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Abstract

We present a new positive lower bound for the minimum value taken by a poly-
nomial P with integer coefficients in k variables over the standard simplex of Rk,
assuming that P is positive on the simplex. This bound depends only on the number
of variables k, the degree d and the bitsize τ of the coefficients of P and improves all
previous bounds for arbitrary polynomials which are positive over the simplex.

1 Introduction

In the last years, the problem of determining the positivity of a polynomial in k vari-
ables with real coefficients in (a subset of) Rk has been studied extensively with dif-
ferent approaches (see [Prestel and Delzell(2001)]. One of them consists in exhibiting a
certificate of positivity, that is to say, an algebraic identity showing explicitly that the
polynomial is positive over the considered set ([Bochnak et al.(1987)]). In order to con-
struct these certificates of positivity, it is useful to know an a priori lower bound for
the minimum of a polynomial which only takes positive values on the set (see, for in-
stance [Leroy(2008), Powers and Reznick(2001), Schweighofer(2004)]). For bounded sub-
sets of Rk, such a bound can be obtained by means of Lojasiewicz inequalities (see
[Bochnak et al.(1987), Solernó(1991)]), as it is done in [de Loera and Santos(1996)] for
the case of the standard simplex of Rk. However, these bounds involve a universal con-
stant.

This papers considers the problem of finding an explicit lower bound for the minimum
of a polynomial P ∈ Z[X1, . . . , Xk] over the standard k-dimensional simplex ∆k = {x ∈
Rk
≥0 |

∑k
i=1 xi ≤ 1}, assuming that P takes only positive values on ∆k, which depends

only on the number of variables k of P , its degree d, and an upper bound τ for the bitsize
of its coefficients.

Under non-degeneracy conditions, a lower bound of this kind can be obtained by
applying Canny’s gap theorem ([Canny(1987)]). In [Emiris et al.(2009)], an improved
∗Partially supported by the following Argentinian research grants: UBACyT X847 (2006-2010) and PIP

CONICET 5852/05.
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gap theorem is proved and, consequently, a better bound under the same assumptions is
derived. The best known lower bound for the minimum with no extra assumptions on P
was given in [Basu et al.(2009)], where the minimum is estimated by means of an analysis
of the values that the polynomial takes on the boundary of the simplex and its critical
values in the interior.

In this paper we present a new lower bound for the minimum in the general case which
improves the previous ones. Our main result is the following:

Theorem 1 For every P ∈ Z[X1, . . . , Xk] with degree d and coefficients of bitsize at most
τ which only takes positive values over the standard simplex ∆k, we have

min
∆k

P ≥ 2−(τ+1)dk+1
d−(k+1)dk

(
d+ k

k + 1

)−dk(d−1)

Taking into account that
(
d+k
k+1

)
≤ dk+1, we obtain the simplified bound

min
∆k

P ≥ 2−(τ+1)dk+1
d−(k+1)dk+1

.

Our approach combines the application of the critical point method as in [Basu et al.(2009)]
with deformation techniques similar to those used in [Jeronimo et al.(2009)] to compute
critical values. This deformation-based approach enables us to work, even in degener-
ate cases, with a polynomial system defining the critical points of an associated polyno-
mial instead of taking the sum of squares of the polynomials involved, as it is done in
[Basu et al.(2009)], which leads to an artificial degree growth. Moreover, we estimate the
values that the polynomial takes at the critical points by computing upper bounds on
the coefficients of the characteristic polynomial of a multiplication map in the associated
quotient algebra, with no need of a previous explicit description of these critical points.

2 Basic notation

Throughout the paper, we denote N the set of positive integers and N0 = N ∪ {0}. We
write C(t) for the field of rational functions in the variable t with complex coefficients.
For n ∈ N, An denotes the affine complex space of dimension k equipped with the Zariski
topology.

Given a multivariate polynomial F , deg(F ) denotes the total degree of F and if X
is one of the variables in F , we write degX(F ) for the degree of F as a polynomial in
the variable X. For α = (α1, . . . , αk) ∈ Nk

0, we write |α| = α1 + · · · + αk; in addition, if
X = (X1, . . . , Xk), we will use the compact notation Xα = Xα1

1 . . . Xαk
k .

For k ∈ N, we consider the k-dimensional standard simplex

∆k =
{
x ∈ Rk

≥0 |
k∑
i=1

xi ≤ 1
}
,

and for k, d, τ ∈ N,

Ak,d,τ = {P ∈ Z[X1, . . . , Xk] | deg(P ) ≤ d, h(P ) ≤ τ, P (x) > 0 ∀x ∈ ∆k}

(here, h(P ) denotes the maximum bitsize of the coefficients of P ).
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3 A lower bound for the minimum

We are interested in computing an explicit lower bound for

mk,d,τ = min{min
∆k

P | P ∈ Ak,d,τ},

the minimum value over the standard simplex of a polynomial P ∈ Ak,d,τ depending only
on k, d and τ .

We will analyze first the case where P attains its minimum only at interior points of
the simplex and then, we will proceed recursively to deal with the case where the minimum
is attained at a point of the boundary. In order to do this, we consider

A(b)
k,d,τ = {P ∈ Ak,d,τ | ∃z ∈ ∂∆k such that P (z) = min

∆k

P},

A(0)
k,d,τ = Ak,d,τ \ A

(b)
k,d,τ .

3.1 The deformation

Fix a polynomial P ∈ A(0)
k,d,τ . Let Q(X) =

∑k
i=1

1
d+1X

d+1
i and F (t,X) = P (X) + tQ(X).

For i = 1, . . . , k, let

Fi(t,X) =
∂F

∂Xi
=

∂P

∂Xi
+ tXd

i .

Following [Jeronimo et al.(2009)], consider the variety V̂ = V (F1, . . . , Fk) ⊆ A1 × Ak

and its decomposition
V̂ = V (0) ∪ V (1) ∪ V,

where V (0) is the union of the irreducible components of V̂ contained in {t = 0}, V (1) is
the union of the irreducible components of V̂ contained in {t = t0} for some t0 ∈ C \ {0}
and V is the union of the remaining irreducible components of V̂ .

Lemma 2 There exists z0 ∈ ∆k such that P (z0) = min∆k
P and (0, z0) ∈ V .

L et ε > 0 such that ε < |t0| for every t0 ∈ πt(V (1)) (here, πt : A1 × An → A1 denotes
the projection to the first coordinate t). Let (tn)n∈N be a decreasing sequence of positive
real numbers with t1 < ε and limn→∞ tn = 0. For every n ∈ N, let wn ∈ ∆k such that
F (tn, wn) = minz∈∆k

F (tn, z). We may assume that the sequence (wn)n∈N converges to a
point z0 ∈ ∆k. Therefore, for every z ∈ ∆k, we have

P (z0) = F (0, z0) = lim
n→∞

F (tn, wn) ≤ lim
n→∞

F (tn, z) = F (0, z) = P (z).

We conclude that P (z0) = min∆k
P . As P ∈ A(0)

k,d,τ , the point z0 lies in the interior
∆◦k of ∆k and, therefore, wn ∈ ∆◦k for n � 0. Then, for every n � 0, wn is a local
minimum of F (tn, z) (as a function of z) and so, Fi(tn, wn) = 0 for i = 1, . . . , k; therefore,
(tn, wn) ∈ V̂ . Since, by the choice of ε, (tn, wn) /∈ V (1), it follows that (tn, wn) ∈ V for
n� 0 and therefore, (0, z0) ∈ V . �
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From now on, we assume
P =

∑
|α|≤d

aαX
α.

Let R ∈ Z[X] be the polynomial

R(X) = d · P (X)−
∑

1≤i≤k
Xi

∂P

∂Xi
(X) =

∑
|α|≤d−1

(d− |α|)aαXα.

Note that for a point z0 as in Lemma 2, since ∂P
∂Xi

(z0) = 0 for 1 ≤ i ≤ k, we have that
R(z0) = d · P (z0).

Consider the ideal (F1, . . . , Fk) generated in C(t)[X1, . . . , Xk] by the polynomials F1 . . . , Fk.
Let

W = C(t)[X1, . . . , Xk]/(F1, . . . , Fk),

which is a C(t)-vector space of dimension dk. Moreover, if

U = {γ = (γ1, . . . , γk) ∈ Nk
0 | 0 ≤ γi ≤ d− 1 for every 1 ≤ i ≤ k},

we have that {Xγ | γ ∈ U} is a basis of W . For a polynomial g ∈ Z[X], mg will denote the
multiplication map mg : W →W , mg([f ]) = [g ·f ], and χ(mg) ∈ C(t)[Y ] the characteristic
polynomial of this linear map.

We are going to show that χ(mR)(t, Y ) = S(t, Y )/tl, where S(t, Y ) ∈ Q[t, Y ], l ∈ N0,
and S(0, Y ) 6≡ 0. Then, since χ(mR)(t, R(X)) ∈ (F1, . . . , Fk) ⊆ C(t)[X1, . . . , Xk], we have
that there is a polynomial s(t) ∈ C[t] − {0} such that s(t)S(t, R(X)) lies in the ideal
generated by F1, . . . , Fk in C[t,X1, . . . , Xk]. Therefore, S(t, R(X)) vanishes identically on
V and so, S(0, R(z0)) = 0. The bound on the minimum of the polynomial P over the
standard simplex will be obtained from upper bounds on the size of the coefficients of
S(0, Y ).

3.2 Estimates for computations in the quotient algebra

In order to analyze the characteristic polynomial χ(mR), we start by studying re-writing
techniques in the basis {Xγ | γ ∈ U} of W . We follow the approach in [Basu et al.(2006),
Chapter 12].

For every β ∈ Nk
0, the residue class of the monomial Xβ in W can be written in the

form Xβ =
∑

γ∈U xβ,γX
γ for some elements xβ,γ ∈ C(t). Moreover, we have:

Lemma 3 For every β ∈ Nk
0 and every γ ∈ U , there is a univariate polynomial cβ,γ ∈ Z[T ]

such that xβ,γ = cβ,γ(1
t ). Moreover, if β /∈ U , cβ,γ = 0 for every γ with |γ| ≥ |β|.

F irst note that, for β ∈ U , the identity holds trivially with cβ,γ = 0 if γ 6= β and cβ,γ = 1
if γ = β.

For β /∈ U , there exists an index i such that βi ≥ d and, so, β = β̃ + dei with β̃ ∈ Nk
0

(here and in the sequel, ei is the ith vector of the canonical basis of Rk).
We proceed by induction on |β|, starting with |β| = d. In this case, we have that

β = dei and, since Fi = ∂P
∂Xi

+ tXd
i is 0 in W , the following identity holds in W :

Xd
i = −1

t

∂P

∂Xi
=
∑
|α|<d

−aα+ei(αi + 1)
1
t
Xα. (1)
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We conclude that cβ,γ = −aγ+ei(γi + 1)T if |γ| < d = |β| and cβ,γ = 0 if |γ| ≥ d = |β|.
Now, if β = β̃ + dei, we have

Xβ = Xd
i X

β̃ =
∑
|α|<d

−aα+ei(αi + 1)
1
t
Xα+β̃;

therefore,

Xβ =
∑

|α|<d, α+β̃∈U

−aα+ei(αi + 1)
1
t
Xα+β̃ +

∑
|α|<d, α+β̃ /∈U

−aα+ei(αi + 1)
1
t

∑
γ∈U

xα+β̃,γ X
γ

=
∑

γ∈U, γ=α+β̃, |α|<d

−aα+ei(αi+1)
1
t
Xγ+

∑
γ∈U

( ∑
|α|<d, α+β̃ /∈U

−aα+ei(αi+1)
1
t
xα+β̃,γ

)
Xγ . (2)

Note that for every α such that |α| < d, we have that |α+ β̃| = |α|+ |β̃| < d+ |β|−d = |β|;
then, by our inductive assumption, it follows that xα+β̃,γ = 0 whenever α + β̃ /∈ U and
|α+ β̃| ≤ |γ|. Using the previous identity, this implies that xβ,γ = 0 for every γ ∈ U with
|γ| ≥ |β|.

The inductive assumption also states that xα+β̃,γ = cα+β̃,γ(1
t ) for every α with |α| < d

and every γ ∈ U ; therefore, taking into account identity (2), for every γ ∈ U with |γ| < |β|,
we have that xβ,γ = cβ,γ(1

t ), where

cβ,γ =
∑

|α|<d, α+β̃ /∈U

−aα+ei(αi + 1)cα+β̃,γT ∈ Z[T ] (3)

if γ 6= α+ β̃ for every α with |α| < d, and

cβ,γ = −a(α̃+ei)(α̃i + 1)T +
∑

|α|<d, α+β̃ /∈U

−aα+ei(αi + 1)cα+β̃,γ T ∈ Z[T ] (4)

if γ = α̃+ β̃ with |α̃| < d. �

In the sequel, for a univariate polynomial c ∈ Z[T ], we use the notation cl to indicate
the coefficient of the monomial T l in c.

Lemma 4 For every β ∈ Nk
0 −U and every γ ∈ U with |γ| < |β|, deg cβ,γ ≤ |β| − |γ| and,

for 0 ≤ l ≤ |β| − |γ|,

|cβ,γ,l| ≤ 2lτd
(
d+ k

k + 1

)l−1

.

T he proof is done by induction on |β|. If |β| = d, then β = dei for some index i with
1 ≤ i ≤ k and so, we have that either cβ,γ = 0 or cβ,γ = −aγ+ei(γi + 1)T (see identity
(1)). In any case, the result holds.

Suppose now that |β| > d. There exists an index i such that β = β̃ + dei with β̃ ∈ Nk
0.

By the inductive hypothesis, for every |α| < d with α+ β̃ /∈ U ,

deg cα+β̃,γ T ≤ |α+ β̃| − |γ|+ 1 ≤ |β| − |γ|;
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so, identities (3) and (4) imply that the stated degree bound for cβ,γ holds.
Note that cβ,γ,0 = 0, and cβ,γ,1 = −(α̃i + 1)aα̃+ei if there exists α̃ ∈ Nk

0 with |α̃| < d
and γ = α̃ + β̃, and cβ,γ,1 = 0 otherwise. In any case, the bound on the coefficient size
holds for l = 0, 1. Consider now the case l ≥ 2; from identities (3) and (4), using the
inductive assumption we have

|cβ,γ,l| =
∣∣∣ ∑
|α|<d, α+β̃ /∈U

−aα+ei(αi + 1) cα+β̃,γ,l−1

∣∣∣
≤

∑
|α|<d, α+β̃ /∈U

2τ (αi + 1)2(l−1)τd

(
d+ k

k + 1

)l−2

= 2lτd
(
d+ k

k + 1

)l−2 ∑
0≤e≤d−1

∑
|α|<d, α+β̃ /∈U,αi=e

(e+ 1)

≤ 2lτd
(
d+ k

k + 1

)l−2 ∑
0≤e≤d−1

(e+ 1)
(
d− 1− e+ k − 1

k − 1

)
.

The result follows noticing that∑
0≤e≤d−1

(e+ 1)
(
d− 1− e+ k − 1

k − 1

)
=

∑
0≤e≤d−1

∑
0≤j≤e

(
d− 1− e+ k − 1

k − 1

)
=

=
∑

0≤j≤d−1

∑
j≤e≤d−1

(
d− 1− e+ k − 1

k − 1

)
=

∑
0≤j≤d−1

(
d− 1 + k − j

k

)
=
(
d+ k

k + 1

)
.

�

3.3 Bounds for traces and characteristic polynomial coefficients

To estimate the size of the coefficients of the characteristic polynomial χ(mR) ∈ Z[1
t ][Y ],

we will use the following relationship with the traces of the multiplication maps by the
powers of R (see for instance [Basu et al.(2006), Propositions 4.8 and 4.55]): if

χ(mR)(Y ) =
dk∑
h=0

bdk−hY
dk−h,

we have

• bdk = 1,

• for 1 ≤ h ≤ dk,

bdk−h = −1
h

h∑
n=1

tr(mRn)bdk−h+n. (5)

(See also [González-Vega and Trujillo(1995)] or [Rouillier(1999)], where this technique has
been used for this task and, more generally, for the computation of a rational univariate
representation of the solutions to a zero-dimensional polynomial system.)
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For n ∈ N, let Rn(X) :=
∑
|α|≤(d−1)nR

(n)
α Xα. Let us observe that∑

|α|≤d−1

|R(1)
α | ≤

∑
|α|≤d−1

(d− |α|)|aα| ≤ 2τ
∑

0≤e≤d−1

(d− e)
(
e+ k − 1
k − 1

)

= 2τ
∑

0≤e′≤d−1

(e′ + 1)
(
d− 1− e′ + k − 1

k − 1

)
= 2τ

(
d+ k

k + 1

)
,

where the last identity was shown in the proof of Lemma 4; in the general case,∑
|α|≤(d−1)n

|R(n)
α | ≤

( ∑
|α|≤d−1

|R(1)
α |
)n
≤
(

2τ
(
d+ k

k + 1

))n
. (6)

In the sequel, for every n ∈ N, we will use the same notation mRn to denote the
multiplication map by Rn in W or the matrix of this linear map in the basis {Xγ | γ ∈ U}.
Rows and columns of these matrices will be indexed by the exponent vectors γ ∈ U .

From Lemma 3 and the fact that R ∈ Z[X], it follows that the entries of the matrices
mRn are polynomials in Z[1

t ] and, therefore, the same holds for their traces.

Lemma 5 For every n ∈ N, deg 1
t

tr(mRn) ≤ n(d− 1) and, for 0 ≤ l ≤ n(d− 1),

|tr(mRn)l| ≤ 2(l+n)τdk+1

(
d+ k

k + 1

)l+n−1

.

F or every n ∈ N and γ ∈ U , (mRn)γ,γ =
∑
|α|≤n(d−1)R

(n)
α cγ+α,γ

(
1
t

)
, where cγ+α,γ is a

constant if γ + α ∈ U and deg cγ+α,γ ≤ |γ + α| − |γ| = |α| ≤ n(d− 1) if γ + α 6∈ U . Now,

|(mRn)γ,γ,0| ≤
∑

|α|≤n(d−1)

|R(n)
α cγ+α,γ,0| = |R(n)

0 | = |R
(1)
0 |

n ≤ 2nτdn ≤ 2nτd
(
d+ k

k + 1

)n−1

,

and, for 1 ≤ l ≤ n(d− 1),

|(mRn)γ,γ,l| ≤
∑

|α|≤n(d−1)

|R(n)
α cγ+α,γ,l| =

∑
|α|≤n(d−1), γ+α 6∈U

|R(n)
α cγ+α,γ,l|

≤
∑

|α|≤n(d−1)

|R(n)
α | 2lτd

(
d+ k

k + 1

)l−1

≤ 2(l+n)τd

(
d+ k

k + 1

)l+n−1

,

where the last inequality follows from (6). The stated inequalities are now a consequence
of the fact that the dimension of W is dk. �

We are now ready to find upper bounds for the size of the coefficients of the charac-
teristic polynomial χ(mR) ∈ Z[1

t ][Y ].

Lemma 6 For 0 ≤ h ≤ dk, deg 1
t
bdk−h ≤ h(d− 1) and, for 0 ≤ l ≤ h(d− 1),

|bdk−h,l| ≤ 2(l+h)(τ+1)d(k+1)h

(
d+ k

k + 1

)l
.

The last inequalities are strict for h ≥ 1.
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L et us prove first the degree bound. The proof is done by induction on h and using the
recursive formula (5) for the coefficients bdk−h. For h = 0, the result holds. Now, for h > 0,
for every 1 ≤ n ≤ h, by Lemma 5 and the inductive assumption, deg(tr(mRn)bdk−h+n) ≤
n(d− 1) + (h− n)(d− 1) = h(d− 1); therefore, deg bdk−h ≤ h(d− 1).

Now we prove the bound on the size of the coefficients. For h = 0, the result is clear.
For h ≥ 1,

|bdk−h,l| =
1
h

∣∣∣ h∑
n=1

∑
l1+l2=l

0≤l1≤n(d−1)
0≤l2≤(h−n)(d−1)

tr(mRn)l1bdk−h+n,l2

∣∣∣

≤ 1
h

h∑
n=1

∑
l1+l2=l

0≤l1≤n(d−1)
0≤l2≤(h−n)(d−1)

2(l1+n)τdk+1

(
d+ k

k + 1

)l1+n−1

2(l2+h−n)(τ+1)d(k+1)(h−n)

(
d+ k

k + 1

)l2

= 2(l+h)τdk+1

(
d+ k

k + 1

)l−1 1
h

h∑
n=1

(
d+ k

k + 1

)n
2h−nd(k+1)(h−n)

∑
l1+l2=l

0≤l1≤n(d−1)
0≤l2≤(h−n)(d−1)

2l2

< 2(l+h)τdk+1

(
d+ k

k + 1

)l−1(d+ k

k + 1

)
2h−1d(k+1)(h−1) 2l+1

= 2(l+h)(τ+1)d(k+1)h

(
d+ k

k + 1

)l
.

�

3.4 Obtaining the bound

As explained in Subsection 3.1, from the characteristic polynomial χ(mR), we can obtain
a univariate polynomial having R(z0) as one of its roots; thus, we get a lower bound for
this value in terms of the size of the coefficients of this polynomial.

Proposition 7 Let z0 be as in Lemma 2. Then,

1
P (z0)

≤ 2d
k+1(τ+1)d(k+1)dk

(
d+ k

k + 1

)dk(d−1)

.

T ake l0 := max0≤h≤dk deg bdk−h. Then, χ(mR) = S(t,Y )

tl0
, where

S(t, Y ) = tl0
dk∑
h=0

bdk−h(
1
t
)Y dk−h =

dk∑
h=0

l0∑
l=0

bdk−h,l t
l0−l Y dk−h ∈ Z[t, Y ],

and, therefore, S(0, Y ) =
∑dk

h=0 bdk−h,l0Y
dk−h ∈ Z[Y ]. Since (0, z0) ∈ V , we have that

S(0, R(z0)) = 0, which implies that 1
R(z0) is a root of the polynomial

∑dk

h=0 bdk−h,l0Y
h.
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If l0 > (dk−1)(d−1), then bdk−h,l0 = 0 for every 0 ≤ h ≤ dk−1, and so b0,l0
(

1
R(z0)

)dk =
0, which is impossible since both factors are nonzero. Let h1 := max{h | bdk−h,l0 6= 0} ≤ dk.
By [Mignotte and Stefanescu(1999), Prop. 2.5.9],

1
R(z0)

≤ max
0≤h≤h1−1

∣∣∣ bdk−h,l0
bdk−h1,l0

∣∣∣+ 1.

Since bdk−h1,l0 ∈ Z− {0} and the size inequalities in Lemma 6 are strict for h > 0,

1
d · P (z0)

=
1

R(z0)
≤ 2(dk−1)d(τ+1)d(k+1)(dk−1)

(
d+ k

k + 1

)(dk−1)(d−1)

,

which implies the result. �

By Lemma 2 and Proposition 7, we deduce the following lower bound for the minimum
of a positive polynomial over the standard simplex in the case this minimum is attained
only at interior points of the simplex:

Proposition 8 Let P ∈ A(0)
k,d,τ . Then

min
∆k

P ≥ 2−(τ+1)dk+1
d−(k+1)dk

(
d+ k

k + 1

)−dk(d−1)

.

3.5 Proof of the main result

The case where the minimum is attained at a point of the boundary of ∆k can be dealt
with recursively, since the facets of ∆k are standard (k − 1)-dimensional simplices.

We are now ready to prove the main result of the paper.

Proof of Theorem 1. We argue by induction on k. For k = 1, the bound is a consequence
of Proposition 8 and the fact that P (0) ≥ 1 and P (1) ≥ 1 for every P ∈ Ak,d,τ .

Assume now k > 1 and let P ∈ Ak,d,τ . When d = 1, P is a linear affine polynomial
and so, the minimum is attained at a vertex of the simplex, which implies that it is an
integer. Then, mk,1,τ ≥ 1 for every k, τ . Thus, we may assume d ≥ 2.

If P ∈ A(0)
k,d,τ , the bound follows from Proposition 8. Suppose P ∈ A(b)

k,d,τ and let
z ∈ ∂∆k with P (z) = min∆k

P . If zi = 0 for some 1 ≤ i ≤ k, the polynomial Pi obtained
by evaluating Xi = 0 in P satisfies Pi ∈ Ak−1,d,τ and

P (z) = Pi(z1, . . . , ẑi, . . . , zn) ≥ mk−1,d,τ ≥ 2−(τ+1)dkd−kd
k−1

(
d+ k − 1

k

)−dk−1(d−1)

(here, (z1, . . . , ẑi, . . . , zn) ∈ ∆k−1 is the point obtained by removing the ith coordinate
from z ∈ ∆k). On the other hand, if

∑k
i=1 zi = 1, consider the polynomial P̃ =

P (X1, . . . , Xk−1, 1−(X1+· · ·+Xk−1)). By [Basu et al.(2009), Lemma 2.3], P̃ ∈ Ak−1,d,τ+1+d log k

and, therefore

P (z) = P̃ (z1, . . . , zk−1) ≥ mk−1,d,τ+1+d log k ≥ 2−(τ+2+d log k)dkd−kd
k−1

(
d+ k − 1

k

)−dk−1(d−1)

.
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In order to finish the proof, it suffices to show that for every d ≥ 2, and every k ∈ N,

2d
k(τ+2+d log k)dkd

k−1

(
d+ k − 1

k

)dk−1(d−1)

≤ 2d
k+1(τ+1)d(k+1)dk

(
d+ k

k + 1

)dk(d−1)

. (7)

First, we show by induction on d, that for every d ≥ 2 and every k ∈ N, the inequality
k2d−1 ≤ 2d

2−2dd(k+1)d−k holds: the case d = 2 follows easily; in addition,

k2(d+1)−1 ≤ 2k+4k2d−1 ≤ 22d−1dk+1k2d−1 ≤ 22d−1dk+12d
2−2dd(k+1)d−k

= 2(d+1)2−2(d+1)d(k+1)(d+1)−k ≤ 2(d+1)2−2(d+1)(d+ 1)(k+1)(d+1)−k.

Then, k2dk−dk−1
= (k2d−1)d

k−1 ≤ (2d
2−2dd(k+1)d−k)d

k−1
= 2d

k+1−2dkd(k+1)dk−kdk−1
and,

therefore,

22dkkd
k+1

dkd
k−1

(
d+ k − 1

k

)dk−1(d−1)

≤ 2d
k+1

d(k+1)dkkd
k+1−2dk+dk−1

(
d+ k − 1

k

)dk−1(d−1)

.

Since
(
d+k
k+1

)
≥ k and

(
d+k
k+1

)
≥
(
d+k−1
k

)
, we conclude that

22dkkd
k+1

dkd
k−1

(
d+ k − 1

k

)dk−1(d−1)

≤ 2d
k+1

d(k+1)dk
(
d+ k

k + 1

)dk(d−1)

,

which implies that inequality (7) holds. �

4 An example

The following example shows that the doubly exponential character of the bound is un-
avoidable.

Example 9 Let τ and d be even positive integers, d ≥ 4. Consider the polynomial

P (X1, . . . , Xk) = (2τ/2X1 − 1)2 + (X2 −Xd/2
1 )2 + · · ·+ (Xk −X

d/2
k−1)2 +Xd

k .

Note that P is positive over Rk. Substituting Xi = 2−
τ
2

( d
2

)i−1
for i = 1, . . . , k, it follows

that the minimum of P over the standard simplex of Rk is lower than or equal to 2−τ( d
2

)k .
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