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Abstract

Using subresultants, we modify a real-algebraic proof due to Eisermann of the Fundamental

Theorem of Algebra ([FTA]) to obtain the following quantitative information: in order to prove the

[FTA] for polynomials of degree d, the Intermediate Value Theorem ([IVT]) is required to hold only

for real polynomials of degree at most d2. We also explain that the classical proof due to Laplace

requires [IVT] for real polynomials of exponential degree. These quantitative results highlight the

difference in nature of these two proofs.

Keywords: Fundamental Theorem of Algebra, Intermediate Value Theorem, Cauchy Index, Winding Number,

Subresultant Polynomials, Sturm Chains.

AMS subject classifications: 14P99, 12D10, 12D15.

1 Introduction

Let (R,≤) be an ordered field. The fact that R admits an order compatible with the field structure

implies that char(R) = 0 and therefore R has an infinite number of elements. It also implies that −1

is not a square in R and, consequently, R[T ]/〈T 2 + 1〉 = R[i] = C is an algebraic field extension of R

of degree 2.

We consider the following properties on (R,≤).
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• [IVT] (Intermediate Value Theorem): for every polynomial F ∈ R[X] and every a, b in R with

a < b and F (a)F (b) < 0, there exists c ∈ R with a < c < b such that F (c) = 0.

• [NnS] (Non-negative elements are Squares): for every a ∈ R with a ≥ 0, there exists c ∈ R such

that a = c2.

• [OD] (An odd degree polynomial has a root): for every polynomial F ∈ R[X] of odd degree,

there exists c ∈ R such that F (c) = 0.

• [FTA] (Fundamental Theorem of Algebra): for every polynomial F ∈ C[Z] \ C, there exists

z ∈ C such that F (z) = 0 (i.e., C is an algebraically closed field).

If ≤ denotes the usual order over the real numbers, (R,≤) and (Ralg,≤) are typical examples of

ordered fields satisfying all the properties above (where Ralg is the set of real algebraic numbers),

whereas (Q,≤) is a typical example of an ordered field satisfying none of the properties above.

The next theorem is a classical result in real algebraic geometry (see for instance [2, Chapter 1]).

Theorem 1 Let (R,≤) be an ordered field. The following conditions are equivalent:

a) (R,≤) satisfies [IVT].

b) (R,≤) satisfies [NnS] and [OD].

c) (R,≤) satisfies [FTA].

If (R,≤) satisfies these conditions, then it is easy to see that the field order ≤ on R is unique and R

is said to be a real closed field.

We sketch briefly a proof of Theorem 1, which is essentially Laplace’s proof [6].

Sketch of the proof of Theorem 1: Proving that [IVT] implies [NnS] is very simple: for a = 0 we take

c = 0; and for a > 0 we consider the polynomial F := X2 − a ∈ R[X] and notice that F (0) < 0 and

F (a+ 1) > 0, then [IVT] ensures the existence of a c ∈ R such that F (c) = 0, or equivalently, a = c2.

In fact, adding the condition c ≥ 0, it is easy to prove the uniqueness of such c.

In a similar way, in order to prove that [IVT] implies [OD] we only need to note that an odd degree

polynomial necessarily changes its sign when evaluated at a and −a with a ∈ R big enough.

The proof that [NnS] and [OD] imply [FTA] is much more sophisticated. To prove that F ∈ C[Z] \C

has a root in C, it is enough to prove that the polynomial FF ∈ R[Z] \R has a root w in C (where

F means the polynomial obtained from F by usual conjugation in C of the coefficients of F ); in this

case either w or w is a root of F . Now, in order to show that an arbitrary polynomial G ∈ R[Z] \R

of degree d has a root in C, the proof proceeds by induction on the highest value of k such that 2k

divides d. In the base case, which is k = 0 (and therefore odd d), the existence of a root of G in

R ⊂ C is ensured by [OD]. For k ≥ 1 (and therefore even d), the existence of a root of G in C is

2



ensured by a clever argument involving [NnS] and the fact that every polynomial in R[Z] of degree(
d
2

)
has a root in C. Note that the highest power of 2 dividing

(
d
2

)
= 1

2d(d − 1) is 2k−1 and then the

inductive hypothesis holds.

Finally, assuming [FTA], it is possible to prove that the irreducible elements in the unique factorization

domain R[X] have degree 1 or 2 and that the irreducible monic elements in R[X] of degree 2 are

positive when evaluated at any r ∈ R. From these facts, [IVT] holds easily. �

The main concern in the present work is the following question: assuming that [IVT] holds for (R,≤),

if we take a fixed value of d ∈ Z≥1 and we only want to prove that every polynomial in C[Z] \C of

degree less than or equal to d has a root in C, which is the highest degree of a polynomial in R[X]

for which we need the Intermediate Value Theorem to hold?

With the aim of stating our problem precisely, we consider for each d ∈ Z≥1, the following properties

on (R,≤).

• [IVT]d: for every polynomial F ∈ R[X] with degF ≤ d and every a, b in R with a < b and

F (a)F (b) < 0, there exists c ∈ R with a < c < b such that F (c) = 0.

• [FTA]d: for every polynomial F ∈ C[Z] \ C with degF ≤ d, there exists z ∈ C such that

F (z) = 0.

We can now restate our main concern as follows:

Given d ∈ Z≥1, which is the lowest value of α(d) ∈ Z≥1 for which [IVT]α(d) implies [FTA]d?

In order to evaluate from this new quantitative point of view the proof of Theorem 1 we sketched, we

define the following functions:

Notation 2 Let β, γ : Z≥1 → Z≥1 defined as follows:

β(d) :=

{
d if d is odd,

β
((
d
2

))
if d is even,

γ(d) := max1≤e≤d{β(2e)}.

Note that γ(1) = β(2) = 1 and for d ≥ 2 we have that γ(d) ≥ β(4) = 15. Note also that γ is a

non-decreasing function, whereas the behavior of β is rather chaotic.

First, we have that [FTA]1 holds even under no assumptions on (R,≤). Then, for a fixed d ≥ 2 and

a polynomial F ∈ C[Z] with e = degF ≤ d, in order to be able to apply the proof of Theorem 1

we need to ensure [NnS] and the fact that the Intermediate Value Theorem holds for polynomials in

R[X] of degree β(2e). Since [IVT]2 implies [NnS], we have that

[IVT]γ(d) implies [FTA]d.

The final conclusion is that α(d) ≤ γ(d).
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Now we want to exhibit explicit bounds for γ. It is possible to prove that for d ∈ Z, d ≥ 4, if d = 2ks

with k ∈ Z≥0 and odd s ∈ Z≥1 then

8

3

(
3

4
2k−1s

)2k

≤ β(d) ≤ 2
(

2k−1s
)2k
≤ 2

(
d

2

)d
.

Then, for d ∈ Z, d ≥ 4, we have

γ(d) ≤ 2d2d.

Also, by taking k′ := blog2 dc, since 2k
′ ≤ d < 2k

′+1,

(
3

8

)d−1
dd =

8

3

(
3

4

d

2

)d
<

8

3

(
3

4
2k
′
)2k

′+1

≤ β(2k
′+1) ≤ γ(d).

In this way, we know that γ is bounded from below and above by exponential functions. This leads to

an exponential upper bound for α, which cannot be avoided as long as we keep attached to the proof

we sketched of Theorem 1.

The exponential value of γ(d) plays a significant role in the bounds obtained in a recent joint work

of the authors with Henri Lombardi, giving a new constructive proof for Hilbert 17-th problem and

Positivstellensatz and providing elementary recursive degree bounds [8]. Exploring other algebraic

proofs of [FTA] from a quantitative point of view might be a first step in the improvement of the

results of [8]. This hope is part of our motivation in this paper.

In [3], Michael Eisermann found a proof of the Fundamental Theorem of Algebra which is also valid

in any real closed field, but in opposition to Laplace’s proof which is purely algebraic, has a large real-

algebraic geometry flavor. This proof of Eisermann can be seen as a real-algebraic adaptation of one

of the classical proofs of the Fundamental Theorem of Algebra using winding numbers and homotopy

(see [4, Chapter 8]). One of the main ingredients of Eisermann’s proof is the Cauchy index of two

polynomials which, roughly speaking, is the number of jumps from −∞ to +∞ minus the number of

jumps from +∞ to −∞ that the function associated to their quotient has in a given interval. From

the fact that the base ordered field (R,≤) satisfies [IVT], it follows an inversion formula which implies

that Cauchy indices can be computed by counting sign variations on Sturm chains. Another of the

main ingredients of Eisermann’s proof is the fact that the winding number of a complex function on a

rectangle, which counts the number of zeros of the function in the given rectangle, can be computed

in a completely real-algebraic way by means of Cauchy indices on the boundary of the rectangle. One

of the most intricate steps in Eisermann’s proof is to prove the Main Lemma (see [3, Lemma 5.3]):

if a polynomial does not vanish in a rectangle, then the associated winding number is zero. This is

achieved by a clever cancellation of terms for a suitable division of the rectangle under consideration.

A crucial property for this cancellation is that, considering in the bivariate case one variable as the

main variable and the second variable as a parameter, the (pseudo-)remainder sequence produces

Sturm chains when specializing the parameter but also when specializing the main variable. Finally,

by means of algebraic homotopy-like tools, the proof follows by computing the winding number in a

well-known special case. Then the conclusion follows.
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Our strategy is similar to the one by Eisermann, and also uses the Cauchy index of two polynomials

and the winding number of a complex function on a rectangle. The main new ingredient is that

we use subresultants rather than (pesudo)-remainder sequences to compute the Cauchy index. In

order to be able to do this, we introduce the notion of (σ, τ)-chain, which is a generalization of the

notion of Sturm chain and prove that it can be used to compute Cauchy indices. In case the base

ordered field (R,≤) satisfies [IVT]d2 , it follows a refinement of the inversion formula which implies

that Cauchy indices can be computed by counting sign variations on (σ, τ)-chains, when the degrees

of the polynomials in the (σ, τ)-chains are all bounded by d2. Again, the most intricate step in our

proof of the Quantitatve Fundamental Theorme of Algebra is to prove the Quantitative Main Lemma

(Lemma 38): if [IVT]d2 holds and if a polynomial of degree d does not vanish in a rectangle, then

the associated winding number is zero. This is also achieved by a cancellation of terms for a suitable

division of the rectangle under consideration. As before, a crucial property for this cancellation is

that, considering in the bivariate case one variable as the main variable and the second variable as a

parameter, the subresultant sequence produces (σ, τ)-Sturm chains when specializing the parameter

but also when specializing the main variable. By using degree bounds on suresultant polynomials, we

obtain that intermediate polynomials relevant to the proof are all of degree bounded by d2.

Using this strategy, we prove the following theorem which is our main result.

Theorem 3 For d ∈ Z≥1
[IVT]d2 implies [FTA]d.

In other words, Theorem 3 is equivalent to saying that α(d) ≤ d2. Since d 7→ d2 is a polynomial

function (actually d2 ≤ γ(d) for all d ∈ Z≥1), our result highlights the difference in nature between

Laplace’s proof and our modification of Eisermann’s proof.

2 Preliminaries

In subsection 2.1 and subsection 2.2 we introduce Cauchy indices and winding numbers. In subsection

2.3 we extend results by Eisermann on Cauchy indices and winding numbers [3] to the case where the

Intermediate Value Theorem holds only for polynomials of bounded degrees. Finally in subsection 2.4

we give the needed preliminaries about subresultants.

2.1 Cauchy index

As said in the introduction, the Cauchy index of two polynomials Q and P on an interval is, roughly

speaking, the number of jumps from −∞ to +∞ minus the number of jumps from +∞ to −∞ that

the function associated to their quotient
Q

P
has in this interval. We recall now the precise definition

of Cauchy index following [3, Section 3].
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Notation 4 Let x ∈ R, we denote the sign of x by

sign(x) :=


1 if x > 0,

0 if x = 0,

−1 if x < 0.

Definition 5 Let x ∈ R and P,Q ∈ R[X].

• If P,Q ∈ R[X] \ {0}, the polynomials P and Q can be written uniquely as

P = (X − x)µ(x)P̃ ,

Q = (X − x)ν(x)Q̃,

with µ(x), ν(x) ∈ Z≥0 and P̃ (x) 6= 0, Q̃(x) 6= 0.

For ε ∈ {+1,−1}, define

Indεx(Q,P ) :=


1
2sign(Q̃(x)P̃ (x)) if ε = +1 and µ(x) > ν(x),

1
2(−1)µ(x)−ν(x)sign(Q̃(x)P̃ (x)) if ε = −1 and µ(x) > ν(x),

0 otherwise.

• If P = 0 or Q = 0, define

Indεx(Q,P ) := 0.

• The Cauchy index of (Q,P ) at x is

Indx(Q,P ) := Ind+
x (Q,P )− Ind−x (Q,P ).

We illustrate this notion considering the graph of the function
Q

P
around x in each different case.

x x x x

Indx(Q,P ) = 0 Indx(Q,P ) = 1 Indx(Q,P ) = −1 Indx(Q,P ) = 0

Definition 6 Let a, b ∈ R and P,Q ∈ R[X].
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• If a < b and P,Q 6= 0, the Cauchy index of (Q,P ) on the interval [a, b] is

Indba(Q,P ) := Ind+
a (Q,P ) +

∑
x∈(a,b)

Indx(Q,P )− Ind−b (Q,P ),

where the sum is well-defined since only roots x of P in (a, b) contribute.

• If a > b and P,Q 6= 0,

Indba(Q,P ) := −Indab (Q,P ).

• In every other case,

Indba(Q,P ) := 0.

In the following picture we consider again the graph of the function
Q

P
, this time in [a, b].

a b a b

Indba(Q,P ) = 1 + 0 + 1 = 2 Indba(Q,P ) = −1− 1− 1
2 = −5

2

Note that the Cauchy index of a pair of polynomials on an interval belongs to 1
2Z and it is not

necessarily an integer number.

Remark 7 If both P and Q are multiplied by S ∈ R[X] \ {0}, it is clear that Indba(Q,P ) =

Indba(QS,PS), so when P 6= 0 the Cauchy index is associated to the rational function
Q

P
rather

than to the pair of polynomials (Q,P ). However, when P = 0, it is convenient for us to define also

the Cauchy index, even if the rational function
Q

P
does not make sense. This is the reason why we

use the notation Indba(Q,P ) in all cases.

Remark 8 Even though it is not reflected in the notation, the field R plays a fundamental role in

the definition of the Cauchy index. For instance, consider P := X2 − 2, Q := 1 ∈ Q[X] ⊂ R[X]. If we

take R = Q we have

Ind2
1(Q,P ) = 0,

whereas if we take R = R we have

Ind2
1(Q,P ) = 1.
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Remark 9 Cauchy index is invariant by affine change of variables: given any affine function ` :

[a, b]→ R, and P,Q ∈ R[X],

Ind
`(b)
`(a)(Q,P ) = Indba(Q ◦ `, P ◦ `).

(By an affine function, we mean a function of type `(X) = cX + d with c, d ∈ R.)

Remark 10 Cauchy index is additive on intervals: given any a, c1, . . . , ck, b ∈ R and P,Q ∈ R[X],

Indba(Q,P ) = Indc1a (Q,P ) +
∑

1≤i≤k−1
Ind

ci+1
ci (Q,P ) + Indbck(Q,P ).

2.2 Winding number

From now on, we consider the usual identification C ∼ R2.

The winding number of a closed curve in C is a classical object which counts, by means of an analytic

expression, the number of counterclockwise turns of the curve around the origin. In this paper, we will

always restrict to curves which are the image of a polynomial function F ∈ C[X,Y ] on the border of

a rectangle Γ ⊂ R2 whose sides are parallel to the axis. For curves of this type, we recall the algebraic

definition of winding number following [3]. Note that the border of Γ, denoted by ∂Γ, is simply the

union of four segments.

Notation 11 For F ∈ C[X,Y ], we denote Fre and Fim the real and imaginary parts of F , i.e. the

unique polynomials in R[X,Y ] such that the identity

F (X,Y ) = Fre(X,Y ) + iFim(X,Y )

in C[X,Y ] holds.

Definition 12 Let x0, x1, y0, y1 ∈ R with x0 < x1 and y0 < y1 and let Γ ⊂ R2 be the rectangle

Γ := [x0, x1]× [y0, y1]. For F ∈ C[X,Y ] the winding number of F on ∂Γ is defined as

w(F | ∂Γ) := 1
2

(
Indx1x0(Fre(X, y0), Fim(X, y0)) + Indy1y0(Fre(x1, Y ), Fim(x1, Y ))

+ Indx0x1(Fre(X, y1), Fim(X, y1)) + Indy0y1(Fre(x0, Y ), Fim(x0, Y ))
)
.

Notice that it follows from the definition of winding number that we are going through ∂Γ following

the counterclock sense. The idea behind this algebraic definition is to count one half of a turn each

time this curve crosses the X-axis from quadrant IV to I or from quadrant II to III, and minus one

half of a turn each time it crosses the X-axis from quadrant I to IV or from quadrant III to II. Since

these crossings coincide with jumps of the rational function
Fre

Fim
from −∞ to +∞ and from +∞ to

−∞ respectively, the Cauchy index is an appropriate algebraic tool to count the number of turns

counterclockwise, which is (when F does not vanish on ∂Γ) the classical definition of the winding

number.
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III

III IV

w(F | ∂Γ) = 2

Along the paper we will follow the convention of using X,Y and T for real variables, i.e. variables

that will only be eventually evaluated at elements of R, and Z for a complex variable, i.e. a variable

that will be eventually evaluated at arbitrary elements of C.

To F ∈ C[Z] we associate F̄ (X,Y ) := F (X + iY ) ∈ C[X,Y ]. Abusing slightly notation, we denote

Fre, Fim, w(F | ∂Γ) for F̄re, F̄im, w(F̄ | ∂Γ).

Example 13 (See [3, Proposition 4.4]) Let Γ := [x0, x1]× [y0, y1] ⊂ R2. For z ∈ C, we have

w(Z − z | ∂Γ) =


1 if z is in the interior of Γ,

1/2 if z is in one of the edges of Γ,

1/4 if z is a vertex of Γ,

0 if z is in the exterior of Γ.

Lemma 14 Let Γ := [x0, x1] × [y0, y1] ⊂ R2 and consider a grid partition of Γ into a finite number

of rectangles Γ1, . . . ,Γs. For F ∈ C[X,Y ], we have

w(F | ∂Γ) =
∑

1≤i≤s
w(F | ∂Γi).

Proof: After replacing the winding number of F on ∂Γ1, . . . , ∂Γs by its definition, along each edge in

the interior of Γ we have to add and subtract the Cauchy index of the same pair of polynomials, which

adds up to zero. On the other hand, using the additivity of Cauchy index on intervals (Remark 10),

adding on the remaining edges we obtain the winding number of F on ∂Γ.

Γ1

Γs
Γ
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To finish this subsection, we prove the following lemma which will play an important role at the end

of Section 3 when applying homotopy tools.

Lemma 15 Let x0, x1, y0, y1, t0, t1 ∈ R with x0 < x1, y0 < y1 and t0 < t1. Let ΓT := [x0, x1] ×
[y0, y1],ΓY := [x0, x1]× [t0, t1],ΓX := [y0, y1]× [t0, t1] ⊂ R2. For F ∈ C[X,Y, T ], we have

− w(F (X,Y, t0) | ∂ΓT ) + w(F (X, y0, T ) | ∂ΓY ) − w(F (x0, Y, T ) | ∂ΓX)

+ w(F (X,Y, t1) | ∂ΓT ) − w(F (X, y1, T ) | ∂ΓY ) + w(F (x1, Y, T ) | ∂ΓX) = 0.

Therefore, if

w(F (X, y0, T ) | ∂ΓY ) = w(F (x0, Y, T ) | ∂ΓX) = w(F (X, y1, T ) | ∂ΓY ) = w(F (x1, Y, T ) | ∂ΓX) = 0

then

w(F (X,Y, t0) | ∂ΓT ) = w(F (X,Y, t1) | ∂ΓT ).

Proof: Consider the rectangular parallelepiped [x0, x1] × [y0, y1] × [t0, t1] ⊂ R3. After replacing each

winding number by its definition, along each edge of this parallelepiped we have to add and subtract

the Cauchy index of the same pair of polynomials; therefore obtaining 0 as the final result.

x0 x1

y0

y1

t0

t1

�

2.3 The intermediate value property for polynomials of bounded degree

Our main goal in this paper is to prove that [IVT]d2 implies [FTA]d. So, from now, we take a fixed

value of d ∈ Z≥1 and we suppose that (R,≤) is an ordered field satisfying [IVT]d2 but not necessarily

[IVT]. Since [FTA]1 holds even under no assumptions on (R,≤), we suppose d ≥ 2.

Note that the current assumption on (R,≤) is rather subtle, since for instance, it is only for P ∈ R[X]

with degP ≤ d2 that we can claim that if P has no roots on an interval I ⊂ R, then P has constant

sign (different from 0) on I.

The purpose of this section is to reexamine some results from [3] concerning the Cauchy index and

the winding number as well as to prove that they still hold in the present setting, despite the fact
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that our hypotheses are weaker than in [3]. More explicitly, in [3] the assumption is that R is a real

closed field, and therefore it satisfies [IVT], whereas we only suppose [IVT]d2 . Nevertheless, in the

results reviewed in this section, following the proofs in [3] or a slight variation of it, it turns out that

the Intermediate Value Theorem is applied to polynomials of degree less than or equal to d2, and this

is enough to ensure that these results are still valid. For completeness, we include anyway full proofs

of the statements in this section. We will use many times the following easy remark.

Remark 16 For x, y ∈ {−1, 0, 1} with (x, y) 6= (0, 0),

sign(xy) = 1− |x− y|.

We introduce the following useful notation.

Notation 17 Let x ∈ R and P,Q ∈ R[X], we denote the sign variation of (P,Q) at x by

Varx(P,Q) :=
1

2

∣∣∣sign(P (x))− sign(Q(x))
∣∣∣.

For a, b ∈ R, we denote by Varba(P,Q) the sign variation of (P,Q) at a minus the sign variation of

(P,Q) at b; namely,

Varba(P,Q) := Vara(P,Q)−Varb(P,Q).

We first prove the following property, which is a refinement of the well known the inversion formula.

Proposition 18 Let a, b ∈ R and P,Q ∈ R[X] with degP,degQ ≤ d2 and such that P and Q have

no common root in [a, b]. Then

Indba(Q,P ) + Indba(P,Q) = Varba(P,Q)

Proof: We follow the arguments from [3, Theorem 3.9]. If P = 0 or Q = 0, since P and Q have no

common root in [a, b] we have that Varba(P,Q) = 0 and the result holds. Suppose now that P 6= 0 and

Q 6= 0. From the invariance by affine change of variables and the additivity on intervals of Cauchy

index (Remarks 9 and 10) we suppose that a is the only possible root of P or Q on [a, b] and that a

is indeed a root of P .

Write

P = (X − a)µ(a)P̃ ,
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with µ(a) ∈ Z>0 and P̃ (a) 6= 0. Then using Remark 16 we have

Indba(Q,P ) + Indba(P,Q) = 1
2sign(Q(a)P̃ (a)) + 0

= 1
2 −

1
2

∣∣∣sign(P̃ (a))− sign(Q(a))
∣∣∣

= 1
2 −

1
2

∣∣∣sign(P (b))− sign(Q(b))
∣∣∣

= 1
2 −Varb(P,Q)

= Vara(P,Q)−Varb(P,Q)

= Varba(P,Q).

�

Next proposition shows the additivity of the winding number with respect to the product of complex

polynomials.

Proposition 19 Let Γ := [x0, x1] × [y0, y1] ⊂ R2 and F,G ∈ C[X,Y ] with degFG ≤ d2 and such

that F and G do not vanish in ∂Γ. Then

w(FG | ∂Γ) = w(F | ∂Γ) + w(G | ∂Γ).

The proof of Proposition 19 uses the next lemma as an auxiliary result.

Lemma 20 Let a, b ∈ R and P,Q,R, S ∈ R[X] with deg(PR −QS), deg(PS + QR) ≤ d2 and such

that P and Q have no common root in [a, b] and R and S have no common root in [a, b]. Then

Indba (PR−QS,PS +QR) =

Indba (P,Q) + Indba (R,S) +
1

2
sign

((
(PS +QR)QS

)
(a)
)
− 1

2
sign

((
(PS +QR)QS

)
(b)
)
.

Remark 21 In [3, Theorem 4.5] there is a statement with a slightly different formula and no assump-

tion on polynomials P,Q,R, S ∈ R[X]. We observed that this formula does not hold for the case

a := 0, b := 1, P := 1, Q := X,R := X − 1, S := X. Notice that in this example, P,Q,R, S actually

meet our extra assumptions, but since PS + QR = QS = X2, if we deal with the rational function

PS + QR/QS as in [3, Theorem 4.5], there is a simplification which is the cause of the trouble. For

this reason, we work with polynomials and not rational functions; but then the extra assumptions

of not having common roots are necessary, since common factors would not modify the Cauchy in-

dices but could modify the signs involved in the formula in Lemma 20. To illustrate this situation,

a := 0, b := 1, P := X − 1, Q := X(X − 1), R := X − 1, S := X would be a counterexample if we made

no assumptions.
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Proof of Lemma 20: First, we prove that the condition deg(PR − QS), deg(PS + QR) ≤ d2 implies

degP,degQ,degR,degS ≤ d2. If at least one of the polynomials P , Q, R or S equals 0, then the

degree bound on the other three polynomials clearly holds. If none of these polynomials equals 0,

suppose that the claim does not hold and let us look for a contradiction. Respectively denote by

p, q, r, s ∈ R their leading coefficients. The fact that there is a degree drop in PR−QS and PS+QR

with respect to one of the polynomials P,Q,R or S implies that pr − qs = 0 and ps + qr = 0. Since

p, q, r, s 6= 0, we deduce that p2 + q2 = r2 + s2 = 0, and this is not possible since R is an ordered field.

Now we continue to prove the lemma following the ideas in [3, Theorem 4.5]. If Q = 0, S = 0 or

PS+QR = 0, the result is immediate. If P = 0 or R = 0, the result follows from Proposition 18 using

Remark 16. In every other case, from the invariance by affine change of variables and the additivity on

intervals of Cauchy index (Remarks 9 and 10) we suppose that a is the only possible root of P,Q,R, S

or PS +QR on [a, b]. We consider several cases as follows.

• If Q(a) 6= 0, S(a) 6= 0 and (PS +QR)(a) 6= 0, then

Indba (PR−QS,PS +QR) = Indba (P,Q) = Indba (R,S) = 0

and

sign
((

(PS +QR)QS
)
(a)
)

= sign
((

(PS +QR)QS
)
(b)
)

so the identity holds.

• If Q(a) 6= 0, S(a) 6= 0 and (PS +QR)(a) = 0, then

Indba (P,Q) = Indba (R,S) = sign
((

(PS +QR)QS
)
(a)
)

= 0.

On the other hand
P (a)

Q(a)
= −R(a)

S(a)
,

so

(PR−QS)(a) = Q(a)S(a)

(
P (a)

Q(a)

R(a)

S(a)
− 1

)
︸ ︷︷ ︸

<0

6= 0

Write PS +QR = (X − a)µT with µ ∈ Z>0 and T (a) 6= 0. Note that sign(T (a)) = sign(T (b)) =

sign((PS +QR)(b)). Then we have

Indba (PR−QS,PS +QR) = −1

2
sign

(
Q(a)S(a)T (a)

)
= −1

2
sign

((
(PS +QR)QS

)
(b)
)

so the identity holds.

• If Q(a) = 0 and S(a) 6= 0, since P and Q have no common root in [a, b] then (PS +QR)(a) 6= 0

and we have that

Indba (PR−QS,PS +QR) = Indba (R,S) = sign
((

(PS +QR)QS
)
(a)
)

= 0.

13



Write Q = (X − a)µQ̃ with µ ∈ Z>0 and Q̃(a) 6= 0. Then

Indba (P,Q) =
1

2
sign

(
P (a)Q̃(a)

)
=

1

2
sign

((
(PS +QR)Q̃S

)
(a)
)

=
1

2
sign

((
(PS +QR)QS

)
(b)
)

so the identity holds.

• If Q(a) 6= 0 and S(a) = 0 we proceed in a similar way to the previous case.

• If Q(a) = 0 and S(a) = 0, then (PS +QR)(a) = 0, and since P and Q have no common root in

[a, b] and R and S have no common root in [a, b], P (a) 6= 0, R(a) 6= 0.

Write PS + QR = (X − a)µ0T with µ0 ∈ Z>0 and T (a) 6= 0, Q = (X − a)µ1Q̃ with µ1 ∈ Z>0

and Q̃(a) 6= 0 and S = (X − a)µ2S̃ with µ2 ∈ Z>0 and S̃(a) 6= 0. We denote

σ1 := sign(P (a)) ∈ {−1, 1},
σ2 := sign(R(a)) ∈ {−1, 1},
σ3 := sign(T (a)) ∈ {−1, 1},
σ4 := sign(Q̃(a)) ∈ {−1, 1},
σ5 := sign(S̃(a)) ∈ {−1, 1}.

We need to prove that

σ1σ2σ3 = σ1σ4 + σ2σ5 − σ3σ4σ5

or, equivalently, (
σ1σ2 + σ4σ5

)
σ3 = σ1σ4 + σ2σ5 (1)

We take into account that σ1 = sign(P (b)), σ2 = sign(R(b)), σ3 = sign((PS + QR)(b)), σ4 =

sign(Q(b)) and σ5 = sign(S(b)) and we divide in cases as follows.

– If σ1 = σ5 and σ2 = σ4, then σ3 = 1 and equation (1) holds.

– If σ1 = −σ5 and σ2 = −σ4 then σ3 = −1 and equation (1) holds.

– In every other case, exactly three elements in the set {σ1, σ2, σ4, σ5} are equal and the

remaining one is different. Then

σ1σ2 + σ4σ5 = σ1σ4 + σ2σ5 = 0

and equation (1) holds.

�

Proof of Proposition 19: The proof is done in as in [3, Corollary 4.6 and Corollary 4.7]. After replacing

each winding number by its definition, we apply Lemma 20 once on each side of ∂Γ. For instance,

on the bottom side, we take a := x0, b := x1, P := Fre(X, y0), Q := Fim(X, y0), R := Gre(X, y0) and

S := Gim(X, y0). The identity in the lemma is obtained after checking that on each vertex of ∂Γ, signs

cancel after being added on one side and subtracted on the other side. �
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From Example 13 and Proposition 19 the following result is easily deduced.

Example 22 For e ∈ Z≥1 with e ≤ d2,

w(Ze | ∂Γ) = e.

if Γ ⊂ R2 is a rectangle containing 0 in its interior.

Finally, we recall the property saying that the winding number vanishes in a small rectangle around

a non-zero of a polynomial.

Proposition 23 Let (x, y) ∈ R2 and F ∈ C[X,Y ] with degF ≤ d2 and such that F (x, y) 6= 0. Then

there exists δ ∈ R, δ > 0 such that for every rectangle Γ ⊂ [x− δ, x+ δ]× [y − δ, y + δ] ⊂ R2, F does

not vanish in Γ and w(F | ∂Γ) = 0.

Proof: First, since [IVT]d2 holds, it is easy to see that for every a ∈ R with a ≥ 0 and every n ∈
Z≥1, n ≤ d2, there is a unique c ∈ R such that c ≥ 0 and cn = a, which we note as c = a1/n. It is clear

that if a > 0 then a1/n > 0.

Then we just follow the arguments from [3, Lemma 5.2]. We take

G :=
i

F (x, y)
F ∈ C[X,Y ]

and we need to prove that there exists δ ∈ R, δ > 0 such that Gim ∈ R[X,Y ] does not vanish in

[x− δ, x+ δ]× [y − δ, y + δ] ⊂ R2. In this case, for every rectangle Γ ⊂ [x− δ, x+ δ]× [y − δ, y + δ],

we have that G ∈ C[X,Y ] does not vanish in Γ and w(G | ∂Γ) = 0. Then the lemma follows using

Proposition 19.

Suppose now

Gim =
∑

j=(j1,j2)

j1+j2≤d2

cj(X − x)j1(Y − y)j2 .

Since G(x, y) = i we know that Gim (x, y) = 1. If Gim is constant, then any positive value of δ works.

Otherwise, taking

∆ =
1

2
(d2 + 1)(d2 + 2)

and

δ := min

{(
1

∆|cj |

) 1
j1+j2

| j = (j1, j2), 1 ≤ j1 + j2 ≤ d2, cj 6= 0

}
> 0,

for every (z, w) ∈ [−δ, δ]× [−δ, δ] we have

Gim (x+ z, y + w) = 1 +
∑

j=(j1,j2)

1≤j1+j2≤d2

cjz
j1wj2 ≥ 1−

∑
j=(j1,j2)

1≤j1+j2≤d2

|cj |δj1+j2 ≥ 1−
∑

j=(j1,j2)

1≤j1+j2≤d2

1

∆
=

1

∆
> 0.

�
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2.4 Subresultant polynomials

Let D be an integral domain. The subresultant polynomial sequence of two polynomials P,Q ∈ D[X]

is a sequence of polynomials in D[X] which contains the classical Sylvester resultant of P,Q; more

specifically, the last subresultant polynomial, which actually belongs to D, coincides up to sign with the

Sylvester resultant. Even though the subresultant polynomials of P and Q are defined in a completely

different way, they are closely related to the polynomials appearing in the remainder sequence of

P and Q, as reflected in the Structure Theorem of Subresultants (Theorem 26). It can be proved

that the behavior of their coefficients is better controlled than the behavior of the coefficients of the

polynomials in the remainder sequence, and for this reason, they constitute a widely used tool in gcd

computation, real root counting and many other problems in computational algebra. In Section 3, we

will use subresultants in the particular case of D = R[Y ] and the good behavior of their coefficients

implies a good control of the degree in Y (Proposition 27), which will be a key point to obtain our

main result.

We include now some definitions and properties concerning subresultants. We refer the reader to [1]

for proofs and details.

Definition 24 Let P,Q ∈ D[X] \ {0} with p := degP ≥ 1 and q := degQ < p.

• For 0 ≤ j ≤ q, the Sylvester-Habicht matrix SyHaj(P,Q) ∈ D(p+q−2j)×(p+q−j) is the matrix

whose rows are the polynomials

Xq−j−1P, . . . , P,Q, . . . ,Xp−j−1Q,

expressed in the monomial basis Xp+q−j−1, . . . , X, 1.

• For 0 ≤ j ≤ q, the j-th subresultant polynomial of P and Q, sResPj(P,Q) ∈ D[X] is the

polynomial determinant of SyHaj(P,Q), i.e.

sResPj(P,Q) :=
∑

0≤i≤j
det(SyHaj,i(P,Q)) ·Xi ∈ D[X]

where SyHaj,i(P,Q) ∈ D(p+q−2j)×(p+q−2j) is the matrix obtained by taking the p + q − 2j − 1

first columns and the (p + q − j − i)-th column of SyHaj(P,Q). By convention, we extend this

definition with

sResPp(P,Q) := P ∈ D[X],

sResPp−1(P,Q) := Q ∈ D[X],

sResPj(P,Q) := 0 ∈ D[X] for q < j < p− 1.

• For 0 ≤ j ≤ q, the j-th signed subresultant coefficient of P and Q, sRj(P,Q) ∈ D is the

coefficient of Xj in sResPj(P,Q). By convention, we extend this definition with

sRp(P,Q) := 1 ∈ D (even if P is not monic),

sRj(P,Q) := 0 ∈ D for q < j ≤ p− 1.
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• For 0 ≤ j ≤ p, sResPj(P,Q) is said to be defective if deg sResPj(P,Q) < j or, equivalently, if

sRj(P,Q) = 0.

We will also use the following notation.

Notation 25 Let P,Q ∈ D[X] \ {0} with p := degP ≥ 1 and q := degQ < p. Let (d0, . . . , ds) be

the sequence of degrees of the non-defective subresultant polynomials of P and Q in decreasing order

(note that d0 = p and d1 = q). For 1 ≤ i ≤ s,

Tdi−1−1(P,Q) := lcoeff(sResPdi−1−1(P,Q)) ∈ D \ {0}.

We extend this notation with Tp(P,Q) := 1 ∈ D \ {0}.

The following theorem is one of the most important results in the theory of subresultants. This result

has a long history [5]. We quote its more recent form in [1], which is a slight improvement of [7].

Theorem 26 (Structure Theorem of Subresultants) Let P,Q ∈ D[X]\{0} with p := degP ≥ 1

and q := degQ < p. Let (d0, . . . , ds) be the sequence of degrees of the non-defective subresultant

polynomials of P and Q in decreasing order and let d−1 := p+ 1. Then

• for 1 ≤ i ≤ s,
sResPdi−1−2(P,Q) = · · · = sResPdi+1(P,Q) = 0 ∈ D[X]

and sResPdi−1−1(P,Q) and sResPdi(P,Q) are proportional. More precisely,

sRdi(P,Q) · sResPdi−1−1(P,Q) = Tdi−1−1(P,Q) · sResPdi(P,Q) ∈ D[X]

with

sRdi(P,Q) = (−1)
1
2
(di−1−di)(di−1−di−1) Tdi−1−1(P,Q)di−1−di

sRdi−1
(P,Q)di−1−di−1

∈ D.

This implies deg sResPdi−1−1(P,Q) = di.

• for 1 ≤ i ≤ s,

Tdi−2−1(P,Q) · sRdi−1
(P,Q) · sResPdi−1(P,Q)

= −Rem
(
Tdi−1−1(P,Q) · sRdi(P,Q) · sResPdi−2−1(P,Q), sResPdi−1−1(P,Q)

)
∈ D[X]

and

Quot
(
Tdi−1−1(P,Q) · sRdi(P,Q) · sResPdi−2−1(P,Q), sResPdi−1−1(P,Q)

)
∈ D[X]

(where Rem and Quot means the remainder and quotient in the euclidean division in qf(D)[X]

of the first polynomial by the second polynomial).
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• sResPds−1−1(P,Q) ∈ D[X] and sResPds(P,Q) ∈ D[X] are the greatest common divisor of P and

Q in qf(D)[X] multiplied by elements in D. In addition, if ds > 0 then

sResPds−1(P,Q) = · · · = sResP0(P,Q) = 0 ∈ D[X].

sResPd0 = sResPp = P

sResPd0−1 = sResPp−1 = Q

0
...

0
sResPd1 = sResPq
sResPd1−1

0
...
...

0
sResPd2

...

...
sResPds−1−1

0
...
...

0
sResPds

0
...

0

Proof: See [1, Chapter 8]. �

As said before, in Section 3 we will use subresultants in the particular case of D = R[Y ] and we will

need some degree bounds which we develop here.

Proposition 27 Let P,Q ∈ R[X,Y ] \ {0} with p := degX P ≥ 1, q := degX Q < p and total degree

degP,degQ ≤ d (with d ≥ p). We consider subresultants with respect to variable X (this is to say,

following Definition 24 we take D = R[Y ]). For 0 ≤ j ≤ q and 0 ≤ i ≤ j, the degree in Y of the

coefficient of Xi in sResPj(P,Q) ∈ R[Y ][X] is bounded by d2.

Proof: Let P =
∑

0≤i≤p ai(Y )Xi and Q =
∑

0≤i≤q bi(Y )Xi; then degY ai(Y ),degY bi(Y ) ≤ d − i. By

definition,

sResPj(P,Q) =
∑

0≤i≤j
det(SyHaj,i(P,Q)) ·Xi ∈ R[Y ][X],
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where SyHaj,i(P,Q) ∈ R[Y ](p+q−2j)×(p+q−2j) is the matrix obtained by taking the p + q − 2j − 1

first columns and the (p + q − j − i)-th column of SyHaj(P,Q) ∈ R[Y ](p+q−2j)×(p+q−j). By defining

ai(Y ) = 0 if i ≥ p+1 or i ≤ −1 and bi(Y ) = 0 if i ≥ q+1 or i ≤ −1 we have that for 1 ≤ k ≤ p+q−2j

and 1 ≤ ` ≤ p+ q − j,

(
SyHaj(P,Q)

)
k`

=

{
ap+k−`(Y ) if k ≤ q − j,
bp+2q−2j+1−k−`(Y ) if k ≥ q − j + 1.

The proof can be completed by bounding the degree of any possible nonzero product of entries of

SyHaj,i(P,Q) with one element per row and column. We obtain that the degree in Y of the coefficient

of Xi in sResPj(P,Q) ∈ R[Y ][X] is bounded by

d(p+ q − 2j)− pq + j2 + j − i ≤ d(p+ q)− pq ≤ d2.

�

3 Counting complex roots

In this section we introduce (σ, τ)-chains, develop suitable generalizations of results from [3] and prove

Theorem 3. As said before, till the end of the paper, we take a fixed value of d ∈ Z≥2 and we suppose

that (R,≤) is an ordered field satisfying [IVT]d2 but not necessarily [IVT].

3.1 (σ, τ)-chains and Cauchy index

A Sturm chain with respect to I is a finite sequence of univariate polynomials (P0, . . . , Pn) ∈ R[X]

such that for every x ∈ I and 0 < i < n, if Pi(x) = 0 then Pi−1(x)Pi+1(x) < 0 (see [3, Definition

3.10]).

An important property of Sturm chains is its connection to Cauchy indices, given by Proposition 28

([3, Theorem 3.11])

Proposition 28 Let a, b ∈ R with a < b, I := [a, b], n ∈ Z≥1. If (P0, . . . , Pn) is a Sturm chain with

respect to I, then

Indba(P1, P0) + Indba(Pn−1, Pn) =
∑

1≤i≤n
Varba(Pi−1, Pi)

Example 29 Here are important examples illustrating the definition of Sturm chains. Item b) plays

a key role in the proof of the Main Lemma (see [3, Lemma 5.3]) stating that if a polynomial does

not vanish in a rectangle, then the associated winding number is zero, which is a key step of the

algebraic-geometric proof of the Fundamental Theorem of Algebra in [3].

a) Let P0, P1 ∈ R[X] \ {0} with d0 := degP0 ≥ 1, d1 := degP1 < d0 and P0, P1 coprime. Let

(d0, d1, . . . , ds) be the sequence of degrees of the remainder sequence of P0, P1 in decreasing order.
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We consider the classical Sturm sequence of P0, P1 : for 2 ≤ i ≤ s, we define

Pi = −Rem(Pi−2, Pi−1).

It is clear that the Sturm sequence (P0, P1, . . . , Ps) is a Sturm chain.

b) Given P,Q ∈ R[Y ][X] \ {0}, p := degX P ≥ 1, q := degX P < p, e the smallest even natural

number greater than or equal to p− q and C ∈ R[Y ] the leading coefficient of Q. We define

Prem(P,Q) = Rem(CeP,Q) ∈ R[Y ][X].

Let P0, P1 ∈ R[Y ][X] \ {0} with d0 := degX P0 ≥ 1, d1 := degX P1 < d0 and P0, P1 coprime in

the unique factorization domain R[X,Y ]. Let (d0, d1, . . . , ds) be the sequence of degrees in X of

the pseudo-remainders in decreasing order. For 2 ≤ i ≤ s, we define

Pi := −Prem(Pi−2, Pi−1) ∈ R[Y ][X]

and for 1 ≤ i ≤ s, Ci ∈ R[Y ] the leading coefficient of Pi. Since P0 and P1 are coprime in

R[X,Y ], we have that Ps = Cs ∈ R[Y ]. Take an interval [b, b′] such that C1, . . . , Cs have no

zero on [b, b′]. We have that

– for any y ∈ [b, b′], (P0(X, y), . . . , Ps(X, y)) ∈ R[X] is a Sturm chain with respect to R,

– for any x ∈ R, (P0(x, Y ), . . . , Ps(x, Y )) ∈ R[Y ] is Sturm chain with respect to [b, b′].

We wish to use subresultants rather than (pseudo)-remainder sequences to prove the Quantitative

Main Lemma (Lemma 38), taking advantage of good degree bounds for subresultants (Proposition

27). Unfortunately subresultants are not necessarily Sturm chains.

This is our motivation to introduce now the notion of (σ, τ)-chain, which is a generalization of the

notion of Sturm chain. Then, in Proposition 34 and Corollary 35, we develop a modified sign changing

counting rule, so that we can still use (σ, τ)-chains to compute Cauchy indices.

The benefit of this generalization is that the subresultant polynomial sequence will fit in this definition

for some pair (σ, τ), which is an essential ingredient for the proof of the Quantitative Main Lemma

(Lemma 38) where we use the good degree bounds on subresultants obtained in Proposition 27.

Definition 30 Let I be an interval of R, n ∈ Z≥1 and σ, τ ∈ {−1, 1}n−1 with σ = (σ1, . . . , σn−1) and

τ = (τ1, . . . , τn−1).

A sequence of polynomials (S0, . . . , Sn) ∈ R[X] is a (σ, τ)-chain with respect to I if for 1 ≤ i ≤ n− 1

there exists polynomials Ai, Bi, Ci ∈ R[X] such that

1. AiSi+1 +BiSi + CiSi−1 = 0,

2. for every x ∈ I, sign(Ai(x)) = σi,

3. for every x ∈ I, sign(Ci(x)) = τi.
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A sequence of polynomials (S0, . . . , Sn) ∈ R[X] is a Sturm (σ, τ)-chain with respect to I if it is a

(σ, τ)-chain with respect to I and Sn−1 and Sn have no common root on I.

A sequence of polynomials (S0, . . . , Sn) ∈ R[X] is a good Sturm (σ, τ)-chain with respect to I if it is

a (σ, τ)-chain with respect to I and Sn has no root on I.

Note that for n = 1, taking {−1, 1}0 = {•}, any sequence (S0, S1) in R[X] is a (•, •)-chain with respect

to I.

Note also that if a sequence of polynomials (S0, . . . , Sn) in R[X] is a (σ, τ)-chain with respect to I, then

for every 0 ≤ m ≤ n−1, (Sm, . . . , Sn) is a (σ′, τ ′)-chain with respect to I, with σ′ := (σm+1, . . . , σn−1)

and τ ′ := (τm+1, . . . , τn−1). The analogous statements hold also for Sturm (σ, τ)-chains and good

Sturm (σ, τ)-chains.

Example 31 Here are important examples illustrating the definition of (σ, τ)-chains. Item b) plays

a key role in the proof of our Quantitative Main (Lemma 38) which is a crucial step in the proof of

our Quantitative Fundamental Theorem of Algebra (Theorem 3).

a) Let S0, S1 ∈ R[X] \ {0} with d0 := degS0 ≥ 1, d1 := degS1 < d0 and S0, S1 coprime. Let

(d0, d1, . . . , ds) be the sequence of degrees of the non-defective subresultant polynomials of S0, S1
in decreasing order (note that d0 = p, d1 = q), and d−1 := p + 1. Finally, for 2 ≤ i ≤ s, we

define

Si := sResPdi−1−1(S0, S1) ∈ R[X]

(note that the above identity also holds for i = 0, 1). Since S0 and S1 are coprime in R[X], by

the Structure Theorem of Subresultants (Theorem 26) we have that Ss ∈ R and ds = 0. Also,

defining for 1 ≤ i ≤ s− 1

Ai := Tdi−2−1(S0, S1) · sRdi−1
(S0, S1) ∈ R \ {0}

Bi := −Quot
(
Tdi−1−1(S0, S1) · sRdi(S0, S1) · Si−1, Si

)
∈ R[X],

Ci := Tdi−1−1(S0, S1) · sRdi(S0, S1) ∈ R \ {0},

we have

AiSi+1 +BiSi + CiSi−1 = 0.

We define σi := sign(Ai) and τi := sign(Ci) for 1 ≤ i ≤ s− 1 and we have that (S0, S1, . . . , Ss)

is a good Sturm (σ, τ)-chain.

b) Let S0, S1 ∈ R[X,Y ] \ {0} with p := degX S0 ≥ 1, q := degX S1 < p and S0, S1 coprime in

the unique factorization domain R[X,Y ]. Let (d0, d1, . . . , ds) be the sequence of degrees of the

non-defective subresultant polynomials in decreasing order (note that d0 = p and d1 = q), and

d−1 := p+ 1; where all the subresultants are defined considering X as the main variable (this is

to say, D = R[Y ] in Definition 24). Finally, for 2 ≤ i ≤ s, we define

Si := sResPdi−1−1(S0, S1) ∈ R[Y ][X]
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(note that the above identity also holds for i = 0, 1). Since S0 and S1 are coprime in R[X,Y ],

by the Structure Theorem of Subresultants (Theorem 26) we have that Ss ∈ R[Y ]. Also, defining

for 1 ≤ i ≤ s− 1

Ai := Tdi−2−1(S0, S1) · sRdi−1
(S0, S1) ∈ R[Y ] \ {0}

Bi := −Quot
(
Tdi−1−1(S0, S1) · sRdi(S0, S1) · Si−1, Si

)
∈ R[Y ][X],

Ci := Tdi−1−1(S0, S1) · sRdi(S0, S1) ∈ R[Y ] \ {0},

we have

AiSi+1 +BiSi + CiSi−1 = 0.

Take an interval [b, b′] such that Ss, Ai and Ci, for i = 1, . . . , s− 1, have constant sign different

from 0 on [b, b′]. We define then σ = (σ1, . . . , σs−1), τ = (τ1, . . . , τs−1) ∈ {−1, 1}s−1 by choosing

any c ∈ [b, b′] and taking σi := sign(Ai(c)) and τi := sign(Ci(c)) for 1 ≤ i ≤ s− 1. In this way,

since also Ss ∈ R[Y ] does not vanish on [b, b′], we have that

– for any y ∈ [b, b′], (S0(X, y), . . . , Ss(X, y)) ∈ R[X] is a good Sturm (σ, τ)-chain with respect

to R,

– for any x ∈ R, (S0(x, Y ), . . . , Ss(x, Y )) ∈ R[Y ] is a good Sturm (σ, τ)-chain with respect to

[b, b′].

Lemma 32 Let I be an interval of R, n ∈ Z≥1 and σ, τ ∈ {−1, 1}n−1. If a sequence of polynomials

(S0, . . . , Sn) in R[X] is a Sturm (σ, τ)-chain with respect to I, then for every 1 ≤ m ≤ n, Sm−1 and

Sm have no common root on I.

Proof: The proof can be easily done by reverse induction on m = n, . . . , 1, taking into account that

conditions 1 and 2 from Definition 30 imply that for m < n, any common root of Sm−1 and Sm would

also be a root of Sm+1. �

We introduce some more useful notation.

Notation 33 Let a, b ∈ R, n ∈ Z≥1, (S0, . . . , Sn) in R[X] and σ, τ ∈ {−1, 1}n−1. We define

ε(σ, τ)i :=
∏

1≤j≤i−1
σjτj

for 1 ≤ i ≤ n and

Var(σ, τ)ba(S0, . . . , Sn) :=
∑

1≤i≤n
ε(σ, τ)iVarba(Si−1, Si).

Note that it is always the case that ε(σ, τ)1 = 1. .

Proposition 34 Let a, b ∈ R with a < b, I := [a, b], n ∈ Z≥1 and σ, τ ∈ {−1, 1}n−1. If (S0, . . . , Sn)

is a Sturm (σ, τ)-chain with respect to I and degS0, . . . ,degSn ≤ d2, then

Indba(S1, S0) + ε(σ, τ)nIndba(Sn−1, Sn) = Var(σ, τ)ba(S0, . . . , Sn).
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Note that the identity in Proposition 28 ([3, Theorem 3.11]) is exactly the identity in Proposition 34

in the particular case σ = τ = (1, 1, . . . , 1)

Proof of Proposition 34: By Lemma 32, we know that for every 1 ≤ m ≤ n, Sm−1 and Sm have no

common root on I. We proceed then by induction on n. For n = 1, the result holds by Proposition

18.

Now we take n ≥ 2. Let x be a root of S1 on I (and therefore x is not a root neither of S0 nor of S2).

The identity

A1S2 +B1S1 + C1S0 = 0

implies that C1(x)S0(x) = −A1(x)S2(x) 6= 0 and then sign(S0(x)) = −σ1τ1sign(S2(x)). From this we

deduce

Indba(S0, S1) = −σ1τ1Indba(S2, S1).

We consider σ′ := (σ2, . . . , σn−1), τ
′ := (τ2, . . . , τn−1) and we apply the inductive hypothesis to the

Sturm (σ′, τ ′)-chain (S1, . . . , Sn). For 2 ≤ i ≤ n we have that ε(σ, τ)i = σ1τ1ε(σ
′, τ ′)i−1.

Finally, using Proposition 18,

Indba(S1, S0) + ε(σ, τ)nIndba(Sn−1, Sn)

= Indba(S1, S0) + Indba(S0, S1) + σ1τ1Indba(S2, S1) + σ1τ1ε(σ
′, τ ′)n−1Indba(Sn−1, Sn)

= Varba(S0, S1) + σ1τ1Var(σ′, τ ′)ba(S1, . . . , Sn)

= Var(σ, τ)ba(S0, . . . , Sn)

as we wanted to prove. �

Corollary 35 Let a, b ∈ R with a < b, I := [a, b], n ∈ Z≥1 and σ, τ ∈ {−1, 1}n−1. If (S0, . . . , Sn) is

a good Sturm (σ, τ)-chain with respect to I and degS0, . . . ,degSn ≤ d2, then

Indba(S1, S0) = Var(σ, τ)ba(S0, . . . , Sn).

Proof: Since (S0, . . . , Sn) is a good Sturm (σ, τ)-chain with respect to I, Sn has no roots on I and

Indba(Sn−1, Sn) = 0,

therefore the claim holds by Proposition 34, �

3.2 Quantitative Main Lemma

Our next goal is to prove a quantitative adaptation of the Main Lemma (see [3, Lemma 5.3]): using

[IVT]d2 and subresultants we want to prove that if F ∈ C[X,Y ] with degF ≤ d does not vanish on

Γ, then w(F | ∂Γ) = 0.
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In order to be able to work with subresultants, we need to consider separately for F ∈ C[X,Y ] the

degrees with respect to X and Y of Fre and Fim, and we wish each of these two degrees of Fre to drop

with respect to the respective degree of Fim. Since

(iF )re = −Fim and (iF )im = Fre,

up to multiplication by i, it will be enough for our purposes if these degrees are different. We will

also need some degree control on some auxiliary subresultant polynomials which will play a key role

in our proof. For these reasons, we introduce the following definition.

Definition 36 Let F ∈ C[X,Y ]. We say that F is well-controlled if the following conditions are

satisfied:

1. Fre, Fim 6= 0,

2. degX Fim 6= degX Fre and degY Fim 6= degY Fre.

For a well-controlled F , we denote by FX the unique polynomial in {F, iF} ⊂ C[X,Y ] such that

degX F
X
im > degX F

X
re . Similarly, we denote by F Y the unique polynomial in {F, iF} ⊂ C[X,Y ] such

that degY F
Y
im > degY F

Y
re .

Example 37 Let F ∈ C[Z] \C with F monic. Then F is well-controlled.

Now we are ready to prove our quantitative version of the Main Lemma [3, Lemma 5.3]. We stress the

fact that it is in the proof of the Quantitative Main Lemma (Lemma 38) that subresultant polynomials

play a key role to keep control of the degree of intermediate auxiliary polynomials. We need to use

the hypothesis [IVT]d2 for proving the result for a polynomial of degree ≤ d.

Lemma 38 (Quantitative Main Lemma) Suppose that (R,≤) is an ordered field satisfying [IVT]d2.

Let Γ := [x0, x1]× [y0, y1] ⊂ R2 and F ∈ C[X,Y ] with degF ≤ d and such that F does not vanish on

Γ. If F is well-controlled, then w(F | ∂Γ) = 0.

Proof: We will produce in several steps a suitable grid partition of Γ into a finite number of rectangles

Γ1, . . . ,Γs and we will prove that w(F | ∂Γi) = 0 for 1 ≤ i ≤ s. Then the result will follow from

Lemma 14. Let G be a greatest common divisor of Fre and Fim in the unique factorization domain

R[X,Y ] and let FX , F Y ∈ C[X,Y ] be as in Definition 36.

First step. We decompose FXim = GS0 and FXre = GS1 and note that we have degS0, degS1 ≤ d and

d ≥ p := degX S0 > q := degX S1.

We consider S0 and S1 as elements of R[Y ][X] and we take the subresultant polynomial sequence with

respect to the variable X (as in Section 2.4, taking D = R[Y ])

sResPp(S0, S1) = S0, sResPp−1(S0, S1) = S1, . . . , sResP0(S0, S1) ∈ R[Y ][X].
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For 0 ≤ j ≤ p and 0 ≤ i ≤ j, the degree in Y of the coefficient of Xi in sResPj(S0, S1) ∈ R[Y ][X]

is bounded by d2. This is so by Proposition 27 for 0 ≤ j ≤ q and by definition of subresultant

polynomials for q < j ≤ p.

We take (d0, d1, . . . , ds) as the sequence of degrees of the non-defective subresultant polynomials in

decreasing order (note that d0 = p and d1 = q), and d−1 := p + 1, and we define Y1 as the union of

the sets of roots in [y0, y1] of the polynomials Ss, Td−1−1(S0, S1), . . . , Tds−2−1(S0, S1), sRd0(S0, S1), . . . ,

sRds−1(S0, S1) ∈ R[Y ] \ {0} (note that Td−1−1(S0, S1) = sRd0(S0, S1) = 1, therefore these two polyno-

mials actually add no roots to the set Y1; note also that in the particular case s = 1, Y1 is just the

set of roots in [y0, y1] of the polynomial S1).

For uniformity reasons in exposition we define Y2 := {y0, y1} and we also define

Y3 := {y ∈ [y0, y1] | FXre (X, y) = 0 ∈ R[X] or FXim(X, y) = 0 ∈ R[X]}.

Finally, we define

Y := Y1 ∪ Y2 ∪ Y3.

We think of Y as the set of the Y -coordinates of bad behaving points in Γ. Suppose Y = {b1, . . . , b`}
with y0 = b1 < · · · < b` = y1.

Second step. We proceed as in the first step, but replacing polynomial FX by F Y and the roles of

variables X and Y , to produce a set X ⊂ [x0, x1], which we think of as the set of the the X-coordinates

of bad behaving points in Γ. Suppose X = {a1, . . . , ak} with x0 = a1 < · · · < ak = x1.

Third step. We take Z := X × Y ⊂ Γ. For each z = (a, b) ∈ Z, since F (a, b) 6= 0, by Proposition

23 there exist δz > 0 such that the winding number of F vanishes on any rectangle contained in

[a− δz, a+ δz]× [b− δz, b+ δz]. So we take δ > 0, with δ ≤ δz for every z ∈ Z and such that

x0 = a1 < a1 + δ < a2 − δ < a2 + δ < a3 − δ < · · · < ak−1 + δ < ak − δ < ak = x1

and

y0 = b1 < b1 + δ < b2 − δ < b2 + δ < b3 − δ < · · · < b`−1 + δ < b` − δ < b` = y1.

We divide intervals [x0, x1] and [y0, y1] using all these numbers above, and finally we use these divisions

of these intervals to obtain a grid partition of Γ = [x0, x1]× [y0, y1].
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x0 = a1

a1 + δ

a2 a3 ak−1

ak − δ

ak = x1

b1 = y0
b1 + δ

b2

b`−1

b` − δ
b` = y1

Now that the grid partition is defined, we have to prove that the winding number of F vanishes on

each rectangle in the grid. Take Γ′ = [a, a′]× [b, b′] ⊂ Γ as one of this rectangles. Then either there is

a single point of Z in Γ′ or there is no point of Z in Γ′. In the first case, w(F | ∂Γ′) = 0 by Proposition

23 and the choice of δ. In the second case, then either [a, a′] ∩ X = ∅ or [b, b′] ∩ Y = ∅.

Let us suppose first that [b, b′] ∩ Y = ∅ holds and prove that w(FX | ∂Γ′) = 0; then w(F | ∂Γ′) = 0 as

well either because FX = F or because FX = iF and by Proposition 19.

Since F is well-controlled of degree at most d and the polynomials Td−1−1(S0, S1), . . . , Tds−2−1(S0, S1),

sRd0(S0, S1), . . . , sRds−1(S0, S1) ∈ R[Y ] are coefficients of subresultant polynomials of S0 and S1 with

respect to variable X, their degree in Y is bounded by d2. Since none of these polynomials vanishes

on [b, b′], using the notation and results from Example 31 b), for 1 ≤ i ≤ s − 1 we have that Ai and

Ci have constant sign different from 0 on [b, b′] and

• for any y ∈ [b, b′], (S0(X, y), . . . , Ss(X, y)) ∈ R[X] is a good Sturm (σ, τ)-chain with respect to

[a, a′] with all its elements with degree bounded by d ≤ d2,

• for any x ∈ [a, a′], (S0(x, Y ), . . . , Ss(x, Y )) ∈ R[Y ] is a good Sturm (σ, τ)-chain with respect to

[b, b′] with all its elements with degree bounded by d2.

Taking into account that

0 6= FXre (X, b), FXim(X, b), FXre (X, b′), FXim(X, b′) ∈ R[X],

0 6= FXre (a, Y ), FXim(a, Y ), FXre (a′, Y ), FXim(a′, Y ) ∈ R[Y ],
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we conclude that

2w(FX | ∂Γ′) = Inda
′
a (FXre (X, b), FXim(X, b)) + Indb

′
b (FXre (a′, Y ), FXim(a′, Y ))

+Indaa′(F
X
re (X, b′), FXim(X, b′)) + Indbb′(F

X
re (a, Y ), FXim(a, Y ))

= Inda
′
a (S1(X, b), S0(X, b)) + Indb

′
b (S1(a

′, Y ), S0(a
′, Y ))

+Indaa′(S1(X, b
′), S0(X, b

′)) + Indbb′(S1(a, Y ), S0(a, Y ))

= Var(σ, τ)a
′
a (S0(X, b), . . . , Ss(X, b)) + Var(σ, τ)b

′
b (S0(a

′, Y ), . . . , Ss(a
′, Y ))

+Var(σ, τ)aa′(S0(X, b
′), . . . , Ss(X, b

′)) + Var(σ, τ)bb′(S0(a, Y ), . . . , Ss(a, Y ))

= 0

using Corollary 35.

In case that [a, a′] ∩ X = ∅ holds, we proceed in a similar way exchanging the roles of X and Y , to

prove that w(F Y | ∂Γ′) = 0, and then we have that w(F | ∂Γ′) = 0 again either because F Y = F or

because F Y = iF and by Proposition 19. �

3.3 The winding number counts the complex roots

From Example 13, Proposition 19 and the Quantitative Main Lemma 38 we deduce the following

result.

Theorem 39 Let Γ ⊂ R2 be a rectangle and F ∈ C[Z] with degF ≤ d and such that F does not

vanish in ∂Γ. Then w(F | ∂Γ) counts the number of zeros of F in the interior of Γ with multiplicity.

Proof: Factorize F = a · (Z − z1) · . . . (Z − zr) · F̃ with a ∈ C, z1, . . . , zr ∈ Γ \ ∂Γ and monic F̃ ∈ C[Z]

with no roots in Γ. If F̃ = 1 the result follows from Example 13 and Proposition 19. Otherwise,

since F̃ is well-controlled (Example 37) the result follows from Example 13 and Proposition 19 and

the Main Lemma 38. �

3.4 Quantitative Homotopy

The last ingredient for the proof of Theorem 3 is a quantitative homotopy tool similar to [3, Theorem

5.4 and Corollary 5.5, Proposition 5.8 and Theorem 5.9]. Since we need to deal with well-controlled

polynomials, we have to divide the homotopy in two steps, one for the real part and one for the

imaginary part.

Theorem 40 Let F ∈ C[Z], with F 6= 0 and degF = e ≤ d. There exists r ∈ R, r > 0 such that if

m ≥ r and Γ := [−m,m]× [−m,m], then w(F | ∂Γ) = e.
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Proof: If e = 0 there is nothing to prove, so we suppose e > 0. By Proposition 19, we can also suppose

that F is monic. Let

F = Ze +
e−1∑
j=0

(aj + ibj)Z
j

with aj , bj ∈ R for 0 ≤ j ≤ e− 1 and take G := F − Ze ∈ C[Z] collecting all the terms of degree less

than e in F .

We take the auxiliary polynomial

K := (X + iY )e +Gre ∈ C[X,Y ].

Note that in general K does not come from a polynomial in C[Z] by means of the substitution Z =

X+iY . The idea of the proof is to obtain r ∈ R, r > 0 such that if m ≥ r and Γ = [−m,m]× [−m,m],

then e = w(Ze | ∂Γ) = w(K | ∂Γ) = w(F | ∂Γ) (see Example 22).

We suppose Gre, Gim 6= 0, and if this is not the case, the rest of the proof can be simplified. Actually,

the only case where Gre = 0 or Gim = 0 is G ∈ R ∪ iR.

We define H0, H1 ∈ C[X,Y, T ] by

H0(X,Y, T ) := (1− T )(X + iY )e + TK(X,Y ) = (X + iY )e + T Gre(X,Y )

and

H1(X,Y, T ) := (1− T )K(X,Y ) + TF (X + iY ) = (X + iY )e +Gre(X,Y ) + i T Gim(X,Y ).

Take r := 1 + 2 max{|aj + ibj | | 0 ≤ j ≤ e− 1}. We proceed similarly to [3, Proposition 5.8] to prove

that both H0, H1 do not vanish on ∂Γ× [0, 1]. For k = 0, 1, and (x, y, t) ∈ ∂Γ× [0, 1], we have

|Hk(x, y, t)− (x+ iy)e|

≤ 2
∣∣∣ e−1∑
j=0

(aj + ibj)(x+ iy)j
∣∣∣

≤ 2

e−1∑
j=0

|aj + ibj ||x+ iy|j

≤ (r − 1)

e−1∑
j=0

|x+ iy|j

≤ |x+ iy|e − 1.

Therefore

|Hk(x, y, t)| ≥ |(x+ iy)e| − |Hk(x, y, t)− (x+ iy)e| ≥ |x+ iy|e − |x+ iy|e + 1 = 1.

Now enlarge r if necessary so that X ± m and Y ± m are not factors of Fre(X,Y ), Gre(X,Y ) and

Gim(X,Y ). Then it can be verified that the polynomials H0(X,−m,T ), H0(X,m, T ), H1(X,−m,T ),
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H1(X,m, T ) ∈ C[X,T ] and H0(−m,Y, T ), H0(m,Y, T ), H1(−m,Y, T ), H1(m,Y, T ) ∈ C[Y, T ] are of

degree at most d and well-controlled.

Finally, take ΓX := [−m,m]× [0, 1], ΓY := [−m,m]× [0, 1] and ΓT := Γ. By the Main Lemma 38,

w(H0(X,−m,T ) | ∂ΓY ) = w(H0(X,m, T ) | ∂ΓY ) = w(H1(X,−m,T ) | ∂ΓY ) = w(H1(X,m, T ) | ∂ΓY ) = 0

and

w(H0(−m,Y, T ) | ∂ΓX) = w(H0(m,Y, T ) | ∂ΓX) = w(H1(−m,Y, T ) | ∂ΓX) = w(H1(m,Y, T ) | ∂ΓX) = 0.

Therefore, by Lemma 15 applied to H0 and H1 and the cube [−m,m]× [−m,m]× [0, 1] ⊂ R3, we have

e = w(Ze | ∂Γ) = w(H0(X,Y, 0) | ∂ΓT ) = w(H0(X,Y, 1) | ∂ΓT ) = w(K | ∂Γ)

and

w(K | ∂Γ) = w(H1(X,Y, 0) | ∂ΓT ) = w(H1(X,Y, 1) | ∂ΓT ) = w(F | ∂Γ)

as we wanted to prove. �

3.5 Proof of Theorem 3

We are now ready to deduce our main result.

Proof of Theorem 3: As mentioned before, since [FTA]1 holds even under no assumptions on (R,≤)

we suppose d ≥ 2. Take F ∈ C[Z] \C with degF = e ≤ d. By Theorem 40, there exists r ∈ R, r > 0

such that if m ≥ r and Γ := [−m,m]× [−m,m], then w(F | ∂Γ) = e ≥ 1. By Theorem 39, w(F | ∂Γ)

counts the number of zeros of F in the interior of Γ with multiplicity. This implies that there exists

at least one z ∈ Γ ⊂ R2 ∼ C such that F (z) = 0. �
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