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Stochastic Models

The simplest stochastic experiment is coin-toss. Each
toss of a fair coin has two possible results and each of
these results has probability of one half. This ex-
periment is mathematically modeled with a random
variable. A random variable is characterized by a state
space and a probability distribution; in coin-toss the
state space is ²head, tail´ and the distribution is
‘probability of head¯ 1}2,’ ‘probability of tail ¯
1}2’.

This paper deals essentially with three issues. The
first one is a description of families of independent
random variables and their properties. The law of
large numbers describes the behavior of averages of a
large number of independent and identically distri-
buted variables; for instance, it is ‘almost sure’ that in
a million coin-tosses the number of heads will fall
between 490 thousands and 510 thousands. The
central limit theorem describes the fluctuations of the
averages around their expected value. The Poisson
approximation describes the behavior of a large
number of random variables assuming values in ²0, 1´,
each one with small probability of being 1.

The second issue is phase transition and is discussed
in the setup of percolation and random graph theory.
For example, consider that each i belonging to a bi-
dimensional integer lattice (that is, i has two coordi-
nates, i¯ (i

"
, i

#
), each coordinate belonging to the set

of integer numbers ²…,®1, 0, 1,…´) is painted black
with probability p and white otherwise, independently
of everything else. Is there an infinite black path
starting at the origin of the lattice? When the answer is
yes it is said that there is percolation. A small variation
on the probability p may produce the transition from
absence to presence of percolation.

The third question is related to dynamics. Markov
chains describe the behavior of a family of random

variables indexed by time in ²0, 1, 2,…´ for which the
probabilistic law of the next variable depends only on
the result of the current one. Problems for these chains
include the long time behavior, law of large numbers
and central limit theorems. Two examples of Markov
chains are discussed. In the birth-and-death process at
each unit of time a new individual is born or a present
individual dies, the probabilities of such events being
dependent on the current number of individuals in the
population. In a branching process each new in-
dividual generates a family that grows and dies
independently of the other families.

Special attention is given to interacting particle
systems; the name refers to the time evolution of
families of processes for which the updating of each
member of the family depends on the values of the
other members. Two examples are given. The simple
exclusion process describes the evolution of particles
jumping in a lattice subjected to an exclusion rule (at
most one particle is allowed in each site of the lattice).
The study of these systems at long times in large
regions is called the hydrodynamic limit. In particular,
when the jumps are symmetric the hydrodynamic limit
relates the exclusion process with a partial differential
equation called the heat equation, while when the
jumps are not symmetric, the limiting equation is a
one-conservation law called the Burgers equation. The
voter model describes the evolution of a population of
voters in which each voter updates his opinion
according to the opinion of the neighboring voters.
The updating rules and the dimension of the space give
rise to either unanimity or coexistence of different
opinions.

The stochastic models discussed in this article focus
on two commonly observed phenomena: (a) a large
number of random variables may have deterministic
behavior and (b) local interactions may have global
effects.

1. Independent Random Variables

The possible outcomes of the toss of a coin and its
respective probabilities can be represented by a ran-
dom variable. A random variable X is characterized by
a set S of possible outcomes and the probability
distribution or law of these outcomes: for each x in
S, 0(X¯x) denotes the probability that the outcome
results x. In coin-toss the set S is either ²head, tail´ or
²0, 1´ and the distribution is given by 0(X¯ 0)¯0(X
¯ 1)¯ 1}2. The mean or expected value %(X ) of a
random variable X is the sum of the possible outcomes
multiplied by the probability of the outcome: %(X )¯
3

x
x0(X¯x). The variance 6(X ) describes the square

dispersion of the variable around the mean:

6(X )¯3
x

(x®%X)#0(X¯x). (1)
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A process is a family of random variables labeled by
some set. Independent random variables are charac-
terized by the fact that the outcome of one variable
does not change the law of the others. For example,
the random variables describing the outcomes of
different coins are independent. The random variables
describing the parity and the value of the face of a dice
are not independent: if one knows that the parity is
even, then the face can only be 2, 4, or 6.

1.1 Law of Large Numbers and Central
Limit Theorem

A sequence of independent random variables is the
most unpredictable probabilistic object. However,
questions involving a large number of variables get
almost deterministic answers. Consider a sequence of
independent and identically distributed random vari-
ables X

"
, X

#
,… with common mean µ and finite

variance σ#. The partial sums of the first n variables is
defined by S

n
¯X

"
­I­X

n
and the empiric mean of

the first n outcomes by S
n
}n. The expectation and the

variance of S
n

are given by %(S
n
)¯ nµ and 6(S

n
)¯

nσ#. The law of large numbers says that as n increases,
the random variable S

n
}n is very close to µ. More

rigorously, for any value ε" 0, the probability that
S

n
}n differs from its expectation by more than ε can be

made arbitrarily close to zero by making n sufficiently
large.

The Central Limit Theorem says that the distance
between S

n
and nµ is of the order on. More precisely it

gives the asymptotic law of the difference when n goes
to ¢:

lim
n!¢

0

E

F

S
n
®nµ

onσ
%a

G

H

¯Φ(a) (2)

where Φ is the normal cumulative distribution func-
tion defined by

Φ(a)¯
1

o2π &
a

−¢

e−x
#
/#dx (3)

1.2 Law of Small Numbers and Poisson Processes

Consider a positive real number λ and a double labeled
sequence X(i, n) of variables with law 0[X(i, n)¯ 1]¯
λ}n, 0[X(i, n)¯ 0]¯ 1®λ}n; n is a natural number,
that is, in the set ²0, 1,… ´ and i is in the ‘shrinked’
lattice ²1}n, 2}n,…´ (the nomenclature comes from the
fact that as n grows the distance between points
diminishes). In this way, for fixed n there are around n
random variables sitting in each interval of length one
but each variable X(i, n) has a small probability of
being 1 and a large probability of being 0 in such a way

that the mean number of ones in the interval is around
λ for all n. When n goes to infinity the above process
converges to a Poisson process. This process is
characterized by the fact that the number N(Λ) of ones
in any interval Λ is a Poisson random variable with
mean λm(Λ), where m(Λ)¯ length of Λ: 0[N(Λ)¯k]
¯ e−λm(Λ)[λm(Λ)]k}k!; furthermore, the numbers of
ones in disjoint regions are independent. A bi-dimen-
sional lattice consists of points with two coordinates
i¯ (i

"
, i

#
) with both i

"
and i

#
natural numbers and

analogously the points in a d-dimensional lattice have
d coordinates. When i runs in a multidimensional
shrinked lattice, the limit is a multidimensional Pois-
son process. This is called the law of small numbers.

The one-dimensional Poisson process has the prop-
erty that the distances between successive ones are
independent random variables with exponential dis-
tribution (it is said that T has exponential distribution
with parameter λ if 0(T"t)¯ e−λt). In this paper, one-
dimensional Poisson process will be called a Poisson
clock and the times of occurrence of ones will be called
rings.

The classic book for coin-tossing and introductory
probability models is Feller (1971). Modern ap-
proaches include Fristedt and Gray (1997), Bre!maud
(1999) and Durrett (1999a). Aldous (1989) describes
how the Poisson process appears as the limit of many
distinct phenomena.

2. Static Models

2.1 Percolation

Suppose that each site of the two-dimensional lattice is
painted black with probability p and white with
probability 1®p independent of the other sites. There
is a black path between two sites if it is possible to go
from one site to the other jumping one unity at each
step and always jumping on black sites. The cluster of
a given site x is the set of (black) sites that can be
attained following black paths started at x. Of course,
when p is zero the cluster of the origin is empty and
when p



2.2 Random Graphs

Consider a set of n points and a positive number c.
Then, with probability c}n, connect independently
each pair of points in the set. The result is a random
graph with some number of connected components.
Let L

"
(n) be the number of points in the largest

connected component. It has been proven that as the
number of points n increases to infinity the proportion
L

"
(n)}n of points in the largest component converges

to some value γ and that if c " 1 then γ" 0 and that if
c% 1, γ¯ 0. This means that if the probability of
connection is sufficiently large, a fraction of points is
in the greatest component. In this case this is called the
giant component. The number of points in any other
component, when divided by n, always converges to
zero; hence there is at most one giant component. The
fluctuations of the giant component around γn, the
behavior of smaller components, and many other
problems of random graph theory can be found in
Bolloba! s (1998).

3. Marko� Chains

A Markov chain is a process defined iteratively. The
ingredients are a finite or countable state space S, a
sequence of independent random variables U

n
uni-

formly distributed in the interval [0, 1], and a transition
function F which to each state x and number u in the
unit interval assigns a state y¯F(x, u). The initial
state X

!
is either fixed or random and the successive

states of the chain are defined iteratively by X
n
¯

F(X
n−"

, U
n
). That is, the value of the process X

n
at each

step n is a function of the value X
n−"

at the preceding
step and of the value of a uniform random variable U

n

independent of everything. In this sense a Markov
chain has no memory. The future behavior of the
chain given the present position does not depend on
how this position was attained. Let Q(x, y)¯
0(F(x, U

n
)¯ y), the probability that the chain at step

n be at state y given that it is at state x at time n®1.
Since this probability does not depend on n the chain
is said to be homogeneous in time. The transition
matrix Q is the matrix with entries Q(x, y).

When it is possible to go from any state to any
other the chain is called irreducible, otherwise
reducible. The state space of reducible chains can be
partitioned in subspaces in such a way that the chain is
irreducible in each part. Irreducible chains in finite
state spaces stabilize in the sense that the probability
of finding the chain at each state converges to a
probability distribution π that satisfies the balance
equations: π(y)¯3

x
π(x)Q(x, y). The measure π is

called invariant for Q because if the initial state X
!
has

law π then the law of X
n

will be π for all future time
n. When there is a unique invariant measure π the
proportion of time the chain spends in any given state
x converges to π(x) when time goes to infinity no

matter how the initial state is chosen. This is a law of
large numbers for Markov chains. The expected time
the chain needs to come back to x when starting at x at
time zero is 1}π(x). When the state space has a
countable (infinite) number of points it is possible that
there is no invariant measure; in this case the prob-
ability of finding the chain at any given state goes to
zero; that is, the chain ‘drives away’ from any fixed
finite region. It is possible also to define Markov
chains in noncountable state spaces, but this will not
be discussed here.

3.1 Coupling

Two or more Markov chains can be constructed with
the same uniform random variables U

n
. This is called

a coupling and it is one of the major tools in stochastic
processes. Applications of coupling include proofs of
convergence of a Markov chain to its invariant
measure, comparisons between chains to obtain pro-
perties of one of them in function of the other, and
simulation of measures that are invariant for Markov
chains.

Recent books on Markov chains include Chen
(1992), Bianc and Durrett (1995), Fristedt and Gray
(1997), Bre!maud (1999), Durrett (1999a), Schinazi
(1999), Thorisson (2000), Ha$ ggstro$ m (2000), and
Ferrari and Galves (2000).

3.2 Examples: Birth–Death and Branching
Processes

The state space of the birth–death process is the set of
natural numbers ²0, 1,…´, the probability to jump
from x to x­1 is p

x
, a number in [0, 1] and the

probability to jump from x to x®1 is 1®p
x
. It is

assumed that p
!
¯ 1, that is, the process is reflected at

the origin. The transition function is given by F(x, u)
¯x ­ H(x, u), with H(x, u)¯ 1 if u! p

x
and H(x, u)

¯®1 if u& p
x
. It is possible to find explicit conditions

on p
x

that guarantee the existence of an invariant
measure. For instance, if p

x
! a for all x for some

a! 1}2, then there exists an invariant measure π. The
reason is that the chain has a drift towards the origin
where it is reflected. On the other hand, if the drift
towards the origin is not sufficiently strong, the chain
may have no invariant measure.

The (n­1)th generation of a branching process
consists of the daughters of the individuals alive in the
nth generation:

Z
n+"

¯ 3
Z
n

i="

X
n,i

(4)

where Z
n

is the total number of individuals in the nth
generation and X

n,i
is the number of daughters of ith

15123

Stochastic Models



individual of the nth generation. Z
!
¯ 1 and X

n,i
are

assumed independent and identically distributed ran-
dom variables with values in ²0, 1, 2,…´. When X

n,i
¯

0 the corresponding individual diedwithout a progeny.
The process so defined is a Markov chain in
²0, 1, 2,… ´; the corresponding transition function F
can be easily computed from the distribution of X

n,i
.

The mean number of daughters of the typical in-
dividual µ¯%X

n,i
(a value that does not depend on

n, i) is the crucial parameter to establish the behavior
of the process. When µ" 1 the probability that at all
times there are alive individuals is positive; in this case
the process is called supercritical and in case of survival
the number of individuals increases geometrically with
n. When µ% 1 the process dies out with probability
one (subcritical case). Guttorp (1991) discusses
branching processes and their statistics.

4. Interacting Particle Systems

Processes with many interacting components are
called interacting particle systems. Each component
has state space S and X

t
(i ) denotes the state of

component i at time t; t may be discrete or continuous,
generally i belongs to a d-dimensional lattice. The
update law of each component typically depends on
the state of the other components; this dependence is
in general ‘local,’ that is, determined only by the
configuration of a few other neighboring components.
The references for interacting particle systems are
Liggett (1985) and (1999), Durrett (1988) and (1999b),
Chen (1992), Schinazi (1999), Fristedt and Gray
(1997).

4.1 The Exclusion Process

In this process i belongs to the d-dimensional lattice
and X

t
(i) assumes only the value 0 and 1. If X

t
(i)¯ 0,

site i is empty at time t and if X
t
(i)¯ 1, site i is occupied

by a particle at time t. The process evolves as follows.
Independent Poisson clocks are attached to the sites;
when the clock rings at site i (at most one clock rings
at any given time), if there is a particle at i, then a site
j is chosen at random and the particle tries to jump to
j. If j is empty then the particle jumps; if j is already
occupied the jump is suppressed. The interaction
between particles is embedded in the law of the jump.
The simplest case is when the distribution of the jump
does not depend on the configuration. In this case the
interaction is just reduced to the suppression of jumps
attempted to occupied sites and the motion is called
the simple exclusion process.

The measure obtained when a particle is put at each
site with probability ρ independently of the other sites
is called a product measure. A surprising feature of the
simple exclusion process with spatially homogeneous

jump laws is that if the initial configuration is chosen
according to a product measure, then the configura-
tion at any future time will also be distributed with this
measure. In other words, product measures are time
invariant for the process. Due to the conservative
character of the dynamics, i.e., the initial density is
conserved, the process accepts a family of invariant
measures; there is one invariant product measure for
each density ρ in [0, 1].

The main questions are related to the asymptotic
behavior of the process when time runs. In many cases
it has been proven that the process starting with an
initial configuration having an asymptotic density
converges as time goes to infinity to the product
measure with that density. More detailed questions are
related to hydrodynamic limits obtained when large
space regions are observed at long times. A par-
ticularly interesting case is the symmetric simple
exclusion process, for which jumps of sizes y and ®y
have the same probability. The large space, long time
behavior of the symmetric simple exclusion process is
governed by the heat equation. For example, in the
one-dimensional case it has been proven that the
number of particles in the region [aN, bN] at time tN#

divided by N converges to !b
a
u(r, t) dr, where u(r, t) is

the solution of the heat equation

¦u

¦t
¯

¦#u

¦r#
(5)

with initial condition u(r, 0) (the initial particle dis-
tribution must be related with this condition in an
appropriate sense). This is called a law of large
numbers or hydrodynamic limit. The limiting partial
differential equation represents the macroscopic beha-
vior while the particle system catches the microscopic
behavior of the system. The law of the configuration of
the process in sites around rN at time tN# converges as
N goes to infinity to the product measure with density
given by the macroscopic density u(r, t). This is the
most disordered state (or measure). This is called
propagation of chaos.

When the motion is not symmetric the behavior
changes dramatically. The simplest case is the totally
asymmetric one-dimensional nearest neighbor simple
exclusion process. The particles jump in the one-
dimensional integer lattice ²… , ®1, 0, 1, …´. When
the Poisson clock rings at site i, if there is a particle at
that site and no particle at i­1, then the particle jumps
to i­1; otherwise nothing changes. To perform the
hydrodynamic limit time and space are rescaled in the
same way: the number of particles in the region [aN,
bN] divided by N at time tN converges to !b

a
u(r, t) dt,

the solution of the Burgers equation

¦u

¦t
¯®

¦u(1®u)

¦r
(6)
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with initial condition u(r, 0). Similar equations can be
obtained in the d-dimensional case. Propagation of
chaos is also present in this case. Contrary to what
happens in the symmetric case, the Burgers equation
develops noncontinuous solutions. In particular, con-
sider ρ! λ and the initial condition u(r, 0) equal to ρ if
r! 0 and to λ otherwise. Then the solution u(r, t) is ρ
if r! (1®ρ®λ)t and λ otherwise. The well-known
phenomenon of highways occur here: the space is
divided in two regions sharply separated; one region of
low density and high velocity and the other region of
high density and low velocity. This phenomenon that
was first observed for the Burgers equation (Evans
(1998)) was then proven to hold for the microscopic
system for the nearest neighbor case. The location of
the shock is identified by a perturbation of the system:
start with a configuration η coming from a product
shock measure, that is, the probability of having a
particle at site i is ρ if i is negative and λ if i is positive,
and put a particle at the origin. Consider another
configuration η« that coincides with η at all sites but at
the origin. η« is a perturbation of η. Realizing two
processes starting with η and η« respectively, using the
same Poisson clocks, there will be only one difference
between the two configurations at any given future
time. The configuration as seen from the position of
this perturbation is distributed approximately as η,
that is, with a shock measure. The perturbation
behaves as a second class particle; the sites that are
occupied by particles of both η and η« are said to be
‘occupied by a first class particle,’ while the site where
η differs from η« is said to be ‘occupied by a second
class particle.’ Following the Poisson clocks, the
second class particle jumps backwards when a first
class particle jumps over its site and jumps forwards if
the destination site is empty. See Liggett (1999).

Special interest has been devoted to the process
when the initial condition is ‘there are particles in all
negative sites and no particles in the other sites.’ The
solution u(r, t) of the Burgers equation with this initial
condition is a rarefaction front: u(r, t) is one up to ®t,
zero from t on and interpolates linearly between 0 and
1 in the interval [®t, t]. This particular case has been
recently related to models coming from other areas of
applied probability. In particular with increasing
subsequences in random permutations, random mat-
rices, last passage percolation, random domino tilings
and systems of queues.

Hydrodynamics of particle systems is discussed by
Spohn (1991), DeMasi and Presutti (1991), and Kipnis
and Landim (1999).

4.2 Voter Model

In the voter model each site of a d-dimensional integer
lattice (this is the set of d-uples of values in the integer
lattice ²…,®1, 0, 1,…´) is occupied by a voter having
two possible opinions: 0 and 1. At the rings of a
Poisson clock each voter chooses a neighbor at

random and assumes its opinion. The voter model has
two trivial invariant measures: ‘all zeros’ and ‘all
ones.’ Of course, if at time zero all voters have opinion
zero, then at all future times they will be zero; the same
occurs if all voters have opinion one at time zero. Are
there other invariant measures? The answer is no for
dimensions d¯ 1 and d¯ 2 and yes for dimension
d& 3. The proof of this result is based on a dual
process. This process arises when looking at the
opinion of a voter i at some time t. It suffices to go back
in time to find the voter at time zero that originates the
opinion of i at time t. The space–time backwards paths
for two voters may coalesce. In this case the two voters
will have the same opinion at that time. The backwards
paths are simple random walks. In one or two
dimensions, nearest-neighbors random walks always
coalesce, while in dimensions greater than or equal to
three there is a positive probability that the walks do
not coalesce. Hence there are invariant states in three
or more dimensions for which different opinions may
coexist.

A generalization of the voter model is the random
average process. Each voter may have opinions cor-
responding to real numbers and, instead of looking at
only one neighbor, at Poisson rings voters update their
opinion with a randomly weighted average of the
opinions of the neighbors and adopt it. As in the two-
opinions votermodel, flat configurations are invariant,
but if the system starts with a tilted configuration (for
example, voter i has opinion λi for some parameter
λ1 0), then the opinions evolve randomly with time.
It is possible to relate the variance of the opinion of a
given voter to the total amount of time spent at the
origin by a symmetric random walk. This shows that
the variance of the opinion of a given voter at time t is
of the order of t in dimension one, log t in dimension
2, and constant in dimensions greater than or equal to
3. The random average process is a particular case of
the linear processes studied in Liggett (1985).

5. Future Directions

At the start of the twenty-first century, additional
developments for the exclusion process include the
behavior of a tagged particle, the convergence to the
invariant measure for the process in finite regions, and
more refined relations between the microscopic and
macroscopic counterpart. The voter model described
here is ‘linear’ in the sense that the probability of
changing opinion is proportional to the number of
neighbors with the opposite opinion. Other rules lead
to ‘nonlinear’ voter models that show more com-
plicated behavior. See Liggett (1999). The rescaling of
the random average process may give rise to nontrivial
limits; this is a possible line of future development.

The contact process, a continuous-time version of
oriented percolation, has not been discussed here. The
contact process in a graph instead of a lattice may
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involve three or more phases (in the examples dis-
cussed here there were only two phases). The study of
particle systems in graphs is a promising area of
research.

An important issue not discussed here is related to
Gibbs measures; indeed, phase transition was math-
ematically discussed first in the context of Gibbs
measures. One can think of a Gibbs measure as a
perturbation of a product measure: configurations
have a weight according to a function called energy.
Gibbs measures may describe the state of individuals
that have a tendency to agree (or disagree) with their
neighbors. Stochastic Ising models are interacting
particle systems that have as invariant measures the
Gibbs measure related to a ferromagnet. Mixtures of
Ising models and exclusion processes give rise to
reaction diffusion processes, related via hydrodynamic
limit with reaction diffusion equations.

An area with recent important developments is
Random tilings, which describes the behavior of the
tiles used to cover an area in a random fashion. The
main issue is how the shape of the boundary of the
region determines the tiling. Dynamics on tilings
would show how the boundary information transmits.
The rescaling of some tilings results in a continuous
process called the mass-less Gaussian field; loosely
speaking, a multidimensional generalization of the
central limit theorem.

An important area is generally called spatial pro-
cesses. These processes describe the random location
of particles in the d-dimensional real space instead of a
lattice. The Poisson process is an example of a spatial
process. Analogously to Gibbs measures, other ex-
amples can be constructed by giving different weight
to configurations according to an energy function. The
study of interacting birth and death processes having
as invariant measure spatial process is recent and
worth to develop. This is related also with the so-called
perfect simulation; roughly speaking this means to
give a sample of a configuration of a process as a
function of the uniform random numbers given by a
computer. See, for instance, Ha$ ggstro$ m (2000).

See also: Diffusion and Random Walk Processes;
Dynamic Decision Making; Markov Decision Pro-
cesses; Markov Processes for Knowledge Spaces;
Probability: Formal; Probability: Interpretations;
Sequential Decision Making; Stochastic Dynamic
Models (Choice, Response, and Time)
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Stock Market Predictability

One of the most enduring cornerstones of modern
financial theory has been that stock markets are
reasonably efficient in reflecting new information and
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Stochastic Models
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