)k�0 in (4.1).



4.2. EXISTENCE, UNIQUENESS AND LOSS OFMEMORY OF CMMC39(2) Study the properties of the pro
ess in terms of this distribution.We stress, however, that the de
omposition (4.1) of a CMMC is notunique. See the dis
ussion in Se
tion 4.3 below and Exer
ise 7.24.We develop this strategy in Chapter 6. We emphasize that this approa
his based on the simulation algorithm (4.3). We still have to relate pro
essde�ned by these algorithms with pro
ess 
onsistent with CMMC de
ompo-sitions (4.1). This is done in next se
tion.4.2 Existen
e, uniqueness and loss of mem-ory of CMMC4.2.1 Main resultsThis se
tion is devoted to the proof of the following theorems.Theorem 4.17 (Existen
e and uniqueness) Consider a CMMC systemof transition probabilities as in (4.1), and the related CMMC simulation al-gorithm (4.3). If P(� [0℄ > �1) = 1 (4.18)then(i) There exists exa
tly one sto
hasti
 pro
ess (Xn)n2Z de�ned by the algo-rithm. The pro
ess 
an be de�ned almost surely in the following way.To de�ne Xn, start from � [n℄ and determine �rstX� [n℄ = f (0)(V� [n℄) (4.19)and then, indu
tively, Xi = f (Li)(Vi; X i�1Li ) (4.20)for i 2 [� [n℄ + 1; n℄. [The fun
tions f (i) are the simulation algorithmsof the Markov 
omponents of the CMMC used in the algorithm (4.3).℄



40 CHAPTER 4. A REGENERATION SCHEME FOR CMMC(ii) For any z�p�1 2 A�p�1 limp!1Xn[z�p�1℄ = Xn (4.21)P-almost surely for all n 2 Z. [The left-hand side is the pro
ess with�xed past de�ned in (2.11).℄(iii) This pro
ess (Xn) is the only pro
ess 
onsistent with the CMMC tran-sition probabilities.We remark that by (4.15) and translation invarian
eP(� [0℄ > �1) = 1 () P(� [l; m℄ > �1) = 1 8 l � m 2 Z : (4.22)Theorem 4.23 (Loss of memory) (i) If (Xn) is 
onsistent with a CMMCsystem of transition probabilities,���P�Xj0 = aj0�� P�Xj0 [z�p�1℄ = aj0���� � P�� [0; j℄ � �p� (4.24)for ea
h j; k 2 N and ea
h past z�p�1 2 A�p�1.(ii) If ( eXn) and ( bXn) are two pro
esses 
onsistent with a CMMC system oftransition probabilities,���eP� eXj0 = aj0�� bP� bXj0 = aj0���� � P�� [0; j℄ > �1� (4.25)for ea
h j; k 2 N.Inequality (4.24) bounds the speed at whi
h the pro
ess is \lossing mem-ory" from the original history z�k�1. This bound will be exploited in Chap-ter 6. Inequality (4.25) 
ould be useful for CMMC exhibiting phase 
oexis-ten
e, i.e. with more than one 
onsistent pro
ess.The proof of these theorems is presented in the next se
tions.



4.2. EXISTENCE, UNIQUENESS AND LOSS OFMEMORY OF CMMC414.2.2 Existen
eProof of part (i) of Theorem 4.17 The pro
ess is de�ned through (4.19)and (4.20).Proof of part (ii) of Theorem 4.17 (
onvergen
e of �xed-past pro-
esses) The pro
ess (Xn[z�p�1℄) is de�ned by the �xed-past version of thealgorithm (4.3):Xn[z�p�1℄ = n+p�1Xk=0 1f�k�1 � Un � �kg f (k)�Vn ; Xn�1n�k [z�p�1℄�+ 1Xk=n+p1f�k�1 � Un � �kg f (k)�Vn ; Xn�1�p+1[z�p�1℄ zpn�k� :(4.26)If � [n℄ > �p, the last sum dissapears and we re
over the same re
ursiveequations (??), whi
h are, in fa
t, equivalent to (4.19){(4.20). We 
on
ludethat Xn[z�p�1℄ 1f� [n℄ > �pg = Xn 1f� [n℄ > �pg (4.27)with Xn de�ned by (4.19){(4.20). Furthermore, via (4.15) this identity gen-eralizes to Xml [z�p�1℄ 1f� [l; m℄ > �pg = Xml 1f� [l; m℄ > �pg : (4.28)In parti
ular identity (4.27) proves part (ii).Proof of 
onsisten
y in part (iii) of Theorem 4.17 We show now thatthe pro
ess of part (i) is 
onsistent with the transition probabilitiesP (ajxn�1�1) := PfF (Un; Vn; xn�1�1) = ag (4.29)where F is the fun
tion in the right-hand side of (4.3). For this we mustverify (2.31) for fn = F for any 
ylindri
al g. Let us 
onsider g = g(Xnl ).



42 CHAPTER 4. A REGENERATION SCHEME FOR CMMCOur starting point is the 
onsisten
y of the �xed-past pro
esses. Indeed, bythe remark following (2.31), we have thatEhg(Xnl [z�p�1℄)i = Ehg�F (Un; Vn; Xn�1�1 [z�p�1℄) ; Xn�1�l [z�p�1℄�i (4.30)for any past z�p�1 2 A�p�1. We shall take the limit p!1 of this expression.By part (ii) of the theorem and dominated 
onvergen
eEhg(Xnl [z�p�1℄)i �!p!1 Ehg(Xnl )i : (4.31)We now insert inside the expe
tation in the right-hand side of (4.30)1 = 1f� [l; n℄ > �pg+ 1f� [l; n℄ � �pg : (4.32)By (4.28) g�F (Un; Vn; Xn�1�1 [z�p�1℄) ; Xn�1�l [z�p�1℄� 1f� [l; n℄ > �pg= g�F (Un; Vn; Xn�1�1 ) ; Xn�1�l � 1f� [l; n℄ > �pg�!p!1 g�F (Un; Vn; Xn�1�1 ) ; Xn�1�l � P-a.s. (4.33)The last 
onvergen
e is due to hypothesis (4.18) (plus translation invarian
e).The same hypothesis implies thatEhg�F (Un; Vn; Xn�1�1 [z�p�1℄) ; Xn�1�l [z�p�1℄� 1f� [l; n℄ � �pgi �!p!1 0 : (4.34)>From (4.30){(4.34) we 
on
lude thatEhg(Xnl )i = Ehg�F (Un; Vn; Xn�1�1 ) ; Xn�1�l �i : (4.35)This proves 
onsisten
y. The uniqueness statement in part (iii) is a parti
ular
ase of part (ii) of Theorem 4.23. This theorem is proved below.



4.2. EXISTENCE, UNIQUENESS AND LOSS OFMEMORY OF CMMC434.2.3 Loss of memory and uniquenessLet us 
onsider any pro
ess ( bXn) 
onsistent with the transition probabilities(4.1). Let's denote (b
; bF ; bP) the 
orresponding probability spa
e. Consis-ten
y means the validity of (2.19) for the 
orresponding expe
tation bE andthe CMMC transition probabilities (Pn). Applied to g(Xj�1) = I[Xj0 = aj0℄,the 
onsisten
y 
ondition implies thatbP� bXj0 = aj0� = bE hP (aj0j bX�1�1)i (4.36)for ea
h j 2 N. To prove uniqueness we must 
ondition further the left-handside with respe
t to a remote past z�p�1 2 A�p�1, p 2 N . That is, we writebP� bXj0 = aj0� = Z b�(dz) bE hP�aj0 ��� bX�1�p+1[z�p�1℄�i ; (4.37)where b� is the law of the pro
ess bX, that is, � is the measure de�ned byR b�(dz)f(z) = bE f( bX) for 
ylinder fun
tions f : A1�1 ! R. For ea
h pastz�p�1, however, there is only one pro
ess 
onsistent with the �xed-past versionof the CMMC, and it is the pro
ess de�ned by the 
orresponding CMMCalgorithm (Remark 2.29). We 
an therefore remove the innermost \hats"and write bP� bXj0 = aj0� = Z b�(dz) EhP�aj0 ��� X�1�p+1[z�p�1℄�i ; (4.38)where now E is our usual expe
tation on the variables (Un; Vn) and (Xn[z�p�1℄)the �xed-past pro
ess de�ned by (4.26). We 
an now use the results of ourprevious se
tions. In parti
ular, by (4.28)���P�aj0 ��� X�1�p+1[z�p�1℄�� P�aj0 ��� X�1�p+1[w�p�1℄���� � 1f� [0; j℄ � �pg ; (4.39)uniformly in the pasts z�p�1; w�p�1. All the uniqueness results follow from thisformula and (4.38):



44 CHAPTER 4. A REGENERATION SCHEME FOR CMMC(i) To obtain (4.24) we just need to writeP�Xj0 = aj0�� P�Xj0 [z�p�1℄ = aj0�= Z �(dz) EhP�aj0 ��� X�1�p+1[w�p�1℄�� P�aj0 ��� X�1�p+1[z�p�1℄�i (4.40)and use (4.39). Here � is the law of the pro
ess X.(ii) To obtain (4.25) we writeeP� eXj0 = aj0�� bP� bXj0 = aj0�= Z Z e�(dz)b�(dw) EhP�aj0 ��� X�1�p+1[z�p�1℄�� P�aj0 ��� X�1�p+1[w�p�1℄�i ;(4.41)use (4.39) and take the limit p!1. Here b� is the law of the pro
ess bX.4.3 Finiteness of regeneration timesTo �nish this 
hapter let us state suÆ
ient 
onditions for the regenerationand renewal times to be �nite.Theorem 4.42 If Xm�0 mYk=0�k = 1 (4.43)then for ea
h �nite interval [l; m℄,P(� [l; m℄ > �1) = 1 : (4.44)Furthermore, if limm!1 mYk=0�k > 0 (4.45)



4.3. FINITENESS OF REGENERATION TIMES 45then for ea
h l 2 Z, P(� [l;1[> �1) = 1 : (4.46)Conditions (4.45) and (4.43) impose lower bounds on the speed of the
onvergen
e �k % 1. In parti
ular both 
onditions require �0 > 0 [see (4.1){(4.4)℄. In Exer
ise 4.50 the reader is asked to show that as a result a CMMCwith �j de
reasing at least as 1=j2+Æ has �nite renewal times if Æ > 0. In
onstrast, if �j � 1=j2 Theorem 4.42 guarantees only the �niteness of theregeneration times for �nite windows.It is 
lear that CMMC transition probabilities admit in�nitely many de-
ompositions of the type (4.1). For instan
e, if the parameters (�k)k2N de�nesu
h a de
omposition with Markovian transitions P (k), then the parameters�0=2; (�k+�0=2k+1)k2N� de�ne another de
omposition with Markovian tran-sitions [�0P (0)=2k+1 + �kP (k)℄=(�0=2k+1 + �k). A more drasti
 manifestationof this fa
t is shown in Exer
ise 7.24. It is natural to wonder as to whetherthere is an \optimal" su
h de
omposition, at least from the point of viewof Theorem 4.42. It is 
lear that this sense of optimality is related to thefastest possible 
onvergen
e �k % 1. In turns, this 
orresponds to 
hoosingdistributions (�k) that put as mu
h weight as possible in the lowest valuesof k. A qui
k look to the 
ombination (4.1) reveals that �0 
an not ex
eed�0 � Xa2A infx P (ajx) : (4.47)Furthermore, pro
eeding indu
tively,�0 + � � �+ �k � infx�1�k Xa2A infy�k�1�1 P (ajx�1�k y�k�1�1 ) : (4.48)In Chapter 6 we shall expli
itely determine, for large families of 
hains ofin�nite orders, CMMC de
ompositions that saturate these inequalities.The proof of Theorem 4.42, and of other 
onsequen
es of the regenerations
heme, will be given in Chapter 6. It uses a very simple instan
e of 
ouplingte
hnique and it relies on an auxiliary Markov 
hain 
alled the house-of-
ardspro
ess. The relevant properties of this 
hain are derived in an \intermezzo"
hapter, Chapter 5.



46 CHAPTER 4. A REGENERATION SCHEME FOR CMMC4.4 Exer
isesExer
ise 4.49 Show that the pres
ription Xn = F (Un; Vn; Xn�1) given in(4.3) is indeed a simulation algorithm for the CMMC with transition proba-bilities (4.1). That is, show thatP (ajxn�1�1) = PfF (Un; Vn; xn�1�1) = agwhere the left-hand side is given by (4.1) and the fun
tion F is de�ned bythe right-hand side of (4.3) for the 
hoi
es dis
ussed after De�nition 4.2.Exer
ise 4.50 Let �k 2 [0; 1℄ form a sequen
e su
h that �k % 1. Write�k=: 1� "k.(a) Show that limm!1 mYk=0�k > 0 () 1Xk=0 "k < 1 : (4.51)(b) Show thatexpn� 1Xk=0 "k � 1Xk=0 "2k=2o � mYk=0�k � expn� 1Xk=0 "ko : (4.52)(
) Applying (a) and (b) to the 
ase"k = 1Xj=k+1�j ; (4.53)
on
lude that a CMMC with �j de
reasing at least as 1=j2+Æ has �niterenewal times if Æ > 0, and �nite �nite-window regeneration times ifÆ = 0.Exer
ise 4.54 Prove the bounds (4.47){(4.48). Any idea about the Marko-vian transitions P (k) that lead to a saturation of these bounds?Exer
ise 4.55 Prove that (2.16) implies (4.36).



Chapter 5Intermezzo: the house-of-
ardspro
ess
5.1 Re
urren
e and transien
eGiven a set of parameters �0; �1; : : : 2 [0; 1℄, we de�ne the asso
iated house-of-
ards system of transition probabilities as the order-1 Markovian systemon A = N su
h that P (x+ 1jx) = �xP (0jx) = 1� �x (5.1)and P (xjx�1) = 0 otherwise. Thus pro
esses 
onsistent with these transitions
limb in a stair
ase-like fashion and at some instants fall abruptly to theground. Let us now 
onsider a 
hain (Wn)n�0 starting from 0 and evolvingwith (5.1). A simulation algorithm for su
h a 
hain is:Wn = ( 0 n � 0(Wn�1 + 1) 1fUn < ��Wn�1g n � 1 : (5.2)The property of interest for our purposes is that this 
hain is not positive-re
urrent.Lemma 5.3 The 
hain (Wn : n � 0) is47



48 CHAPTER 5. INTERMEZZO: THE HOUSE-OF-CARDS PROCESS(a) null-re
urrent if, and only if, Pn�0Qnk=0 �k =1, and(b) transient if, and only if, Q1k=0 �k > 0.Proof. It is a dire
t 
omputation, using the de�niton of null-re
urren
e andtransien
e of a Markov 
hain.5.2 Return timesAs we shall see, [see formula (6.3) below℄, the distribution of the regenerationtimes of a CMMC is related to the return-time probabilities of the house-of-
ards pro
ess �n := P(Wn = 0) (5.4)for all s 2 Z. The following proposition 
olle
ts a number of useful propertiesof these quantities.Proposition 5.5 Let (�k)k2N be an in
reasing non-negative sequen
e with�k % 1, and 
onsider the asso
iated house-of-
ards pro
ess (Wn) de�ned by(5.2). Let (�n)n2N be the return-time probabilities (5.4). Then(i) Pn�0Qnk=0 �k =1 if, and only if, �n ! 0.(ii) Q1k=0 �k > 0 if, and only if, Pn�0 �n <1.(iii) If (1� �n) de
reases exponentially, so does �n.(iv) If Q1k=0 �k > 0 andlim supk!1 supi � 1� �i1� �ki�1=k � 1 ; (5.6)then �n � 
onst (1 � �n). Condition (5.6) holds, for instan
e, when�n � 1� (logn)bn�
 for 
 > 1.In fa
t, we shall proof a statement slightly stronger than (iv) (Lemma5.18 below)



5.2. RETURN TIMES 49Proof of (i){(iii). Statement (i) is just part (a) of Lemma 5.3. To proveparts (ii) and (iii) we introdu
e the �rst-return time� = inf fn > 0;Wn = 0g : (5.7)We see that P(� = 1) = 1� �0 ; (5.8)P(� = n) = (1� �n�1) n�2Yk=0�k for n � 2; (5.9)P(� = +1) = +1Yk=0�k : (5.10)As the house-of-
ard pro
ess is Markovian,�n = nXk=1 P(� = k) �n�k : (5.11)Let us now 
onsider the generating fun
tionsF (s) = +1Xn=1 P(� = n) sn (5.12)and G(s) = +1Xn=0 �n sn : (5.13)Formula (5.11) implies that these series are related in the formG(s) = 11� F (s) ; (5.14)for all s � 0 su
h that F (s) < 1.It is 
lear that the radius of 
onvergen
e of F is at least 1. In fa
t,F (1) = P(� < +1) : (5.15)



50 CHAPTER 5. INTERMEZZO: THE HOUSE-OF-CARDS PROCESSMoreover, if Qk�1 �k > 0, the radius of 
onvergen
e of F islimn!1 [1� �n℄�1=n : (5.16)This follows from the fa
t that P(� = n)=(1� �n�1)! P(� = +1) > 0, by(5.9){(5.10).Statement (ii) follows from the 
hain of equivalen
es:1Yk=0�k > 0 () P(� < +1) < 1 () G(1) <1 () Xn�0 �n <1 :(5.17)The �rst equivalen
e is part (b) of Lemma 5.3, the se
ond one follows from(5.14) and (5.15), and the last one from the de�nition (5.13) of G.To prove statement (iii) let us assume that 1 � �m � C
m for some
onstants C < +1 and 0 < 
 < 1. In parti
ular this implies thatQ1k=0 �k >0 [Exer
ise 4.50 (a)℄ and, hen
e, by (5.16), that the radius of 
onvergen
eof F is at least 
�1 > 1. Moreover, by (5.15) and the �rst equivalen
e in(5.17) we 
on
lude that F (1) < 1. By 
ontinuity it follows that there existss0 > 1 su
h that F (s0) = 1 and, hen
e, by (5.14), G(s) < +1 for all s < s0.By de�nition of G, this implies that �n de
reases faster than �n for any� 2 (s�10 ; 1).The proof of (iv) is a 
onsequen
e of the following lemma.Lemma 5.18 If Q1k=0 �k > 0 andlim supk!1 supi � P(� = 1)P(� = ki)�1=k < 1P(� < +1) ; (5.19)then �n � C P(� = n) for some 
onstant C.To see how (iv) follows from this lemma, observe that hypotesis (5.6)implies that the left-hand side of (5.19) does not ex
eed 1 [see (5.9){(5.10)℄.This guarantees the validity of (5.19) be
ause of the �rst equivalen
e in (5.17).



5.2. RETURN TIMES 51Proof of the lemma. We start with the following expli
it relation betweenthe 
oeÆ
ients of F and G.�n = nXk=1 Xi1; : : : ; ik � 1i1 + � � �+ ik = n kYm=1P(� = im) ; (5.20)for n � 1. This relation 
an be obtained dire
tly from (5.14) or, alternatively,by de
omposing ea
h return time as a sum of k times of �rst return andusing Markovianness. Multiplying and dividing ea
h fa
tor in the rightmostprodu
t by P(� < +1), this formula 
an be rewritten as�n = nXk=1 P(� < +1)k Xi1; : : : ; ik � 1i1 + � � �+ ik = n kYm=1 P(� = im j � < +1): (5.21)At this point we observe the following. If i1 + � � � + ik = n, thenmax1�m�k im � n=k and thus, for g in
reasingg(n) � g (k imax) ;where imax = max1�m�k im. If we apply this to g(n) = 1=P (� = n), whi
h isin
reasing by (5.9), we obtain1 � P(� = n)P(� = k imax) : (5.22)This inequality, inserted in (5.21), yields the inequality�n � P(� = n) nXk=1 P(� < +1)k� Xi1; : : : ; ik � 1i1 + � � �+ ik = n Qkm=1 P(� = im j � < +1)P(� = k imax) ; (5.23)



52 CHAPTER 5. INTERMEZZO: THE HOUSE-OF-CARDS PROCESSWe now single out a fa
tor P(� = imaxj� < +1) = P(� = imax)=P(� < +1)from the rightmost produ
t of (5.23). If there are several ij = imax we 
hoosethe smaller j. We then use (5.19) plus (5.9){(5.10) to obtain a bound of theform P(� = imax)P(� = k imax) � Æk ; (5.24)valid for k suÆ
iently large, whereÆ < 1P(� < +1) : (5.25)Expressions (5.23){(5.25) imply the inequality�n � C P(� = n) nXk=1 Æk P(� < +1)k�1 Sk ; (5.26)for some 
onstant C > 0, whereSk := kXM=1 XiM � 1; `1 � 0; `2 � 0iM + `1 + `2 = n X1 � i1; : : : ; iM�1 < iMi1 + � � �+ iM�1 = `1 Y1�m�M�1P(� = im j � < +1)� X1 � iM+1; : : : ; ik � iMiM+1 + � � �+ ik = `2 YM+1�m�k P(� = im j � < +1) : (5.27)[M is the smallest j for whi
h ij = imax in ea
h summand of (5.23).℄To bound this sum we introdu
e a sequen
e of independent random vari-ables (� (i))i2N with 
ommon distributionP(� (i) = j) = P(� = j j � < +1) : (5.28)With this probabilisti
 interpretation we see thatSk � kXiM=1 n�k+1Xj=1 P� X1�s�k�1s 6=M � (s) = n� j� � k : (5.29)



5.2. RETURN TIMES 53Hen
e, (5.26) implies�n � C Æ h 1Xk=1 k [Æ P(� < +1)℄k�1iP(� = n)� 
onstP(� = n) : (5.30)
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Chapter 6Mixing properties and perfe
tsimulations for CMMC
6.1 Houses of 
ards and regenerationIn this 
hapter we shall use the results of the previous 
hapter to prove anumber of properties of CMMC, in
luding the promised Theorem 4.42. Theanalysis is based on the following graphi
al pro
edure. Consider a �xedwindow 
orresponding to the interval [l; m℄. We �rst 
he
k whether the leftendpoint l is a regeneration time for this window. This would be the 
ase if,�rst of all, Ll = 0 (the state at l is independent of the past) and, furthermore,Li < i � l for i 2℄l; m℄ (the states at times in ℄l; m℄ depend only on timesnot earlier than l). Equivalently, l is a regeneration time for the windowXl; � � � ; Xm if, and only if, a house-of-
ards pro
ess starting at the origin attime l does not return to the origin in the interval ℄l; m℄. If this house-of-
ards pro
ess does visit the origin inside the interval, then we rule out l asa regeneration time and perform a similar test to a house-of-
ards pro
essstarting at l� 1. We 
ontinue this way until we �nd the �rst s � l su
h thatthe house-of-
ards pro
ess starting there manages to pass over the wholeinterval [s;m℄ without visiting the origin.To formalize this argument, let us 
onsider a 
oupled family of house-of-55
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ards pro
esses ((W sn : n � s) : s 2 Z), all de�ned by (5.1) with the samesequen
e �k % 1 but started at the origin at di�erent times s 2 Z. We 
ouplethem by running them with the same 
ommon uniform variables (Un), thatis, through a 
oupling algorithm (De�nition 2.36)W sn = ( 0 n � s(W sn�1 + 1) 1fUn < ��W sn�1g n � s + 1 : (6.1)The pro
ess (5.2) is (Wn) = (W 0n). Given a CMMC, we shall 
all the asso
i-ated house of 
ards, the family of pro
esses (6.1) 
onstru
ted with the (�k)given in (4.4).We start with our key identity.Lemma 6.2 The following identity holds between the random-order pro
essof a CMMC and its asso
iated house of 
ards:n� [l; m℄ < so = [i2[l;m℄nW s�1i = 0o (6.3)for s � l.Proof. The asumed monotoni
ity of the �k's implies thatW sn � W tn for all s < t � n : (6.4)Hen
e, W sn = 0 implies that W tn = 0 for s < t � n and, therefore, all these
hains 
oales
e at time n:W sn = 0 =) W sk =W tk; s � t k � n : (6.5)Expression (4.12) tells us that, if s � l,� [l; m℄ < s () 8j 2 [s; l℄; 9n 2 [j;m℄ : W j�1n = 0 : (6.6)By the 
oales
ing property (6.5), the statement on the right-hand-side istrue if, and only if, the same statement is true but with n 2 [l; m℄. By themonotoni
ity property (6.4) we then 
on
lude� [l; m℄ < s () maxnm < s : 8n 2 [s; t℄;Wmn > 0o < j � 1() 9n 2 [s; t℄ :W j�1n = 0 : (6.7)



6.2. FINITENESS OF RENEWAL AND REGENERATION TIMES 57As an immediate 
orollary of the key identity (6.3), plus time homogeinity,we obtain the following bound on the distribution of regeneration times.Corollary 6.8 For a CMMCP(� [l; m℄ < s) � mXi=l �i�s+1 (6.9)for s � l � m, where �j are the return times (5.4) of the asso
iated house-of-
ard pro
ess started at time 0 [de�ned in (5.2)). Estimations for �j aregiven in Proposition 5.5.6.2 Finiteness of renewal and regeneration timesAs a �rst appli
ation of the key identity we show now how it yields a proofof Theorem 4.42. In view of Lemma 5.3, the following lemma yields su
h aproof.Lemma 6.10 The 
hain (Wn : n � m) [thus, by translation invarian
e, allthe 
hains (W sn : n � s)℄ is(a) null-re
urrent if, and only if, P(� [l; m℄ > �1) = 1 for ea
h �niteinterval [l; m℄, and(b) transient if, and only if, P(� [l;1[> �1) = 1 for ea
h l 2 Z.Proof. By translation invarian
e, the probability of the right-hand side of(6.3) 
oin
ides with P� [i2[l;m℄fW�s+i+1 = 0g� : (6.11)Therefore, by the monotoni
ity property (6.4) we have thatP(� [l; m℄ < s) 2 hP(Wm�s+1 = 0) ; m�l+1Xi=1 P(Wl�s+i = 0)i : (6.12)



58CHAPTER 6. MIXING PROPERTIES AND PERFECT SIMULATIONS FORCMMCAs s ! �1 this interval remains bounded away from 0 in the positive-re
urrent 
ase, but shrinks to 0 otherwise. Part (a) of the lemma followsfrom the fa
t thatP(� [l; m℄ = �1) = lims!�1P(� [l; m℄ < s) : (6.13)The proof of part (b) is analogous but simpler. By translation invarian
eand (6.3) we have thatP(� [l;1℄ < s) = P� [i2[l�s+1;1℄fWi = 0g� (6.14)whi
h goes to zero as s! �1 if, and only if, (Wn) is transient.6.3 Mixing propertiesAnother immediate appli
ation of the key identity (6.3) is to obtain relax-ation properties, also known as mixing properties, of CMMC. The pro
edureused in Se
tion 4.2 to 
onstru
t a CMMC 
an be thought as a simulationpres
ription: An initial history is 
hosen and subsequent states are generatedthrough transition probabilities (through appropriate simulation algorithms.Theorem 4.42 gives 
onditions guaranteeing that asymptoti
ally this pro
e-dure yields the pro
ess we are after. Two questions arise naturally at thispoint:(1) Can we estimate how far we are from the equilibrium? That is, howlong we have to wait to see the in
uen
e of the original history be
omesmaller than some a

eptable level?(2) Can we design an alternative pro
edure with faster relaxation times?Both questions will be studied in these notes. Here we shall use expression(4.24) to give estimates related with the �rst question. In Se
tion 6.5 below



6.4. REGENERATION SCHEME 59we shall show that it is possible to give the best 
on
eivable answer to ques-tion (2): The regeneration s
heme o� CMMC provides a way to simulatethese 
hains without relaxation errors.Let us now state the estimations that follow from our previous work.Proposition 6.15 For CMMC a (Xn),���P�Xm+`` = am0 �� P�Xm+`` [z℄ = am0 ���� � mXi=0 �i+` ; (6.16)where �j is the return-time probability (5.4) of the asso
iated house-of-
ardpro
ess started at time 0. Estimations for �j are given in Proposition 5.5.This proposition follows immediately from the loss-of-memory inequality(4.24) and the bound (6.9) on the distribution of regeneration times.6.4 Regeneration s
hemeAs a 
onsequen
e of Theorem 4.42 and part (b) of Lemma 6.10 we see thatif Q1k=0 �k > 0, almost all realizations of the CMMC exhibit a stri
tly in-
reasing sequen
e (si) of renewal times. In this 
ase, the pro
ess may bevisualized as a sequen
e of independent blo
ks, of random length si+1 � si.This de�nes a regeneration s
heme. The formal statement of this propertyis as follows.Let N 2 f0; 1gZ be the random Boolean variables de�ned byN(j) := 1f� [j;1℄ = jg : (6.17)Let (T` : ` 2 Z) be the ordered time events of N de�ned by N(i) = 1 if andonly if i = T` for some `, T` < T`+1 and T0 � 0 < T1.Corollary 6.18 Let us 
onsider a CMMC. If Q1k=0 �k > 0, then the pro
essN de�ned in (6.17) is a stationary renewal pro
ess with renewal distributionP(T`+1 � T` � m) = �m (6.19)



60CHAPTER 6. MIXING PROPERTIES AND PERFECT SIMULATIONS FORCMMCfor m > 0 and ` 6= 0, where �m is the return time de�ned in (5.4). Further-more, the random ve
tors �` 2 [n�1An, ` 2 Z, de�ned by �` = (XT`; � � �XT`+1�1)are mutually independent and identi
ally distributed with 
onditional distri-butionP��` = (aT` ; : : : ; aT`+1�1) ��� (Un)� = P 0(aT`) � � � P (LT`+1�1)(aT`+1�1jaT`+1�2T` ) :(6.20)S
hemes of this nature have been obtained by Berbee (1987), in the 
on-text of 
hains of Type B (see De�nition 3.12), and by Lalley (1986, 2000)for 
hains of Type C. The present 
onstru
tion, valid for the more generalType A 
haines, was was done by Ferrari et al (2000).Proof. The stationarity of N follows immediately from the 
onstru
tion.Let f(j) := P�N(�j) = 1 jN(0) = 1� (6.21)for j 2 N� . To see that N is a renewal pro
ess it is suÆ
ient to show thatP�N(s`) = 1 ; ` = 1; : : : ; n� = � n�1Ỳ=1 f(s`+1 � s`) (6.22)for arbitrary integers s1 < � � � < sk. [From Poin
ar�e's in
lusion-ex
lusionformula, a measure on f0; 1gZ is 
hara
terized by its value on 
ylinder setsof the form f� 2 f0; 1gZ : �(s) = 1; s 2 Sg for all �nite S � Z. For S =fs1; : : : ; skg, a renewal pro
ess must satisfy (6.22).℄ For j 2 Z, j 0 2 Z[f1g,de�ne H[j; j 0℄ := 8<: fUj+` < �`; ` = 0; : : : ; j 0 � jg; if j � j 0\full event"; if j > j 0 (6.23)With this notation, N(j) = 1fH[j;1℄g; j 2 Z: (6.24)and P�N(s`) = 1 ; ` = 1; : : : ; n� = Pn\̀=1H[s`;1℄o (6.25)



6.5. PERFECT SIMULATION 61>From monotoni
ity we have for j < j 0 < j 00 � 1,H[j; j 00℄ \H[j 0; j 00℄ = H[j; j 0 � 1℄ \H[j 0; j 00℄; (6.26)and then, with sn+1 =1 we see that (6.25) equalsnYi=1 PnH[s`; s`+1 � 1℄o ; (6.27)whi
h equals the right hand side of (6.22). Hen
e N is a renewal pro
ess.On the other hand, by stationarity,P(T`+1 � T` � m) = P�� [�1;1℄ < �m + 1 ��� � [0;1℄ = 0� (6.28)and, hen
e, by the key identity (6.3)P(T`+1 � T` � m) = P(W�m+1�1 = 0) = �m ; (6.29)proving (6.19).The independen
e of the random ve
tors �` follows from the de�nitionof T`.6.5 Perfe
t simulationTo explain what is a perfe
t-simulation algorithmwe start with the importantde�nition of stopping time.De�nition 6.30 (Stopping time) Let (Un) be a sequen
e of random vari-ables on some set U. We say that T is a stopping time for (Un : n � 0) ifthe event fT � jg depends only on the values of U1; : : : ; Uj. That is, if thereexist events Aj � Uj su
h thatfT � jg = f(U1; : : : ; Uj) 2 Ajg (6.31)



62CHAPTER 6. MIXING PROPERTIES AND PERFECT SIMULATIONS FORCMMCExample 6.32 Let 
 2 (0; 1), U = [0; 1℄, (Un) be a sequen
e of randomvariables uniformly distributed in U and T := �rst time a Un is less than 
:T := minfn � 1 : Un < 
g (6.33)Then T is a stopping time, the sets Aj are de�ned byAj = fU1 > 
; : : : ; Uj�1 > 
; Uj < 
g (6.34)and the law of T is geometri
 with parameter 
:P(T > n) = (1� 
)n (6.35)In 
ontrast, variables whose de�nition involves the last time in whi
h a
ertain 
ondition is satis�ed are not stopping times.De�nition 6.36 A perfe
t simulation for a pro
ess (Xn) is a familyf(T[l;m℄; F[l;m℄) : l � m 2 Zg, where for ea
h l � m 2 Z(i) T[l;m℄ is a stopping time on the variables (Um�n)n�0,(ii) P(T[l;m℄ <1) = 1, and(iii) F[l;m℄ : (Ul�T[l;m℄; : : : ; Um)!Aml is su
h thatP�Xml = aml � = P�(F[l;m℄)ml = aml � (6.37)for ea
h aml 2 Aml .Perfe
t simulations, therefore, allow to obtain, in a �nite time, samplesof windows distributed exa
tly as the pro
ess, without relaxation errors.The regeneration s
heme provides a natural perfe
t-simulation algorithm forCMMC.



6.6. EXERCISES 63Proposition 6.38 For CMMC with Pm�0Qmk=0 �k = 1 there exist aperfe
t simulation. The stopping times are T[l;m℄ = m� � [l; m℄ and(F[l;m℄)� [l;m℄ = f (0)(U� [l;m℄)...(F[l;m℄)m = f (Lm)(Um; (F[l;m℄)m�1m�Lm) (6.39)The order-variables (Ln) are de�ned in (4.6), and the f (k) are the simulationalgorithms (4.3).6.6 Exer
isesExer
ise 6.40 Consider a CMMC de�ned byP (ajx) = �0 P (0)(a) + �1 P (1)(ajx�1) (6.41)with �0 + �1 = 1.(a) Show that for any l 2 Z, � [l℄ has a geometri
 distribution and determineits parameters. Hint: show that� [l℄ = maxfn � l : Ln = 0g : (6.42)(b) Con
lude that for all n � l, (Xn+� [l℄)n�0 and (X� [l℄�n)n�0 are indepen-dent.Exer
ise 6.43 Consider now a CMMCP (ajx) = �0 P (0)(a) + kXi=1 �i P (i)(ajx�1�i ) (6.44)with �0 + �+ �k = 1 and 2 � k <1.(a) Show that formula 6.42 is no longer valid.(b) Show thatP(� [l℄ � l � s) � �0(�0 + �1) � � � (�0 + � � �+ �minfk�1;sg) : (6.45)
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Chapter 7Every 
hain of in�nite order isa CMMC and a VLMC
7.1 Chains as CMMCThe overall goal of this se
tion is summarized in the following theorem. [Forthe de�nition of 
ontinuity and other hypotheses of 
hains of in�nite ordersee De�nition 3.1. For the de�ntion of CMMC and related notation seeSe
tion 4.℄Theorem 7.1 Every 
hain of in�nite order with a 
ontinuous system oftransition probabilities is a CMMC.The method of proof is of interest in itself. It is based on a rather generalpres
ription to de
ompose 
onditional probabilities as 
onvex 
ombinationsof Markovian pro
esses. This pres
ription, in fa
t, is very 
exible and leavesroom for user-de�ned 
hoi
es. Our presentation is organized so to 
lerlyexhibit this 
exibility, with the hope that readers will put it to good use inspe
i�
 appli
ations.De�nition 7.2 A CMMC partition is a pair (fPx : x 2 Ag; fBk : k 2Ng) where: 65



66CHAPTER 7. EVERY CHAIN OF INFINITE ORDER IS A CMMC ANDAVLMC(i) Ea
h Px is a partition of the interval [0; 1℄ of the form[0; 1℄ = [a2An2N Ixn1a ; (7.3)with sets Ixn1a formed by unions of intervals. These sets may be di�erentfor di�erent x, ex
ept those for n = 0 for whi
h we use the abusivenotation Ix01a .(ii) The sets Bk form a partition of [0; 1℄(iii) The partitions fPxg and (Bk) are su
h that� [a2A0�k�n Ixk1a � � n[k=0Bk (7.4)for ea
h n 2 N and x 2 A.Proposition 7.5 A CMMC de
omposition de�nes an algorithm for a CMMC.Proof. We have to de�ne �k and f (k) in (4.3). For the former we take�k = length(Bk). We then 
onsider, for ea
h x 2 A and n 2 N , the setsJxn1a := � [0�k�n Ixk1a � \ Bn : (7.6)Condition (7.4) implies that the sets fJxn1a : a 2 Ag form a partition of[�n�1; �n℄. Finally we de�nef (k)(Vn; xn�1n�k) = a if �kVk 2 Jxn�1n�ka : (7.7)Theorem (7.1) follows from the previous and the following propositions.Proposition 7.8 Every 
hain of in�nite order with 
ontinuous transitionprobabilities de�nes a CMMC partition.



7.1. CHAINS AS CMMC 67Proof. For ea
h x 2 A, the partition Px is de�ned as follows. We �rstdetermine numbers r0(a) := infz2AP (ajz)...rk(ajx�k�1) = infz2AP (ajx�1�k z) ; k � 1 ; (7.9)de�ned for ea
h k 2 N , g 2 A and x�k�1 2 A�1�k. [These fun
tions are denotedg(i0ji�1; : : : ; i�k) by Berbee (1987)℄. Then we take the di�eren
es�0(a) := r0(g)�k(ajx�1�k) := rk(ajx�1�k)� rk�1(ajx�1�k+1) ; for k � 1 (7.10)for a 2 A. We take now a partition of [0; 1℄ formed by sets Ix�1�na su
h that:(i) For a 2 A, k � 0, length�Ix�1�ka � = �k(ajx�1�k) : (7.11)(ii) These intervals are disposed in in
reasing lexi
ographi
 order with re-spe
t to a and k in su
h a way that the left extreme of one interval
oin
ides with the right extreme of the pre
edent.That is, the intervals are disposed, along the interval [0; 1℄ in the formI0a1 ; I0a2; : : : ; I0ajAj ; Ix�1a1 ; Ix�1a2 ; : : : ; Ix�1ajAj ; Ix�1�2a1 ; : : :(jAj is the 
ardinality of the alphabet). To 
omplete the algorithm, we
onsider the numbers �k := minx�1�k2Ak�1 Xa2A rk(ajx�1�k) ; (7.12)



68CHAPTER 7. EVERY CHAIN OF INFINITE ORDER IS A CMMC ANDAVLMCk 2 N . By the 
ontinuity of the 
hain, �k % 1. Finally, we take the setsBk = [�k�1; �k℄ (7.13)for k � 1 and a�1 = 0.We observe that the de
omposition just obtained saturates the inequali-ties (4.47){(4.48).7.2 Chains with a regeneration s
heme as VLMCIt is almost obvious that a 
hain (Xn) with a regeneration s
heme 
an be em-bedded in a VLMC. Indeed, let for instan
e Nn be the random Boolean vari-ables de�ned in equation (6.17). We introdu
e the pro
ess (Zn) = (Xn;Nn)taking values in A� f0; 1g. We then haveP�Z0 = (a; �) ��� (X;N) = (x;n)� = P�Z0 = (a; �) ��� X�1`(N) = x�1`(n)� (7.14)with lag fun
tion de�ned by`(n) = supfs � 0 : ns = 1g (7.15)with the 
onvention that when `(x) = 0, the transition probability is a
tuallyindependent of the past.The observation that a 
hain with regeneration 
an be thought as a VLMCis, however, of little pra
ti
al value. The extra \
ag" variablesNn needed forthe embedding 
an not be dedu
ed from the values taken by the variablesXn.They are part of the simulation ma
hinery, exa
tly as the uniform randomvariables (Un).Let us 
on
lude with an example showing how tri
ky the relation betweenVLMC and CMMC 
an be. Let us 
onsider the sparse VLMC introdu
ed inSe
tion 3.3. This is in fa
t one of the simplest non-trivial possible VLMC.We re
all the reader that this VLMC takes values in A = f0; 1g, and itslag fun
tion is `(x) = ` if x�1 = 0 = � � � = x�`; x�`�1 = 1. Its transition



7.3. EXERCISES 69probabilities are de�ned by P (1jx) = q`(x) with 0 < qk < 1. Let assume inaddition that 1 > qn & q1 > 0 : (7.16)We 
onstru
t the asso
iated CMMC using the pres
ription given in theproof of Proposition 7.8. The results (whose veri�
ation is left to the reader)are the following. The parameters of the 
onvex 
ombination are�k = � 1� q1 + q1 k = 0qk � qk+1 k � 1 : (7.17)The Markovian transition probabilities for k = 0 are de�ned byp(0)(1) = q1=�0 ; (7.18)while for k � 1 p(k)(1jx�1�k�1) = � 0 if x�1�k�1 = 0�1�k�11 otherwise : (7.19)In parti
ular, we noti
e that the de
omposition of the transition probabilitiesp(1j0�1�n 1 x�n�2�1 ) involve all Markovian orders, despite the fa
t that they donot depend on x�n�2�1 .7.3 Exer
isesExer
ise 7.20 Prove that every CMMC is a 
hain with 
omplete 
onne
-tions with 
ontinuous transition probabilities.Exer
ise 7.21 Prove that every hidden Markov model is a 
hain of in�niteorder with 
ontinuous transition probabilities. More spe
i�
ally, let (Xn)be the observable 
hain and (Sn) the hidden Markov 
hain. Denote �S0 theregeneration time for S0. Then prove thatsupx;y ���P (ajx)� P (ajx�1s ys�1�1)��� � P(�S0 < s) (7.22)for every a 2 �A and s � 0. This issue was already dis
ussed in Exer
ise 6.40.What else is needed to make the HMM a 
hain of type A?



70CHAPTER 7. EVERY CHAIN OF INFINITE ORDER IS A CMMC ANDAVLMCExer
ise 7.23 Verify that for the sparse VLMC satisfying (7.16), the par-tition on the proof of Proposition 7.8 yields (7.17){(7.19).Exer
ise 7.24 Consider a CMMC de�ned on A = f0; 1g byP (1jx) = 1Xk=1 �kg(a; x�k) ; (7.25)with 0 � �k � 1, Pk �k = 1 andg(a; x) = (1� ") 1fx = 1g+ " 1fx = 0g : (7.26)(i) Write the de
omposition given in Proposition 7.5.(ii) Calling �k the 
oeÆ
ients or the de
omposition obtained in (i), showthat �0 � ". Observe that this is true even if there exists an ` 2 N su
hthat �k = 0 for 0 � k � `.



Chapter 8Markov approximations for
hains of in�nite order
8.1 Introdu
tionThis 
hapter addresses the following question: How well 
an we approximatean in�nite-order 
hain by Markov 
hains? This leads to a se
ond, te
hni-
al, question: Whi
h distan
e should we use to measure the quality of anapproximation? We adopt here Ornstein's d-distan
e.The main result of this 
hapter is an estimation of the speed of 
onver-gen
e |in the d-distan
e| of the 
anoni
al Markov approximation of 
hainsof in�nite order. If the 
ontinuity rates of the 
hain are summable, we showthat the speed of 
onvergen
e is at worst proportional to these rates. Ourresult applies to Type A 
hains with summable 
ontinuity rates. This is aslight improvement of the result in Bressaud, Fern�andez and Galves (1999a),whi
h holds for 
hains of type B with summable log-
ontinuity rates.It is known that type B 
hains with summable log-
ontinuity rates areweak Bernoulli (Ledrappier 1974). This implies, by Ornstein theorem (Orn-stein 1974), that the pro
ess is the d-limit of its 
anoni
al k-step Markovapproximations. Curiously, this indire
t argument appears to be the onlypublished proof of su
h d-
onvergen
e. In 
ontrast, our 
onstru
tion below71



72CHAPTER 8. MARKOVAPPROXIMATIONS FORCHAINS OF INFINITE ORDERyields an expli
it and dire
t proof. Ornstein and Weiss (1990) have 
on-stru
ted a remarkable \guessing s
heme" for d-limits of aperiodi
 Markovpro
esses, based on observed data. Nevertheless, these approa
hes do notshed light on how well the 
hains 
an be appoximated by Markov pro
esses.In this 
hapter we analyze pre
isely this issue for the 
hains with 
om-plete 
onne
tions and the less sophisti
ated of the approximation s
hemes:the 
anoni
al k-step Markov. Our results show that the 
ontinuity rates ofthe 
hain dire
tly determine |in the summable 
ase| the speed of 
onver-gen
e of the approximation. Our method is 
onstru
tive and straightforward.We exhibit expli
it 
ouplings between the original 
hain and ea
h of its k-step approximations. The 
ouplings are su
h that: (i) if the two 
omponentpro
esses have been equal for a 
ertain number of steps, there is a large prob-ability that they will remain so in the next step [formula (8.40)℄, and (ii) if the
omponents fail to be equal at some step there is a nonzero probability thatthey will be
ome equal at the next one [formula (8.41)℄. As a 
onsequen
e,the 
oupled pro
esses tend to 
oi
ide most of the time, and separations donot last too long [formula (8.48)℄. This yields a small d-distan
e between theoriginal pro
ess and its k-step approximations.8.2 De�nitions and main resultThe �rst de�nition follows Ornstein (1974).De�nition 8.1 The 
anoni
al Markov approximation of order k 2 N of apro
ess (Xn)n2Z is the stationary Markov 
hain of order k having as transitionprobabilities,P [k℄(b j a1; : : : ; ak) := P(Xk+1 = bjXj = aj; 1 � j � k) (8.2)for all integer k � 1 and a1; : : : ; ak; b 2 A.De�nition 8.3 The distan
e d between two stationary pro
esses X and Yis de�ned asd(X; Y ) = inf nP( eX0 6= eY0) : ( eX; eY ) stationary 
oupling of X and Yo :



8.3. CONSTRUCTION OF THE COUPLING 73We now state our main result.Theorem 8.4 Let X = (Xn)n2Z be a 
hain of in�nite order of type A withsummable 
ontinuity rate (�s)s�1. Then there is a 
onstant K > 0 su
h that,for all k � 1, �d(X;X [k℄) � K �k ;where X [k℄ = (X [k℄n )n2Z is the 
anoni
al Markov approximation of order k ofthe pro
ess X.8.3 Constru
tion of the 
ouplingConsider two time-homogeneours systems of transition probabilities P ( � j � )and Q( � j � ). We want to 
onstru
t a 
oupling algorithm for them, with thefollowing properties:(a) it loads the diagonal as mu
h as possible, and(b) ea
h step of the 
oupling depends only on the past.This will be done through a graphi
al pro
edure (
f. De�nition 2.47).Given two pasts x; y and an element a of the alphabet A, let us de�neta(x; y) := P (a j x) ^Q(a j y)ra(x; y) := (P (a j x)�Q(a j y)) _ 0 (8.5)sa(x; y) := (Q(a j y)� P (a j x)) _ 0 :Noti
e that either ra(x; y) = 0 and sa(x; y) > 0or ra(x; y) > 0 and sa(x; y) = 0 (8.6)and that ta(x; y) + ra(x; y) = P (ajx) (8.7)ta(x; y) + sa(x; y) = Q(ajy) : (8.8)
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0 Q(ajy)0 P (ajx)
ta(x; y)� - sa(x; y)� -

(a)
0 Q(ajy)0 P (ajx)

ta(x; y)� - ra(x; y)� -
(b)Figure 8.1: Graphi
 representation of De�nition (8.5). (a) Case withra(x; y) = 0. (b) Case with sa(x; y) = 0



8.3. CONSTRUCTION OF THE COUPLING 75Figure 8.1 gives a graphi
 representation of these identities.As a 
onsequen
e,Xa2A ta(x; y) +Xa2A ra(x; y) = 1 (8.9)Xa2A ta(x; y) +Xa2A sa(x; y) = 1 : (8.10)Identities (8.9)/(8.10) enable us to de�ne two partitions of [0; 1℄, ea
h oneformed by the non-empty sets of the following 2jAj intervals:fT x;y1 ; : : : ; T x;yjAj ; Rx;y1 ; : : : ; Rx;yjAjg and fT x;y1 ; : : : ; T x;yjAj ; Sx;y1 ; : : : ; Sx;yjAjg (8.11)These are intervals of lengthsjT x;ya j = ta(x; y) ; jRx;ya j = ra(x; y) and jSx;ya j = sa(x; y) ;for all a 2 AWe de�ne the transition probabilities eP ((a; b) j (x; y)) aseP ((a; b) j (x; y)) := ( jT x;ya j if a = b;jRx;ya \ Sx;yb j if a 6= b (8.12)(see �gure 8.2). The 
orresponding simulation algorithm isf(u; x; y) = (a; a) if u 2 T x;ya ; (8.13)f(u; x; y) = (a; b) if u 2 Rx;ya \ Sx;yb ; (8.14)with a 6= b in the se
ond line.The properties of this 
oupling are summarized in the following theoremTheorem 8.15 If the 
hains with transition probabilities P and Q are bothof type A, so is the 
oupling de�ned through (8.12){(8.14). More expli
itly,e�s � 
onst (�Ps _ �Qs ) ; (8.16)
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T x;y1 T x;y2 T x;y3 T x;y4 T x;y5P5i=1 ti(x; y)� --�eP ((1; 1) j (x; y)) -�eP ((2; 2) j (x; y))-�eP ((3; 3) j (x; y))-�eP ((4; 4) j (x; y))-�eP ((5; 5) j (x; y))

Rx;y1 Rx;y2 Rx;y5Sx;y3 Sx;y4-�eP ((1; 3) j (x; y)) -�eP ((2; 3) j (x; y))-�eP ((2; 4) j (x; y))
-�eP ((5; 4) j (x; y))

Figure 8.2: Case jAj = 5, P (ajx) > Q(ajy) for a = 1; 2; 5 and P (ajx) <Q(ajy) for a = 3; 4and Xa;b2A infx;y eP�(a; b) ��� (x; y)� �� hXa2A infx P (ajx)i ^ hXa2A infx Q(ajx)i : (8.17)We remark that, even if the transitions P and Q are 
hains of type B,this 
oupling is not in general a 
hain of type B, be
ause all pairs (a; b) withinfx;y eP�(a; b) ��� (x; y)� = 0 :This happens whenever Rx;ya \ Sx;yb = ;.Proof.Non-nullnessXa;b2A infx;y eP�(a; b) ��� (x; y)� � Xa2A infx;y eP�(a; a) ��� (x; y)� (8.18)



8.4. PROOF OF THE THEOREM 77But the right-hand side isXa2A infx;yhP (ajx) ^ Q(ajy)i (8.19)� hXa2A infx P (ajx)i ^ hXa2A infx Q(ajx)i : (8.20)Continuity Let us denote�m(a; b) =supx;y;u;w ��� eP�(a; b) ��� (x; y)�� eP�(a; b) ��� (x�1�mu�m�1�1 ; y�1�mw�m�1�1 )���� :(8.21)Case a = b:�m(a; a) = supx;y;u;w���ta(x; y)� ta(x�1�mu�m�1�1 ; y�1�mw�m�1�1 )��� (8.22)Using j� ^ � � �0 ^ � 0j � j�� �0j _ j� � � 0j we get�m(a; a) �supx;y;u;whjP (ajx)� P (ajx�1�mu�m�1�1 )j _ jQ(ajy)�Q(ajy�1�mw�m�1�1 )ji :(8.23)Hen
e, �m(a; a) � �Pm _ �Qm : (8.24)Case a 6= b: Computations are similar but longer.8.4 Proof of the theoremWe are ready to prove Theorem (8.4).



78CHAPTER 8. MARKOVAPPROXIMATIONS FORCHAINS OF INFINITE ORDER8.4.1 Bound among transition probabilitiesLet P [k℄ be the transition probability de�ned by (8.2). We shall abbreviateour notation and write P [k℄(a j y) instead of P [k℄(a j y�k; : : : ; y�1). We alsodenote x k= y to indi
ate that x�1�k = y�1�k. In parti
ularx k= y =) P [k℄(a j y) = P [k℄(a j x) 8 a 2 A : (8.25)The following proposition 
ontains the only property of the 
anoni
alapproximation needed for the result.Proposition 8.26infu : u k=y P (a j u) � P [k℄(a j y) � supu : u k=y P (a j u): (8.27)Remark 8.28 In fa
t, (8.27) is the only property of the Markov transitionsused in the sequel. Thus, our results apply to any Markov approximations
heme, not ne
essarily the 
anoni
al one, satisfying (8.27).8.4.2 The proofPositive probability of 
oin
iden
eBy the de�nition of the 
oupling,P� eX0 = eX [k℄0 ��� (x; y)� = Xa ta(x; y) : (8.29)By (8.17) Xa ta(x; y) � Xa2A infx P (ajx) =: �0 (8.30)whi
h is positive be
ause the 
hain (Xn) is weak non-null.



8.4. PROOF OF THE THEOREM 79Probability of remaining 
oin
identLet us introdu
e the following notationDm;n := n\p=mf eXj = eYjg : (8.31)As a 
onsequen
e of (8.27)supa;x;y ��P (a j x)� P [k℄(a j x�1�my�m�1�1 )�� � �m^k (8.32)Lemma 8.33 If x m= y thenP� eX0 6= eX [k℄0 ��� (x; y)� � jAj �k^m : (8.34)Proof. By de�nition of the 
ouplingP� eX0 6= eX [k℄0 ��� (x; y)� = Xa ra(x; y) (8.35)But the right-hand side isXa2A ��P (a j x)� P [k℄(a j y)�� � jAj �k^m (8.36)by (8.32).Let us denote � ��0 = 1� �0��n = min (��0 ; jAj �n) ; (8.37)The previous lemma yields, by straightforward manipulations, the follow-ing bounds:Lemma 8.38 (i) For all integers m;n � 0 and (x; y) with x m= y,P(D0;n j (x; y)) � nYp=0�1� ��k^(m+p)� : (8.39)



80CHAPTER 8. MARKOVAPPROXIMATIONS FORCHAINS OF INFINITE ORDER(ii) For all integers k � 1,P(D0;k�1 j D�k;�1) � �1� ��k�k : (8.40)(iii) For all integers k � 1,P(D0;k�1 j D
�k;�1) � +1Yp=0�1� ��p� : (8.41)Lemma 8.42 P� eX0 6= eX [k℄0 � � P(D
0;k�1)Pk�1j=1Qk�1m=0(1� ��m) (8.43)Proof. P(D
0;k�1) = P� eXk�1 6= eX [k℄k�1�+ k�2X̀=0 P�D`+1;k�1 ��� eX` 6= eX [k℄` � P� eX` 6= eX [k℄` � : (8.44)By translation invarian
e:P� eX0 6= eX [k℄0 � = P(D
0;k�1)1 + Pk�1j=1 P�D1;j ��� eX0 6= eX [k℄0 � : (8.45)Now the 
on
lusion is straightforward, and there is room for fantasy. In-equality (8.43) follows by boundingP�D1;j ��� eX0 6= eX [k℄0 � � j�1Ym=1(1� ��m) : (8.46)To 
on
lude, we observe thatP(D
0;k�1) = P(D
0;k�1jD�k;�1)P(D�k;�1)+ P(D
0;k�1jD
�k;�1)P(D
�k;�1)� [1� (1� ��k)k℄ + h1� +1Yp=0(1� ��p)iP(D
0;k�1) : (8.47)



8.4. PROOF OF THE THEOREM 81Hen
e P(D
0;k�1) � 1� (1� ��k)kQ+1p=0(1� ��p) : (8.48)Plugging (8.48) into (8.43) we �nally getP� eX0 6= eX [k℄0 � � 1� (1� ��k)kQ+1p=0(1� ��p) Pk�1j=1Qk�1m=0(1� ��m) : (8.49)
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