
Zero-nonzero and real-nonreal sign determination

Daniel Perrucci[,\∗, Marie-Françoise Roy♦,

[Departamento de Matemática, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina

\ CONICET, Argentina

♦ IRMAR (UMR CNRS 6625), Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, cedex, France

May 17, 2013

Abstract

We consider first the zero-nonzero determination problem, which consists in determining the list
of zero-nonzero conditions realized by a finite list of polynomials on a finite set Z ⊂ Ck with C an
algebraic closed field. We describe an algorithm to solve the zero-nonzero determination problem and
we perform its bit complexity analysis. This algorithm, which is in many ways an adaptation of the
methods used to solve the more classical sign determination problem, presents also new ideas which
can be used to improve sign determination. Then, we consider the real-nonreal sign determination
problem, which deals with both the sign determination and the zero-nonzero determination problem.
We describe an algorithm to solve the real-nonreal sign determination problem, we perform its bit
complexity analysis and we discuss this problem in a parametric context.

Keywords: Polynomial equations and inequations systems - Sign determination - Complexity

AMS subject classifications: 14P10 - 14Q20

1 Introduction

Let L be a field and C an algebraically closed extension of L. Consider a finite set Z ⊂ Ck and a finite list
of polynomials P = P1, . . . , Ps in L[X1, . . . , Xk]; the zero-nonzero determination problem is the problem
of computing the zero-nonzero conditions of P which are realized on Z. In order to better explain this,
we introduce some notation and definitions.

For a ∈ C, its invertibility is defined as follows:{
inv(a) = 0 if a = 0,

inv(a) = 1 if a 6= 0.

Let I ⊂ {1, . . . , s}. Given a zero-nonzero condition σ ∈ {0, 1}I , the realization of σ on Z is

Reali(σ, Z) =
{
x ∈ Z |

∧
i∈I

inv(Pi(x)) = σ(i)
}

and we denote by c(σ, Z) the cardinal of Reali(σ, Z). We write Feas(P, Z) for the list of σ ∈ {0, 1}{1,...,s}
such that c(σ, Z) is not zero, and c(P, Z) for the corresponding list of cardinals. The zero-nonzero
determination problem is to determine Feas(P, Z) and c(P, Z).

∗Partially supported by the following grants: PIP 099/11 CONICET and UBACYT 20020090100069 (2010/2012).

1

Typically, the set Z is not known explicitelly, but given as the complex zero set of a polynomial
system; therefore, to solve the zero-nonzero determination problem it is not possible to simply evaluate
the polynomials in P separately at each point of Z, and a more clever strategy is needed.

The zero-nonzero determination problem is anologous to the more classical sign determination prob-
lem, which we recall now. Let K be an ordered field and R a real closed extension of K. For a ∈ R, its
sign is defined as follows:

sign(a) = 0 if a = 0,

sign(a) = 1 if a > 0,

sign(a) = −1 if a < 0.

Consider a finite set W ⊂ Rk and a finite list of polynomials P = P1, . . . , Ps in K[X1, . . . , Xk]. Given
a sign condition τ ∈ {0, 1,−1}{1,...,s}, the realization of τ on W is

Realisign(τ,W) =
{
x ∈W |

∧
i=1,...,s

sign(Pi(x)) = τ(i)
}

and we denote by csign(τ,W) the cardinal of Realisign(τ,W). We write Feassign(P,W) for the list of
τ ∈ {0, 1,−1}{1,...,s} such that csign(τ,W) is not zero, and csign(P,W) for the corresponding list of
cardinals. The sign determination problem is to determine Feassign(P,W) and csign(P,W). Once
again, the set W is typically not known explicitelly, but given as the real zero set of a polynomial system.

Let Q ∈ K[X1, . . . , Xk], the Tarski-query of Q for W is

TaQu(Q,W) =
∑
x∈W

sign(Q(x)) = card ({x ∈W | Q (x) > 0})− card ({x ∈W | Q (x) < 0}) .

Tarski-queries play a leading role in the most efficient algortihms to solve the sign determination problem
([7, 3, 1]). In fact, these algorithms consist in computing a relevant list of Tarski-queries and solving
linear systems with integer coefficients having a specific structure. Suppose that the polynomial system
defining W is in K[X1, . . . , Xk]. Then, in the mentioned algorithms for sign determination there are three
different kind of operations:

• sign comparisons,

• operations in Q, which appear in the linear solving steps,

• operations in K, which appear in the Tarski-query computations.

Regarding the complexity analysis, in [1, Chapter 10] the Tarski-query computation is considered as a
blackbox. Indeed, there exist many well-known methods to compute them, and depending on the setting,
the application of one method or another is convenient. However, when asymptotically fast methods
for computing the Tarski-query are used in the univariate case, the cost of solving the linear system
dominates the overall complexity as already noticed in [3, Section 3.3]. In [5], a method for solving
the specific linear systems arising in the sign determination algorithm is given, leading to a complexity
improvement (see [5, Corollary 2]).

The real-nonreal sign determination problem is a compressed way of dealing with both the sign
determination and the zero-nonzero determination problem as we explain now. Let K be an ordered field,
R a real closed extension of K and C = R[i]. Consider a finite set Z ⊂ Ck, one more time, typically
given as the complex zero set of polynomial system, and a finite list of polynomials P = P1, . . . , Ps in
K[X1, . . . , Xk]. We define

ZR = Z ∩ Rk,

ZC\R = Z ∩
(
Ck \ Rk

)
.

The real-nonreal sign determination problem is to determine Feassign(P, ZR), Feas(P, ZC\R), csign(P,
ZR) and c(P, ZC\R). By solving the real-nonreal sign determination problem we obtain a complete de-
scription of the sign and invertibility of the polynomials in P on Z.

2

This paper serves several purposes. First, we give an algorithm for zero-nonzero determination. This
algorithm is based on the same principles that sign determination, the role of Tarski-queries being played
by invertibility-queries, which we introduce now. Let Q ∈ L[X1, . . . , Xk], the invertibility-query of Q
for Z is

Qu(Q,Z) =
∑
x∈Z

inv(Q(x)) = card ({x ∈ Z | Q (x) 6= 0}) .

Then we perform a complexity analysis of this algorithm as follows: we consider the invertibility-queries
as a blackbox, and estimate the bit complexity of the zero-nonzero comparisons and the operations in
Z. Note that the algorithm we present here is not a straightforward adaptation of the known algorithms
for sign determination. In fact, in order to obtain a good bit complexity bound, we introduce some new
definitions (i.e. the compression and a matrix summarizing the useful information) which can be used in
turn to improve the known algorithms for sign determination (see [2, Chapter 10]).

Then, combining sign and zero-nonzero determination, we give an algorithm for real-nonreal sign
determination and perform a complexity analysis in a similar way. A final purpose of this paper is to
discuss real-nonreal sign determination in a parametric context.

This paper is organized as follows. In Section 2 we give an algorithm for zero-nonzero determination
and perform its bit complexity analysis considering the invertibility-query as a blackbox. In Section
3 we give an algorithm for real-nonreal sign determination and perform its bit complexity analysis in
a similar way. In Section 4 we explain the various existing methods for computing the Tarski-queries
and invertibility-queries in the univariate and multivariate case and we deduce the bit complexity of
zero-nonzero and real-nonreal sign determination in the univariate case. Finally, in Section 5 we discuss
real-nonreal sign determination in a parametric context.

2 The zero-nonzero determination problem

We recall that L is a field and C an algebraically closed extension of L, Z ⊂ Ck a finite set, P = P1, . . . , Ps
a list of polynomials in L[X1, . . . , Xk], I a subset of {1, . . . , s} and σ ∈ {0, 1}I a zero-nonzero condition.

2.1 Definitions and properties

Given J ⊂ I ⊂ {1, . . . , s} and σ ∈ {0, 1}I , we write PJ for
∏
i∈J Pi and σJ for

∏
i∈J σ(i). Note that

when Reali(σ, Z) 6= ∅, the value of inv(PJ(x)) is fixed as x varies in Reali(σ, Z) and is equal to σJ . By
convention P∅ = 1, σ∅ = 1, and {0, 1}∅ = {∅}.

For a fixed I ⊂ {1, . . . , s}, we consider the lexicographical order on {0, 1}I (with 0 < 1), identifying a
zero-nonzero condtion in {0, 1}I with a bit string of length card(I). Throughout this paper, all the lists
of zero-nonzero conditions we consider are ordered and have no repetitions. By the union of two disjoint
lists we mean their ordered union.

Given I ⊂ {1, . . . , s} and a list A = [I1, . . . , Im] of subsets of I, we define Qu(PA, Z) as the vector with
coordinates Qu(PI1 , Z), . . . ,Qu(PIm , Z). Also, given a list Σ = [σ1, . . . , σn] of zero-nonzero condiditions
in {0, 1}I , we define c(Σ, Z) as the vector with coordinates c(σ1, Z), . . . , c(σn, Z). The matrix of A on
Σ is the m× n matrix Mat(A,Σ) whose i, j-th entry is σIij for i = 1, . . . ,m, j = 1, . . . , n. By convention
Mat(∅, ∅) = ∅ (i.e. the empty matrix with 0 rows and columns) and is invertible.

Let PI = {Pi | i ∈ I}. With this notation, we have the following:

Proposition 1 Let I ⊂ {1, . . . , s} and Σ ⊂ {0, 1}I with Feas(PI , Z) ⊂ Σ. Then

Mat(A,Σ) · c(Σ, Z) = Qu(PAI , Z).

Proof: The claim is easy if Z has a single element. Indeed, suppose Z = {x}, and σj is the zero-
nonzero condition in Σ satisfied by PI at x. The coordinates of c(Σ, {x}) are 0 except at place j,
where it is 1, so that Mat(A,Σ) · c(Σ, {x}) is the j-th column of Mat(A,Σ). Its i-th coordinate is
σIij = inv(PIiI (x)) = Qu(PIiI , {x}).

3

In the general case, the claim follows by linearity since c(Σ, Z) =
∑
x∈Z c(Σ, {x}) and Qu(PAI , Z) =∑

x∈Z Qu(PAI , {x}). �

Example 2 When I = {i} ⊂ {1, . . . , s}, A = [∅, {i}], and Σ = [0, 1], the conclusion of Proposition 1 is(
1 1
0 1

)
·
(
c(Pi = 0, Z)
c(Pi 6= 0, Z)

)
=

(
Qu(1, Z)
Qu(Pi, Z)

)
.

It follows from Proposition 1 that if Σ ⊂ {0, 1}{1,...,s} contains Feas (P, Z) and the matrix Mat(A,Σ)
is invertible, we can compute c(Σ, Z) from Qu(PA, Z). Therefore, if we take A as the list of the 2s subsets
of {1, . . . , s} and Σ as the list of the 2s zero-nonzero conditions in {0, 1}{1,...,s}, since it is easy to check
that Mat(A,Σ) is invertible, we have a naive method for zero-nonzero determination: we solve the 2s×2s

linear system from Proposition 1 and we discard the zero-nonzero conditions σ such that c(σ, Z) = 0.
This naive method involve an exponential number of invertibility queries and solving a linear system of
exponential size. We want an algorithm with a better complexity bound.

The key fact is to take into account that the number of realizable zero-nonzero conditions does not
exceed card(Z). We are going to consider one by one the polynomials P1, . . . , Ps in the list P and to
compute at step i the realizable zero-nonzero conditions for the list Pi := P1, . . . , Pi, determining the
nonempty zero-nonzero conditions inductively and getting rid of the empty ones at each step. In this
way, the size of the data we manipulate is well controlled.

We need some preliminary definitions and results.

Definition 3 Let I ⊂ {1, . . . , s} and Σ ⊂ {0, 1}I . A set A of subsets of I is adapted to zero-nonzero
determination on Σ if the matrix of A on Σ is invertible.

Note that the set A has to be ordered into a list so that the matrix of A on Σ is unambiguous, but
the choice of this ordering does not change the fact that the matrix is invertible.

Example 4 1. Consider I = ∅ and Σ = [∅], then A = {∅} is adapted to zero-nonzero determination
on Σ since Mat(A,Σ) = (1) is invertible.

2. Consider I = {i} ⊂ {1, . . . , s}, then:

• if Σ = [0, 1], A = {∅, {i}} is adapted to zero-nonzero determination on Σ, since

Mat(A,Σ) =

(
1 1
0 1

)
is invertible,

• if Σ = [0] or Σ = [1], A = {∅} is adapted to zero-nonzero determination on Σ, since
Mat(A,Σ) = (1) is invertible.

Let I ⊂ {1, . . . , s}. Our aim is to describe a method for determining for each Σ ⊂ {0, 1}I , a set A of
subsets of I adapted to zero-nonzero determination on Σ. First, we introduce some more definitions and
notation.

Definition 5 If J ⊂ I ⊂ {1, . . . , s}, σ ∈ {0, 1}J is the restriction of τ ∈ {0, 1}I if σ(j) = τ(j) for
every j ∈ J ; we also say that τ is an extension of σ. If Σ ⊂ {0, 1}I , we denote by ΣJ ⊂ {0, 1}J the list
of restrictions of elements of Σ to J .

Notation 6 For a set A of subsets of J ⊂ {1, . . . , s} and j ∈ {1, . . . , s} bigger than max(J), we denote
by (A, j) the set of subsets of J ∪ {j} obtained by adding j to all the elements of A.

We are now ready to construct a set of subsets adapted to sign determination.

4

Definition 7 [Adapted family] Let I ⊂ {1, . . . , s} and Σ ⊂ {0, 1}I . The adapted family Ada (Σ) is
defined by induction as follows:

• If I = ∅, then, if Σ = ∅, define Ada (Σ) = ∅, if Σ = [∅], define Ada (Σ) = {∅}.

• If I 6= ∅, consider i = max(I), I ′ = I \ {i}, Ξ = ΣI′ and Ξ′ the list of elements of Ξ having two
different extentions in Σ. Define

Ada(Σ) = Ada(Ξ) ∪ (Ada(Ξ′), i).

From the previous definition it is easy to prove that for I ⊂ {1, . . . , s} and Σ ⊂ {0, 1}I , card(Ada(Σ)) =
card(Σ). Before proving that the adapted family Ada(Σ) we defined is adapted to zero-nonzero determi-
nation on Σ, we prove some auxiliary results.

Lemma 8 Let I ⊂ {1, . . . , s} and Σ1 ⊂ Σ ⊂ {0, 1}I , then Ada(Σ1) ⊂ Ada (Σ).

Proof: We prove the claim by induction on card(I). If I = ∅, the claim is true. Suppose now I 6= ∅.
Following the notation in Definition 7, and noting that Ξ1 = (Σ1)I′ ⊂ Ξ and Ξ′1 ⊂ Ξ′, where Ξ′1 ⊂ {0, 1}I

′

is the list of elements of Ξ1 having two different extentions in Σ1, the claim follows using twice the
induction hypothesis. �

The following result will be useful for the complexity analysis.

Proposition 9 Let I ⊂ {1, . . . , s} and Σ ⊂ {0, 1}I . For every J ∈ Ada(Σ), card (J) < bit(card (Σ)).

Proof: We will prove by induction on card(I) that for every J ∈ Ada(Σ) all the subsets of J belong to
Ada(Σ). The proposition follows since 2card(J) ≤ card(Ada(Σ)) = card(Σ). If I = ∅, the claim is true.
Suppose now I 6= ∅. Taking i = max(I), we consider two cases: if i 6∈ J then J ∈ Ada(Ξ), if i ∈ J , then
J \ {i} ∈ Ada(Ξ′). Therefore, using twice the induction hypothesis, all the subsets of J not containing i
belong to Ada(Ξ) ⊂ Ada(Σ) and all the subsets of J containing i belong to (Ada(Ξ′), i) ⊂ Ada(Σ). �

Proposition 10 Let I ⊂ {1, . . . , s} and Σ ⊂ {1, 0}I . The set Ada(Σ) is adapted to zero-nonzero deter-
mination on Σ.

We adapt the proof in [5, Proposition 6], which provides information about the inverse of Mat(Ada(Σ),Σ)
useful later for algorithmic matters.

Proof: First, we define the total order ≺ on the subsets of {1, . . . , s}, which we use whenever we have to
order a set of subsets into a list. Given J ⊂ {1, . . . , s}, we associate the natural number |J | =

∑
j∈J 2j−1

and then we define for J1, J2 ⊂ {1, . . . , s}, J1 ≺ J2 if |J1| < |J2|. Note that ≺ extends the partial order
of inclusion of subsets.

We will prove by induction on card(I) that Mat(Ada(Σ),Σ) is invertible. If I = ∅, then the claim is
true. Suppose now I 6= ∅. We follow the notation in Definition 7 and divide Σ in three (possibly empty)
sublists:

• Σ0 consisting of the elements σ of Σ such that σ(i) = 0 and the restriction of σ to I ′ is in Ξ′,

• Σ1 consisting of the elements σ of Σ such that σ(i) = 1 and the restriction of σ to I ′ is in Ξ′,

• Σ? consisting of the elements of Σ whose restriction to I ′ is in Ξ \ Ξ′.

If Ξ′ = ∅ is empty, Mat(Ada(Σ),Σ) = Mat(Ada(Ξ),Ξ) is invertible by induction hypothesis.

5

If Ξ′ 6= ∅, we reorder columns in Mat (Ada(Σ),Σ) so that the columns corresponding to zero-nonzero
conditions in Σ0 ∪ Σ? appear first. Then, Mat (Ada(Σ),Σ) gets the following structure

M =

M1,1 M1,2

M2,1 M2,2

 (1)

with

M1,1 = Mat(Ada(Ξ),Ξ),

M1,2 = Mat(Ada(Ξ),Ξ′),

M2,1 = Mat((Ada(Ξ′), i),Σ0 ∪ Σ?),

M2,2 = Mat(Ada(Ξ′),Ξ′).

It is easy to see that M1,2 equals the submatrix of M1,1 composed by the columns corresponding
to zero-nonzero conditions in Σ0 and also that all the columns in M2,1 corresponding to zero-nonzero
conditions in Σ0 are 0.

Suppose, by induction hypothesis, that Mat(Ada(Ξ),Ξ) and Mat(Ada(Ξ′),Ξ′) are invertible. We
invert Mat(Ada(Σ),Σ) using a Gaussian elimination method by block, i.e. multiplying to the left by
block elementary matrices. We call Ĩd the submatrix of the identity matrix with columns indexed by
the list Σ0 ∪ Σ? composed by the columns corresponding to zero-nonzero conditions in Σ0. Taking into
account that M2,1 · Ĩd = 0, it is easy to check that

Id −Ĩd

0 Id

Id 0

0 M−1
2,2

Id 0

−M2,1 Id

M−1

1,1 0

0 Id

is the inverse of the matrix M defined in (1). Therefore Mat(Ada(Σ),Σ) is invertible as we wanted to
prove. �

A last key observation which leads to a well controlled size of the data we manipulate is the following.
Let Pi = P1, . . . , Pi and suppose that we compute inductively Feas(Pi, Z) for i = 0, . . . , s. Since 1 =
card(Feas(P0, Z)) and card(Feas(Ps, Z)) = card(Feas(P, Z)) ≤ card(Z), in the sequence

card(Feas(P0, Z)) ≤ · · · ≤ card(Feas(Pi, Z)) ≤ · · · ≤ card(Feas(Ps, Z))

we have at most card(Z)− 1 places where a strict inequality holds. For i = 1, . . . , s such that

card(Feas(Pi−1, Z)) = card(Feas(Pi, Z)),

we have that every zero-nonzero condition in Feas(Pi−1, Z) can be extended to a zero-nonzero condition
in Feas(Pi, Z) in only one way. Once this information is known, we have that for each point in Z, the
invertibility of Pi is determined from the invertibility of the polynomials in Pi−1 at this point. With this
remark in mind, we introduce the following definitions which will be useful in Algorithm Zero-nonzero

Determination and its complexity analysis.

Definition 11 [Compressed set of indices] Let I ⊂ {1, . . . , s} and Σ ⊂ {1, 0}I , Σ 6= ∅. The com-
pressed set of indices comp (Σ) is defined by induction as follows:

6

• If I = ∅ define comp(Σ) = ∅.

• If I 6= ∅, consider i = max(I), I ′ = I \ {i} and Ξ = ΣI′ ; then

– if card(Σ) = card(Ξ), define comp(Σ) = comp(Ξ),

– if card(Σ) > card(Ξ), define comp(Σ) = comp(Ξ) ∪ {i}.

We define also the compressed list of zero-nonzero conditions, Comp(Σ) = Σcomp(Σ).

Example 12 If I = {1, 2, 3, 4, 5} and Σ is the list of zero-nonzero conditions

[1 0 1 1 0, 1 0 1 1 1, 1 1 0 1 1, 1 1 1 0 0, 1 1 1 0 1]

then comp (Σ) is {2, 3, 5} and Comp(Σ) is

[0 1 0, 0 1 1, 1 0 1, 1 1 0, 1 1 1].

Remark 13 Let I ⊂ {1, . . . , s} and Σ ⊂ {0, 1}I . Following Definition 7 and Definition 11, it is easy to
prove by induction in card(I) that Ada (Σ) = Ada (Comp (Σ)).

2.2 Algorithms and complexity

Given I ⊂ {1, . . . , s} and Σ ⊂ {0, 1}I , we represent Σ with a card(Σ)× card(I) matrix filled with 0 and
1, each row representing a zero-nonzero condition in {0, 1}I . We consider this representation even when
Σ = ∅ or I = ∅. Similarly, we represent a list A of subsets of I with a card(A) × card(I) matrix filled
with 0 and 1, each row representing an element of A, and the bit 0 (resp.1) in each column indicating
that the corresponding element does not belong (resp. belongs) to the subset of I. When we speak of Σ
(resp. A) we mean either the list Σ (resp. A) or its representation as a matrix as convenient.

For a matrix M of size m × n, given ordered lists of integers with no repetitions ` and `′, with the
entries of ` (resp. `′) in {1, . . . ,m} (resp. {1, . . . , n}), we denote by M(`, `′) the submatrix of M obtained
by extracting from M the rows in ` and the columns in `′. We use this notation even when one of the
lists ` and `′ is empty. For a vector v of size m, analoguously we denote by v(`) the subvector formed by
the entries with index in `.

Up to the end of the subsection, we follow the notation in Definition 7 and Proposition 10. We
introduce an auxiliary definition.

Definition 14 Let I ⊂ {1, . . . , s} and Σ ⊂ {0, 1}I . The matrix Info(Σ) is defined by induction as follows:

• If I = ∅ define Info (Σ) as the matrix with as many rows as elements in Σ (possibly 0 or 1) and 0
columns.

• If I 6= ∅, we consider the list `0 (resp. `1, `?) formed by the indices of zero-nonzero conditions in
Σ which belong to Σ0 (resp. Σ1, Σ?) and define Info(Σ) as follows:

Info(Σ)(`0 ∪ `?, [1, . . . , card(I)− 1]) = Info(Ξ),

Info(Σ)(`1, [1, . . . , card(I)− 1]) = Info(Ξ′),

Info(Σ)(j, card(I)) = 0 if j ∈ `0,
Info(Σ)(j, card(I)) = 1 if j ∈ `1,
Info(Σ)(j, card(I)) = ? if j ∈ `?.

Example 15 Continuing Example 12, Info(Σ) is
? 0 ? ? 0
? 0 ? ? 1
? 1 0 ? ?
? ? 1 ? 0
? 1 ? ? 1

 .

7

The availability of the information provided by the matrix Info(Σ) is very important to obtain the
complexity bound in the algorithms in this subsection. We consider then the following auxiliary technical
algorithm.

Algorithm Get Info

• Input: A list Σ ⊂ {0, 1}I with I ⊂ {1, . . . , s}.

• Output: The matrix Info(Σ).

It is easy to give a procedure for Algorithm Get Info with bit complexity O(card(Σ) card(I)2). Since
the list Σ is ordered, this procedure takes O(card(Σ) card(I)) bit operations to compute the lists `0, `1
and `? and then does recursive calls to itself to compute the matrices Info(Ξ) and Info(Ξ′).

The following algorithm computes the adapted family for a given list of zero-nonzero conditions.

Algorithm Adapted Family

• Input: A list Σ ⊂ {0, 1}I with I ⊂ {1, . . . , s} and the matrix Info(Σ).

• Output: The set Ada(Σ) as a list.

• Procedure: Extract from each row of Info(Σ) the subset of indices with entry 1.

Lemma 16 Given a list Σ ⊂ {1, 0}I with I ⊂ {1, . . . , s} and the matrix Info(Σ), Algorithm Adapted

Family computes the set Ada(Σ) as a list. The bit complexity of this algorithm is O(card(Σ) card(I)).

Proof: The correctness of the algorithm follows from Definition 7 and Definition 14. The bound on the
bit complexity is clear since Info(Σ) is read once. �

Example 17 Continuing Example 15, the representation of Ada(Σ) as a list obtained by Algorithm
Adapted Family is

0 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 1 0 0 1

 .

Finally Ada(Σ) = {∅, {5}, {2}, {3}, {2, 5}}.

From now on, for every I ⊂ {1, . . . , s} and Σ ⊂ {0, 1}I , we considered the set Ada(Σ) ordered into a
list as obtained by Algorithm Adapted Family.

We give now a specific method for solving the linear systems arising in the algorithm for zero-nonzero
determination.

Algorithm Linear Solving

• Input: A list Σ ⊂ {0, 1}I with I ⊂ {1, . . . , s}, the matrices Info(Σ) and Mat(Ada(Σ),Σ) and an
integer vector v of size card(Σ).

• Output: The vector c = Mat(Ada(Σ),Σ)−1v.

• Procedure:

1. If I = ∅ output c = v. So from now we suppose I 6= ∅.
2. Extract from Info(Σ) the lists `0, `1 and `? (cf. Definition 14), define ` = `0∪`?, m0 = card(`0)

and m? = card(`?).

3. Compute t(`) = Mat(Ada(Ξ),Ξ)−1v(`), doing a recursive call to Algorithm Linear Solving.

8

4. If m0 6= 0 and m? 6= 0, compute t(`1) = −Mat((Ada(Ξ′), i),Σ?)t(`?) + v(`1).

5. If m0 6= 0:

(a) Compute c(`1) = Mat(Ada(Ξ′),Ξ′)−1t(`1), doing a recursive call to Algorithm Linear

Solving.

(b) Compute c(`0) = t(`0)− t(`1).

(c) Define c(`?) = t(`?).

6. Output c.

Remark 18 Let I ⊂ {1, . . . , s} and Σ ⊂ {1, 0}I . Following the steps of the algorithm, it is easy to prove
by induction in card(I) that if v is an integer vector of size card(Σ), then c = Mat(Ada(Σ),Σ)−1v is also
an integer vector.

Proposition 19 Given a list Σ ⊂ {0, 1}I with I ⊂ {1, . . . , s}, the matrices Info(Σ) and Mat(Ada(Σ),Σ)
and an integer vector v of size card(Σ), Algorithm Linear Solving computes the vector

c = Mat(Ada(Σ),Σ)−1v.

If Z ⊂ Ck is a finite set with r elements, Q is a finite set of polynomials indexed by I and Feas(Q, Z) ⊂
Σ then v = Qu(QAda(Σ), Z) implies c = c(Σ, Z) and the bit complexity of Algorithm Linear Solving is
O(card(Σ) card(I) + card(Σ)2 bit(r)).

Proof: The correctness of the algorithm follows from the formula for the inverse of Mat(Ada(Σ),Σ) com-
ing from the proof of Proposition 10. The fact that v = Qu(QAda(Σ), Z) implies c = c(Σ, Z) follows from
Proposition 1. Now we deal with the complexity analysis. Note that the matrices Info(Ξ),Mat(Ada(Ξ),Ξ),
Info(Ξ′) and Mat(Ada(Ξ′),Ξ′), which are necesary to do the recursive calls, and the matrix Mat((Ada(Ξ′), i),Σ?),
which is necesary at Step 4 can be extracted from the matrices Info(Σ) and Mat(Ada(Σ),Σ).

A rough description of Step 2 is the following: consider first all the lists we want to determine as
empty and then, reading the last column of Info(Σ) one row at a time, actualize the right lists and their
lengths. Taking into account that increasing n times the quantity 0 by 1 takes O(n) bit operations, this
step takes at most C1 card(Σ) bit operations for some constant C1.

At Step 3, the recursive call to Algorithm Linear Solving is done for the list Ξ and the vector
Qu(QAda(Ξ), Z) and since Feas(Q, Z) ⊂ Σ, we have that Feas(Q′, Z) ⊂ Ξ where Q′ is the set obtained
from Q by removing its element of index i.

Step 4 takes first 2 bit operations to decide if m0 6= 0 and m? 6= 0. Since v(`1) = Qu(Q(Ada(Ξ′),i), Z),
all its entries are nonnegative integers less than or equal to r. The product Mat((Ada(Ξ′), i),Σ?)t(`?) is
computed by reading if the elements in Mat((Ada(Ξ′), i),Σ?) are 0 or 1 and adding the corresponding
elements from t(`?). Since t(`?) is a subvector of c(Ξ, Z), all its entries are nonnegative integers and
their sum is less than or equal to r. So, we conclude that this step takes at most 2 + C2m

0m? bit(r) bit
operations for some constant C2.

The begining of Step 5 takes 1 bit operation to decide if m0 6= 0. It is easy to see that at Step 5(a),
the recursive call to Algorithm Linear Solving is done for the list Ξ′ and the vector Qu(QAda(Ξ′), Z1)
where

Z1 =
⋃
σ∈Σ1

Reali(σ, Z).

Also, by definition of Z1, we have that Feas(Q′, Z1) ⊂ Ξ′. On the other hand, it is also easy to see that
Step 5(b) takes C3m

0 bit(r) bit operations for some constant C3.
After this analysis, the bound on the bit complexity can be proved by induction in card(I). �

Notation 20 Let J ⊂ {1, . . . , s} and j ∈ {1, . . . , s} bigger than max(J). For a zero-nonzero condition
σ ∈ {0, 1}J , we denote by σ∧0 ∈ {0, 1}J∪{j} (resp. σ∧1) the zero-nonzero condition obtained by extending
σ with σ(j) = 0 (resp. σ(j) = 1). For a list Σ = [σ1, . . . , σn] ⊂ {0, 1}J of zero-nonzero conditions, we

9

denote by Σ∧ {0, 1}{j} ⊂ {0, 1}J∪{j} the list of zero-nonzero conditions [σ1 ∧ 0, σ1 ∧ 1, . . . , σn ∧ 0, σn ∧ 1]
and by Σ ∧ {0}{j} ⊂ {0, 1}J∪{j} (resp. Σ ∧ {1}{j}) the list of zero-nonzero conditions [σ1 ∧ 0, . . . , σn ∧ 0]
(resp. [σ1 ∧ 1, . . . , σn ∧ 1]).

We are now ready for our main algorithm. This algorithm determines iteratively, for i = 0, . . . , s
the list Σi := Feas(Pi, Z) of the zero-nonzero conditions realized by Pi on Z, and the corresponding list
ci := c(Pi, Z) of cardinals. In order to do so within a good complexity bound, the algorithm also computes
at each step the compressed set of indices compi := comp(Σi), the matrix Infoi := Info(Comp(Σi)), the
list Adai := Ada(Σi) and the matrix Mati := Mat(Σi,Ada(Σi)).

Algorithm Zero-nonzero Determination

• Input: a finite subset Z ⊂ Ck with r elements and a finite list P = P1, . . . , Ps of polynomials in
L[X1, . . . , Xk].

• Output: the list Feas(P, Z) of the zero-nonzero conditions realized by P on Z, and the corre-
sponding list c(P, Z) of cardinals.

• Blackbox: for a polynomial Q ∈ L[X1, . . . , Xk], the invertibility-query blackbox Qu(Q,Z).

• Procedure:

1. Compute r = Qu(1, Z) using the invertibility-query blackbox. If r = 0, output Feas(P, Z) = ∅
and c(P, Z) = ∅. So from now we suppose r > 0.

2. Initialize Σ0 = [∅], c0 = [r], comp0 = ∅, Info0 as the matrix with 1 row and 0 columns,
Ada0 = [∅] and Mat0 = (1).

3. For i from 1 to s:

(a) Compute Qu(Pi, Z) using the invertibility-query blackbox.

(b) Using the equality (
1 1
0 1

)
·
(
c(Pi = 0, Z)
c(Pi 6= 0, Z)

)
=

(
Qu(1, Z)
Qu(Pi, Z)

)
compute c(Pi = 0, Z) and c(Pi 6= 0, Z).

(c) If c(Pi = 0, Z) = 0 (resp. c(Pi 6= 0, Z) = 0), Σi = Σi−1 ∧ {1}{i} (resp. Σi−1 ∧ {0}{i}),
ci = ci−1, compi = compi−1, Infoi = Infoi−1, Adai = Adai−1 and Mati = Mati−1.
Else if c(Pi = 0, Z) > 0 and c(Pi 6= 0, Z) > 0:

i. Compute v′ = Qu(P(Adai−1,i)
i , Z) using the invertibility-query blackbox.

ii. Take the auxiliary list Σ = Comp(Σi−1)∧{0, 1}{i} and determine Info(Σ) and Mat(Ada(Σ),Σ).
Consider the integer vector v of size card(Σ) having in its odd entries the entries of

Qu(PAdai−1

i , Z) (which has already been computed at previous steps) and in its even
entries the entries of v′. Compute c = Mat(Ada(Σ),Σ)−1v, using Algorithm Linear

Solving.

iii. Compute ci removing from c its zero components. Compute also Σi going trough c by
pairs of elements (note that each pair will have at least one element different from zero).
If both elements are different from zero, the corresponding zero-nonzero condition in
Σi−1 is extended both with a 0 and a 1 in Σi. If only the first (resp. second) element
of the pair is different from zero, the corresponding zero-nonzero condition in Σi−1 is
extended only with a 0 (resp. 1) in Σi. At the same time, compute the lists `0, `1 and
`?.

iv. If card(Σi) = card(Σi−1), compi = compi−1, Infoi = Infoi−1, Adai = Adai−1 and
Mati = Mati−1.
Else if card(Σi) > card(Σi−1):

10

– compi = compi−1 ∪{i}.
– Define Ξ′i = Σi(`1, compi−1)).

– Compute Info(Ξ′i), using Algorithm Get Info, and extract Ada(Ξ′i), using Algo-
rithm Adapted Family.

– Compute Infoi, from Infoi−1 and Info(Ξ′i) and Adai from Adai−1 and Ada(Ξ′i).

– Compute Mat((Ada(Ξ′i), i),Σ
′) with Σ′ = Σi(`, compi)) and finally Mati.

4. Output Feas(P, Z) = Σs and c(P, Z) = cs.

Theorem 21 Given a finite subset Z ⊂ Ck with r elements and a finite list P = P1, . . . , Ps of polynomials
in L[X1, . . . , Xk], Algorithm Zero-nonzero Determination computes the list Feas(P, Z) of the zero-
nonzero conditions realized by P on Z and the corresponding list c(P, Z) of cardinals. The complexity
of this algorithm is O(sr2 bit(r)) bit operations plus 1 + sr calls to the to the invertibility-query blackbox
which are done for products of at most bit(r) products of polynomials in P.

Proof: The correctness of the algorithm follows from Proposition 1, Proposition 10 and Remark 13.
We prove first the bound on the number of bit operations.
Step 3(b) and evaluating the conditions c(Pi = 0, Z) = 0 and c(Pi 6= 0, Z) = 0 at the beginning of

Step 3(c) take O(bit(r)) bit operations.
At Step 3(c)ii, Σ is obtained by duplicating each row in Σi−1([1, . . . , card(Σi−1)], compi−1) and adding

a final new column with a 0 in the odd rows and a 1 in the even rows, and Info(Σ) is obtained in a
similar way. The matrix Mat(Ada(Σ),Σ) is obtained from Mati−1 following the formula (1) in the proof
of Proposition 10. Since card(Comp(Σi−1)) ≤ r and card(compi−1) ≤ r − 1, by Proposition 19, the
computation of c takes O(r2 bit(r)) bit operations.

Step 3(c)iii takes O(r) bit operations.
Since card(compi−1) ≤ min{s, r − 1} for every i, at Step 3(c)iv the computation of Info(Ξ′i) takes

O(card(Ξ′i)sr) bit operations using Algorithm Get Info. By Lemma 16, the computation of Ada(Ξ′i)
takes O(card(Ξ′i)r) bit operations. The computation of Infoi and Adai is then done following Defini-
tion 14 and using the already computed matrices Infoi−1, Info(Ξ′i), Adai−1 and Ada(Ξ′i) and the lists
`0, `1 and `?. By evaluating the product σJ for every σ ∈ Σ′ and J ∈ (Ada(Ξ′i), i), the computa-
tion of Mat((Ada(Ξ′i), i),Σ

′) takes O(card(Ξ′i)sr) bit operations. The matrix Mati is obtained follow-
ing the formula (1) in the proof of Proposition 10 using the already computed matrices Mati−1 and
Mat((Ada(Ξ′i), i),Σ

′).
It is easy to prove that

∑
i=1,...,s card(Ξ′i) = card(Feas(P, Z))− 1 ≤ r− 1. From this, we conclude the

number of bit operations of this algorithm is O(sr2 bit(r)).
Finally we prove the assertion on the invertibility-queries to compute. At Step 3, for i = 1, . . . , s,

there are card(Σi−1) 6 r new invertibility-queries to determine. Therefore, the total number of calls to
the invertibility-query blackbox is bounded by 1 + sr. Since by Proposition 9 the elements of Adai−1

are subsets of {1, . . . s} with at most bit (r)− 1 elements, these calls are done for polynomials which are
product of at most bit(r) products of polynomials in P. �

Definition 22 We denote by Used(P, Z) the list of subsets of {1, . . . , s} constructed inductively as fol-
lows:

• Used(P0, Z) = ∅.

• For 1 ≤ i ≤ s,{
Used(Pi, Z) = Used(Pi−1, Z) ∪ {i} if c(Pi = 0, Z) = 0 or c(Pi 6= 0, Z) = 0,

Used(Pi, Z) = Used(Pi−1, Z) ∪ (Ada(Feas(Pi−1, Z)), i) otherwise .

Remark 23 It is easy to see that if Z 6= ∅, Used(P, Z) is exactly the list of subsets J of {1, . . . s} such
that the invertibility-query of P J has been computed during the execution of Algorithm Zero-nonzero

Determination. It is also clear that Used(P, Z) can be determined from Feas(P, Z). As mentioned in
Theorem 21, the elements of Used(P, Z) are subsets of {1, . . . s} with at most bit(r) elements.

11

3 The real-nonreal sign determination problem

We recall that K is an ordered field, R a real closed extension of K and C = R[i], Z ⊂ Ck a finite set and
P = P1, . . . , Ps a list of polynomials in K[X1, . . . , Xk].

Since Feas(P, ZC\R) ⊂ Feas(P, Z) and for every σ ∈ Feas(P, Z) we have that

c(σ, ZC\R) = c(σ, Z)− c(σ, ZR) = c(σ, Z)−
∑
τ∈Γσ

csign(τ, ZR)

where
Γσ = {τ ∈ Feassign(P, ZR) | {i | τ (i) = 0} = {i | σ (i) = 0}} ,

it is easy to combine algorithms for sign and zero-nonzero determination to solve the real-nonreal sign
determination problem as follows.

Algorithm Real-nonreal Sign Determination

• Input: a finite subset Z ⊂ Ck with r elements and a finite list P = P1, . . . , Ps of polynomials in
K[X1, . . . , Xk].

• Output: the lists Feassign(P, ZR) and Feas(P, ZC\R) of sign and zero-nonzero conditions realized
by P on ZR and ZC\R respectivelly, and the corresponding lists csign(P, ZR) and c(P, ZC\R) of
cardinals.

• Blackbox 1: for a polynomial Q ∈ K[X1, . . . , Xk], the Tarski-query blackbox Qu(Q,ZR).

• Blackbox 2: for a polynomial Q ∈ K[X1, . . . , Xk], the invertibility-query blackbox Qu(Q,Z).

• Procedure:

1. Compute Feassign(P, ZR) and csign(P, ZR), as explained in [2, Chapter 10].

2. Compute Feas(P, Z) and c(P, Z), using Algorithm Zero-nonzero Determination.

3. For σ ∈ Feas(P, Z) compute c(σ, ZC\R) = c(σ, Z)−
∑
τ∈Γσ

csign(τ, ZR).

4. Define Feas(P, ZC\R) as the list of σ ∈ Feas(P, Z) such that c(σ, ZC\R) 6= 0 and c(P, ZC\R) as
the corresponding list of cardinals.

From the results in Section 2 and [2, Chapter 10], we deduce the following result.

Theorem 24 Given a finite subset Z ⊂ Ck with r elements and a finite list P = P1, . . . , Ps of polynomials
in K[X1, . . . , Xk], Algorithm Real-nonreal Sign Determination computes the lists Feassign(P, ZR) and
Feas(P, ZC\R) of sign and zero-nonzero conditions realized by P on ZR and ZC\R respectivelly, and
the corresponding lists csign(P, ZR) and c(P, ZC\R) of cardinals. The complexity of this algorithm is
O(sr2 bit(r)) bit operations plus 1 + 2sr calls to the to the Tarski-query blackbox which are done for
products of at most bit(r) products of polynomials in P or squares of polynomials in P, plus 1 + sr
calls to the to the invertibility-query blackbox which are done for products of at most bit(r) products of
polynomials in P.

4 How to compute the queries?

For completeness, in this section we summarize the main methods to compute the invertibility-queries and
Tarski-queries; all these methods are in fact closely related between them. We refer to [1] for notations,
proofs and details.

We deal first with the univariate case. Suppose that Z ⊂ C is given as the zero set of a polynomial
P ∈ K[X]. For simplicity, we assume P to be monic. The invertibility-queries and Tarski-queries can be
computed as follows.

12

• through the Sturm sequence Stu(P,Q), which is a slight modification of the sequence of remainders
of P and P ′Q:

Qu(Q,Z) = deg(P)− deg(gcd(P, P ′Q)),

TaQu(Q,ZR) = var(Stu(P,Q);−∞,∞),

where var is the number of sign variations in the corresponding sequence. Note that gcd(P, P ′Q)
is the last element in Stu(P,Q).

• through the subresultant sequence sRes(P,R) of P and R = Rem(P, P ′Q):

Qu(Q,Z) = deg(P)− deg(gcd(P, P ′Q)),

TaQu(Q,ZR) = PmV(sRes(P,R)),

where PmV is a generalization of the difference between the number of positive elements and
negative elements in the corresponding sequence. Note that gcd(P, P ′Q) is the last nonzero element
in sRes(P,R).

• through the Bezoutian matrix Bez(P,R) of P and R = Rem(P, P ′Q):

Qu(Q,Z) = rank(Bez(P,R)),

TaQu(Q,ZR) = sign(Bez(P,R)).

Now we deal with the multivariate case (including the univariate case). Suppose that Z ⊂ Ck is given
as the zero set of a polynomial system in K[X1, . . . , Xk]. The invertibility-queries and Tarski-queries can
be computed as follows.

• through the Hermite matrix Her(P,Q):

Qu(Q,Z) = rank(Her(P,Q)),

TaQu(Q,ZR) = sign(Her(P,Q)).

For the univariate case, we deduce the following result:

Theorem 25 1. Let P ∈ L[X] and P = P1, . . . , Ps be a finite list of polynomials in L[X] such that the
degree of P and the polynomials in P is bounded by d. The complexity of zero-nonzero determination
is Õ(sd2) bit operations plus Õ(sd2) arithmetic operations in L. If P and the polynomials in P lie
in Z[X] and the bit size of the coefficients of all these polynomails is bounded by τ , the complexity
of zero-nonzero determination is Õ(τsd3) bit operations.

2. Let P ∈ K[X] and P = P1, . . . , Ps be a finite list of polynomials in K[X] such that the degree of
P and the polynomials in P is bounded by d. The complexity of real-nonreal sign determination is
Õ(sd2) bit operations plus Õ(sd2) arithmetic operations in K. If P and the polynomials in P lie in
Z[X] and the bit size of the coefficients of all these polynomails is bounded by τ , the complexity of
real-nonreal sign determination is Õ(τsd3) bit operations.

Proof: To prove item 1, we estimate the complexity of computing the invertibility-queries. At each call
we have to compute the product between an already computed product of P ′ and at most bit(d) − 1
polynomials in P and a polynomial in P; and then we have to compute the gcd between this polynomial
and P . The complexity of these computations is Õ(d) operations in L; in the case of integer coefficients,
the complexity of these computations is Õ(τd2) bit operations (see [8, Chapters 8 and 11]). The result
then follows directly from Theorem 21.

Item 2 is proved in a similar way, the Tarski-queries being computed following the subresultant
sequence aproach as in [4]. The Tarski-query of a product of at most 2 bit(d) polynomials in P for the
real zero set of P can be computed within Õ(d) operations in K; in the case of integer coefficients, the
complexity of this computation is O(τd2) bit operations (see [6] and [4]). The result then follows directly
from Theorem 24. �

13

5 Real-nonreal sign determination with parameters

Let P ∈ K[Y1, . . . , Ym, X] with P monic with respect to X and P = P1, . . . , Ps ⊂ K[Y1, . . . , Ym, X], where
Y1, . . . , Ym are parameters and X is the main variable. Our goal is to describe a family of polynomials
in K[Y1, . . . , Ym] such that the result of the real-nonreal sign determination problem after specialization
of the parameters is determined by a sign condition on this family. First, we introduce some notation.

Notation 26 We denote by Prodbit(p)(P) the family of polynomials which are of the form

Pα =
∏

1≤i≤s

Pαii

with α = (α1, . . . , αs) ∈ {0, 1, 2}{1,...,s} such that card{i | αi 6= 0} ≤ bit(p). For Q ∈ K[Y1, . . . , Ym, X], we
denote by HMin(P,Q) the subset of K[Y1, . . . , Ym] formed by the principal minors of Her(P,Q). Finally,
we denote by

HElim(P,P) =
⋃

Q∈Prodbit(p)(P)

HMin(P,Q).

Now we can state our result.

Theorem 27 For y ∈ Rm, let Z(y) ⊂ C be the zero set of P (y1, . . . , ym, X) and P(y,X) the list in
K[X] obtained from P after specialization of Y1, . . . , Ym at y1, . . . , ym. Let τ be a sign condition on
HElim(P,P). The lists Feassign(P(y,X), Z(y)R) and Feas(P(y,X), Z(y)C\R) and their corresponding
lists csign(P(y,X), Z(y)R), and c(P(y,X), Z(y)C\R) of cardinals are fixed as y varies in Realsign(τ,Rm).

Proof : For every P,Q ∈ K[X], the signs of the principal minors of Her(P,Q) determine the rank and
signature of Her(P,Q) (see [1, Chapter 9]). Therefore, by Remark 23 and the analogous result in [1,
Chapter 10], as y varies in Realsign(τ,Rm), all the calls to the Tarski-query blackbox and invertibility-
query blackbox done in Algorithm Real-nonreal Sign Determination provide the same result; from
this, we conclude that the output of this algorithm is the same. �

References

[1] Basu, Saugata; Pollack, Richard; Roy, Marie-Françoise. Algorithms in real algebraic geometry. Sec-
ond edition. Algorithms and Computation in Mathematics, 10. Springer-Verlag, Berlin, 2006.

[2] Basu, Saugata; Pollack, Richard; Roy, Marie-Françoise. Algorithms in real algebraic geometry. Cur-
rent online version. Available at http://perso.univ-rennes1.fr/marie-francoise.roy/

[3] Canny, John. Improved algorithms for sign determination and existential quantifier elimination.
Comput. J. 36 (1993), no. 5, 409–418.

[4] Lickteig, Thomas; Roy, Marie-Françoise. Sylvester-Habicht sequences and fast Cauchy index com-
putations, J. Symbolic Comput. 31 (2001), no. 3, 315–341.

[5] Perrucci, Daniel. Linear solving for sign determination. Theoret. Comput. Sci. 412 (2011), no. 35,
4715–4720.

[6] Reischert, Daniel. Asymptotically fast computation of subresultants. ISSAC ’97. 233–240.

[7] Roy, Marie-Françoise; Szpirglas, Aviva. Complexity of computation on real algebraic numbers. J.
Symbolic Comput. 10 (1990), no. 1, 39–51.

[8] von zur Gathen, Joachim; Gerhard, Jürgen. Modern computer algebra. Cambridge University Press,
New York, 1999.

14

