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Abstract

We give an explicit upper bound for the algebraic degree and an explicit lower bound
for the absolute value of the minimum of a polynomial function on a compact connected
component of a basic closed semialgebraic set when this minimum is not zero. We also present
extensions of these results to non-compact situations. As an application, we obtain a lower
bound for the separation of two disjoint connected components of basic closed semialgebraic
sets, when at least one of them is compact.

1 Introduction

Let T ⊂ Rn be a basic closed semialgebraic set defined by polynomials with integer coefficients
and let C be a connected component of T . In this work, we consider the following problem:
given a polynomial g ∈ Z[x1, . . . , xn] that attains a non-zero minimum value over C, find bounds
δ > 0 and b > 0 such that the minimum is an algebraic number of degree at most δ and its
absolute value is greater than or equal to b. We look for explicit bounds δ and b in terms
of the number of variables, the number of polynomials defining T , and upper bounds for the
degrees and coefficient size of these polynomials and g. Such explicit bounds are of fundamental
importance in the complexity analysis of symbolic and numerical methods for optimization and
polynomial system solving (see, for instance, [1]).

Generally, in the case of polynomial optimization with polynomial constraints, the solutions
to the problem are algebraic numbers; hence, it is natural to study the degree of the minimal
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polynomial that defines them ([14]). A standard technique to handle optimization problems
with inequality constraints is to use the Karush-Kuhn-Tucker conditions (see [16, Chapter 12]).
In [14], this approach is followed to obtain a general formula for the algebraic degree of the
minimizers of a polynomial over a closed semialgebraic subset of Rn defined by at most n
generic polynomials. Moreover, when the polynomials are not generic but the Karush-Kuhn-
Tucker system is still zero-dimensional, by means of deformation techniques, the authors prove
that the same formula is an upper bound for this algebraic degree.

In this paper, we prove bounds for the algebraic degree and the absolute value of the minimum
for an arbitrary family of polynomial constraints, under the assumption that the set of minimizers
over the considered connected component is compact (see Theorem 14). These bounds will be
easily deduced from the case of compact connected components. Since the system which gives
the critical points for g on T may not satisfy certain required hypothesis or may provide us with
an infinite set of possible minimizers, we use deformation techniques; more precisely, we follow
the approach in [11] relying on [2, Chapter 13]. The deformation enables us to deal with ‘nice’
systems which, in the limit, define a finite set of minimizing points. A careful analysis of the
perturbed systems combined with resultant-based estimations using results from [19] leads us
to the explicit bounds (see [3], [5], [9] and [10] for similar applications of these techniques). Our
key result is the following:

Theorem 1 Let T = {x ∈ Rn | f1(x) = · · · = fl(x) = 0, fl+1(x) ≥ 0, . . . , fm(x) ≥ 0} be defined
by polynomials f1, . . . , fm ∈ Z[x1, . . . , xn] with n ≥ 2, degrees bounded by an even integer d and
coefficients of absolute value at most H, and let C be a compact connected component of T . Let
g ∈ Z[x1, . . . , xn] be a polynomial of degree at most d and coefficients of absolute value bounded
by H. Then, the minimum value that g takes over C is a real algebraic number of degree at most

max
0≤s≤min{m,n}

(
n

s

)
ds(d− 1)n−s ≤ 2n−1dn

and, if it is not zero, its absolute value is greater than or equal to

(24−
n
2 H̃dn)−n2

ndn ,

where H̃ = max{H, 2n+ 2m}.

Even though the compactness assumptions are in general hard to check, they hold naturally
in some applications; this is the case for instance in certain problems from game theory ([8])
and from mathematical programming (see Section 4).

The lower bound for the absolute value for the minimum in Theorem 1 can be applied, for
instance, to make more explicit the upper bound for the degrees in Schmüdgen’s Positivstel-
lensatz from [17, Theorem 3], which is stated in terms of the minimum of a polynomial on a
compact set.

Our bound for the algebraic degree is similar to that in [14, Theorem 2.2] and, in this sense,
our result can be seen as an extension of those in [14]. In fact, Theorem 1 also enables us to
obtain an explicit upper bound of the same kind for the algebraic degree of the minimum under
the weaker assumption that this minimum is attained (see Theorem 15).

An application of Theorem 14, which is in fact the original motivation of this work, is an
explicit lower bound for the separation between disjoint connected components of basic closed
semialgebraic sets. Bounds of this kind can be applied to estimate the running time of numeric
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algorithms dealing with polynomial equations and inequalities (see, for instance, [12], [20]). They
can also be applied in robotics, more precisely, in the motion planning problem: the connected
components of the configuration space represent the forbidden area, that is, where the robot
should not go, and the separation bound gives the number of bits needed in the worst case to
compute a point on the path that avoids the obstacles (see [4]).

The problem of estimating the separation for isolated points has already been studied both in
the complex and real settings (see, for instance, [4], [5], [9]). Our result, which includes positive
dimensional situations, is the following:

Theorem 2 Let T1 = {x ∈ Rn | f1(x) = · · · = fl1(x) = 0, fl1+1(x) ≥ 0, . . . , fm1(x) ≥ 0},
T2 = {x ∈ Rn | g1(x) = · · · = gl2(x) = 0, gl2+1(x) ≥ 0, . . . , gm2(x) ≥ 0} be defined by polynomials
f1, . . . , fm1 , g1, . . . , gm2 ∈ Z[x1, . . . , xn] with degrees bounded by an even integer d and coefficients
of absolute value at most H. Let C1 be a compact connected component of T1 and C2 a connected
component of T2. Then, if C1 ∩ C2 = ∅, the distance between C1 and C2 is at least

(24−nH̃d2n)−n2
2nd2n ,

where H̃ = max{H, 4n+ 2m1 + 2m2}.

The paper is organized as follows: Section 2 is devoted to proving the bounds for the mini-
mum. First, we introduce the deformation techniques we use and prove some geometric proper-
ties of this deformation which, in particular, enable us to give a characterization of minimizers
as solutions to a polynomial system. Then, we prove Theorem 1 and, finally, we extend this
theorem to the non-compact case (Theorems 14 and 15). In Section 3, we prove Theorem
2 and present an easy example to show that the double exponential nature of our bounds is
unavoidable. Section 4 presents further applications of our bounds.

2 The minimum of a polynomial function

Let f1, . . . , fm, g ∈ Z[x1, . . . , xn] with n ≥ 2, d an even positive integer such that deg(f1), . . . ,
deg(fm) ≤ d, and d0 = deg(g) ≤ d. Let H ∈ N be an upper bound on the absolute values of all
the coefficients of f1, . . . , fm and H0 ∈ N, H0 ≤ H, an upper bound on the absolute values of
the coefficients of g. Let T = {x ∈ Rn | f1(x) = · · · = fl(x) = 0, fl+1(x) ≥ 0, . . . , fm(x) ≥ 0}
and let C be a compact connected component of T .

2.1 The deformation

Here we introduce some notations that we will use throughout this section. Let

• A ∈ Z(m+1)×(n+1), A = (aij)0≤i≤m, 0≤j≤n be a matrix such that each of its submatrices
has maximal rank and aij > 0 for every i, j.

• For every 1 ≤ i ≤ m, f̃i(x) =
∑n

j=1 aijx
d
j + ai0, F

+
i (t, x) = fi(x) + tf̃i(x) and F−i (t, x) =

fi(x)− tf̃i(x).

• g̃(x) =
∑n

j=1 a0jx
d
j + a00 and G(t, x) = g(x) + tg̃(x).
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• For every S ⊂ {1, . . . ,m} and σ ∈ {+,−}S ,

ŴS,σ = {(t, x) ∈ A× An | F σii (t, x) = 0 for every i ∈ S},

ẐS,σ = {(t, x) ∈ A× An | (t, x) ∈ ŴS,σ and {∇xF σii (t, x), i ∈ S} is linearly dependent},

and
V̂S,σ = {(t, x, λ) ∈ A× An × P|S| | (t, x) ∈ ŴS,σ and

λ0∇xG(t, x) =
∑
i∈S

λi∇xF σii (t, x)},

where A and P denote the affine and projective spaces over the complex numbers respec-

tively. We consider the decomposition of ŴS,σ as ŴS,σ = W
(0)
S,σ ∪W

(1)
S,σ ∪WS,σ, where

– W
(0)
S,σ is the union of the irreducible components of ŴS,σ included in t = 0,

– W
(1)
S,σ is the union of the irreducible components of ŴS,σ included in t = t0 for some

t0 ∈ C− {0},
– WS,σ is the union of the remaining irreducible components of ŴS,σ,

and the analogous decompositions of ẐS,σ and V̂S,σ as ẐS,σ = Z
(0)
S,σ ∪ Z

(1)
S,σ ∪ ZS,σ and

V̂S,σ = V
(0)
S,σ ∪ V

(1)
S,σ ∪ VS,σ respectively.

• For a group of variables y, Πy will indicate the projection to the coordinates y.

We start by constructing a matrix A satisfying the conditions required above and bounding
its entries.

Lemma 3 There exists a matrix A ∈ Z(m+1)×(n+1), A = (aij)0≤i≤m, 0≤j≤n, such that each of
its submatrices has maximal rank and 0 < aij ≤ 2(n+m) for every i, j.

Proof. Let p be a prime number such that n + m + 2 ≤ p ≤ 2n + 2m + 1, which exists by
Bertrand’s postulate.

Consider the Hilbert matrix A1 = ( 1
i+j+1)0≤i≤m, 0≤j≤n, which is a particular case of a Cauchy

matrix; therefore, every submatrix of A1 has maximal rank. Let A2 = (n + m + 1)!A1; then,
A2 ∈ Z(m+1)×(n+1) and the positive prime factors of every entry of A2 are prime numbers lower
than or equal to n + m + 1. Looking at the formula for the determinant of Cauchy matrices,
one can see that the determinant of every square submatrix of A2 is an integer (different from
0) such that all its prime factors are lower than or equal to n+m+ 1.

Finally, take A as the matrix obtained by replacing every entry of A2 by its remainder in the
division by p, which is never equal to 0. Then it is clear that A has the required properties. �

Before proceeding, we will state two basic facts about the varieties previously defined. We
postpone the proof of these results to Section 2.3.

Lemma 4 Let S ⊂ {1, . . . ,m} and σ ∈ {+,−}S. If |S| > n, the variety WS,σ is empty.

Lemma 5 For every S ⊂ {1, . . . ,m} and σ ∈ {+,−}S, the variety ZS,σ is empty.
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2.2 Geometric properties

For every t ≥ 0, let

Tt = {x ∈ Rn | F+
1 (t, x) ≥ 0, . . . , F+

l (t, x) ≥ 0, F+
l+1(t, x) ≥ 0, . . . , F+

m(t, x) ≥ 0,

F−1 (t, x) ≤ 0, . . . , F−l (t, x) ≤ 0}.

As f̃i(x) > 0 for every 1 ≤ i ≤ m and x ∈ Rn, it is clear that:

• If 0 ≤ t1 ≤ t2, then Tt1 ⊂ Tt2 ,

• T0 = T .

Since T is a closed set, its connected components are closed. Then, since C is a compact
connected component of T , there exists µ > 0 such that dist(C,C ′) ≥ 2µ for every connected
component C ′ of T , C ′ 6= C. Let us denote

Cµ = {x ∈ Rn | dist(x,C) < µ}.

Lemma 6 There exists ε > 0 such that for every 0 ≤ t ≤ ε, the connected component of Tt
containing C is included in Cµ.

Proof. Assume the statement does not hold. Let (tk)k∈N be a decreasing sequence of positive
numbers converging to 0 such that, if C ′k is the connected component of Ttk containing C, then
C ′k 6⊂ Cµ.

Since C ′k is connected, contains C and intersects the set {x ∈ Rn | dist(x,C) ≥ µ}, there
is a point rk ∈ C ′k with dist(rk, C) = µ. Since (rk)k∈N is a sequence contained in the compact
set {x ∈ Rn | dist(x,C) = µ}, it has a subsequence which converges to a point r such that
dist(r, C) = µ. Without loss of generality, we may assume this subsequence to be the original
one.

On the other hand, since rk ∈ C ′k ⊂ Ttk , we have that, for every 1 ≤ i ≤ m,

F+
i (tk, rk) ≥ 0, and so, F+

i (0, r) = lim
k→∞

F+
i (tk, rk) ≥ 0,

and, for every 1 ≤ i ≤ l,

F−i (tk, rk) ≤ 0, and so, F−i (0, r) = lim
k→∞

F−i (tk, rk) ≤ 0.

This implies that r ∈ T , leading to a contradiction, since there is no point in T whose distance
to C equals µ. �

The following proposition shows that in order to obtain minimizers for the polynomial func-
tion g on the compact connected component C it is enough to consider polynomial systems with
at most as many equations as variables.

Proposition 7 There exist z ∈ C, S ⊂ {1, . . . ,m} with 0 ≤ |S| ≤ n, and σ ∈ {+,−}S with
σi = + for l + 1 ≤ i ≤ m, such that (0, z) ∈ Π(t,x)(VS,σ) and g(z) = min{g(x) | x ∈ C}.

Proof. Let ε > 0 be such that:
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• for every 0 ≤ t ≤ ε, the connected component of Tt containing C is included in Cµ,

• for every S ⊂ {1, . . . ,m}, σ ∈ {+,−}S and t0 ∈ Πt(W
(1)
S,σ) ∪Πt(Z

(1)
S,σ) ∪Πt(V

(1)
S,σ ), ε < |t0|.

Let (tk)k∈N be a decreasing sequence of positive numbers converging to 0 with t1 ≤ ε.
Consider the connected component C ′k of Ttk which contains C (note that C ′k is a compact set)
and let zk be a point in C ′k at which the functionG(tk, ·) attains its minimum value over C ′k. Since
the sequence (zk)k∈N is bounded, it has a convergent subsequence; without loss of generality, we
may assume this subsequence to be the original one. Let z = limk→∞ zk. Proceeding as in the
proof of Lemma 6, we have that z ∈ C.

In order to see that g(z) = min{g(x) | x ∈ C}, note that for every x ∈ C ⊂ C ′k, we have that
G(tk, zk) ≤ G(tk, x) for every k; therefore,

g(z) = G(0, z) = lim
k→∞

G(tk, zk) ≤ lim
k→∞

G(tk, x) = G(0, x) = g(x).

Now, for every k and every x ∈ Rn, at most one of the polynomials F+
i (tk, x) and F−i (tk, x)

may vanish, since f̃i(x) > 0. For every k ∈ N, let

Sk = {i ∈ {1, . . . , l} | F+
i (tk, zk) = 0 or F−i (tk, zk) = 0} ∪ {i ∈ {l + 1, . . . ,m} | F+

i (tk, zk) = 0}.

Without loss of generality, we may assume that Sk is the same set S for every k ∈ N; moreover,
we may assume that, for each i ∈ S, it is always the same polynomial F+

i (tk, zk) or F−i (tk, zk)
the one which vanishes, thus defining a function σ ∈ {+,−}S .

Since (tk, zk) ∈ ŴS,σ, tk 6∈ Πt(W
(0)
S,σ ∪W

(1)
S,σ) and WS,σ = ∅ if |S| > n (Lemma 4), we have

that |S| ≤ n. In addition, since tk 6∈ Πt(Z
(0)
S,σ ∪ Z

(1)
S,σ) and ZS,σ = ∅ (Lemma 5), it follows that

(tk, zk) 6∈ ẐS,σ; therefore, {∇xF σii (tk, zk), i ∈ S} is a linearly independent set for every k ∈ N.
Finally, since the function G(tk, ·) attains a local minimum at the point zk when restricted to
the set {x ∈ Rn | F σii (tk, x) = 0 for every i ∈ S}, by the Lagrange Multiplier Theorem, there
exists (λi,k)i∈S such that

∇xG(tk, zk) =
∑
i∈S

λi,k∇xF σii (tk, zk).

Therefore, (tk, zk, (1, (λi,k)i∈S)) ∈ V̂S,σ; but since tk 6∈ Πt(V
(0)
S,σ ∪ V

(1)
S,σ ), we conclude that

(tk, zk, (1, (λi,k)i∈S)) ∈ VS,σ. Without loss of generality, we may assume that (1, (λi,k)i∈S)k∈N
converges to a point (λ0, (λi,0)i∈S)) ∈ P|S|; then (0, z, (λ0, (λi,0)i∈S)) ∈ VS,σ and, therefore,
(0, z) ∈ Π(t,x)(VS,σ) as we wanted to prove. �

2.3 Obtaining the bounds

In this section we prove Lemmas 4 and 5 and we do the estimates to obtain the bounds we are
looking for.

Notation 8 For p ∈ Q[x1, . . . , xn] and e ∈ N, e ≥ deg p, (p)0e will denote the polynomial
xe0p(x1/x0, . . . , xn/x0) ∈ Q[x0, . . . , xn] which is obtained by homogenizing p up to degree e.

• For every 1 ≤ i ≤ m,

F+
i (t0, t, x0, x) = t0 (fi)

0
d(x0, x) + t (f̃i)

0
d(x0, x) = t0 (fi)

0
d(x0, x) + t

 n∑
j=0

aijx
d
j

 ,
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F−i (t0, t, x0, x) = t0 (fi)
0
d(x0, x)− t (f̃i)

0
d(x0, x) = t0 (fi)

0
d(x0, x)− t

 n∑
j=0

aijx
d
j

 .

• For S ⊂ {1, . . . ,m} and σ ∈ {+,−}S, for every 1 ≤ j ≤ n,

GS,σ,j(t0, t, x0, x, λ0, λ) = t0

(
λ0

∂g

∂xj
−
∑
i∈S

λi
∂fi
∂xj

)0

d−1

+t

(
λ0

∂g̃

∂xj
−
∑
i∈S

λiσi
∂f̃i
∂xj

)0

d−1

=

= t0

(
λ0

( ∂g
∂xj

)0
d−1
−
∑
i∈S

λi

( ∂fi
∂xj

)0
d−1

)
+ t dxd−1j

(
λ0a0j −

∑
i∈S

λiσiaij

)
.

Proof of Lemma 4. Consider the polynomials F σii for every i ∈ S. These polynomials are bi-

homogeneous in the sets of variables (t0, t), (x0, x); therefore, they define a variety ŴS,σ in

P1 × Pn (which contains ŴS,σ when embedded in Pn). Now, the fiber Π−1(t0,t)
(0, 1) with respect

to the projection Π(t0,t) : ŴS,σ → P1 is given by the set of common zeroes of the polynomials∑n
j=0 aijx

d
j for i ∈ S. But this system has no solution in Pn, since, by the assumption on A

and the fact that |S| > n, the matrix (aij)i∈S,0≤j≤n has maximal rank n+ 1. We conclude that

Π(t0,t)(ŴS,σ) is not equal to P1. Since Pn is a complete variety, Π(t0,t)(ŴS,σ) is closed and hence,
it is a finite set. Therefore, WS,σ = ∅. �

Proof of Lemma 5. Consider the variety ZS,σ defined in P1 × Pn × P|S|−1 by the polynomials

F σii , i ∈ S, and each of the n components of the vector
∑

i∈S λi∇xF
σi
i . Note that the projection

to P1 × Pn of ZS,σ contains ẐS,σ (when embedded in P1 × Pn). Consider the projection Π(t0,t) :

ZS,σ → P1. We will show that the fiber Π−1(t0,t)
(0, 1) is empty or, equivalently, that the system

n∑
j=0

aijx
d
j = 0 i ∈ S

dxd−1j

∑
i∈S

σiaijλi = 0 j = 1, . . . , n.

has no solution in Pn × P|S|−1. Assume, on the contrary, that (x0, x, λ) is a solution and let
k = |{j ∈ {1, . . . , n} | xj = 0}|. When specializing x in the second set of equations, we get a
linear equation system for λ consisting of n− k linearly independent equations in |S| unknowns
which has a non-trivial solution; hence |S| ≥ n+ 1− k. This implies that the first |S| equations
do not have a common solution in Pn with k vanishing coordinates.

We conclude that Π(t0,t)(ZS,σ) is not equal to P1. Since Pn × P|S|−1 is complete, as in the
proof of the previous lemma, it follows that ZS,σ = ∅. �

Now we use the previous constructions to derive our bounds. We will define univariate
polynomials QS,σ(U) having the minimum that g takes over the compact connected components
of T as roots and we will obtain our bounds by means of these polynomials. Let

P (U, x0, x) = Uxd00 − (g)0d0(x0, x).
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For S ⊂ {1, . . . ,m} with |S| ≤ n and σ ∈ {+,−}S , let

RS,σ(t0, t, U) = Res(x0,x),(λ0,λ)(P ;F σii , i ∈ S;GS,σ,j , 1 ≤ j ≤ n) ∈ Z[t0, t, U ],

where Res(x0,x),(λ0,λ) denotes the bihomogeneous resultant associated to the bi-degrees of the
polynomials involved: (d0, 0), (d, 0) repeated s times, and (d − 1, 1) repeated n times (see [6,
Ch. 13, Sec. 2] for the definition and basic properties of multihomogeneous resultants).

Lemma 9 The polynomial RS,σ(t0, t, U) is not identically zero.

Proof. Let S be the polynomial system{
F σii (t0, t, x0, x) = 0 i ∈ S,

GS,σ,j(t0, t, x0, x, λ0, λ) = 0 1 ≤ j ≤ n.

By specializing (t0, t) = (0, 1) in the polynomials of the system S, we get the following
polynomial system of equations:

S∞ =



n∑
j=0

aijx
d
j = 0 i ∈ S,

dxd−1j

(
a0jλ0 −

∑
i∈S

σiaijλi

)
= 0 1 ≤ j ≤ n.

We will show that S∞ has finitely many solutions in Pn×Ps, none of them lying in the hyperplane
{x0 = 0}. As a consequence of this fact, it follows that the only roots of RS,σ(0, 1, U) are the
finitely many values g(x) where (1, x, λ0, λ) is a solution to S∞; therefore RS,σ(t0, t, U) is not
identically zero.

First, note that if (x0, x, λ0, λ) is a solution to S∞, the last n equations of this system imply
that, for every 1 ≤ j ≤ n, either xj = 0 or a0jλ0−

∑
i∈S σiaijλi = 0. Let us show that, for every

J ⊂ {1, . . . , n}, the system S∞ has only finitely many solutions such that xj = 0 if and only if
j ∈ J . For a fixed J , these solutions are the solutions to

S(1,J)∞ =

∑
j /∈J

aijx
d
j = 0 i ∈ S and S(2,J)∞ =

{
a0jλ0 −

∑
i∈S

σiaijλi = 0 j /∈ J.

Taking into account that any submatrix of (aij) has maximal rank, we have that:

• If |J | > n − s, the system S(1,J)∞ implies that xj = 0 for every j /∈ J , contradicting the
definition of J .

• If |J | < n− s, then S(2,J)∞ has a unique solutions (λ0, λ) = 0, since it consists of at least as
many equations as unknowns; then, S∞ has no solutions in Pn × Ps corresponding to J .

• If |J | = n−s, S(2,J)∞ has a unique solution in Ps. On the other hand, S(1,J)∞ has no solutions
with x0 = 0 and exactly ds solutions with x0 = 1.

�

8



Write RS,σ(t0, t, U) = teS,σR̃S,σ(t0, t, U) with eS,σ ∈ N0 and R̃S,σ(t0, t, U) not a multiple of t.

Note that RS,σ(1, t, g(x)) vanishes on Π(t,x)(V̂S,σ) and so, R̃S,σ(1, t, g(x)) vanishes on Π(t,x)(VS,σ).
Let

QS,σ(U) = R̃S,σ(1, 0, U).

Proposition 10 The polynomial QS,σ(U) ∈ Z[U ] is not identically zero. The degree of QS,σ(U)
is at most (

n

s

)
ds(d− 1)n−s,

where s = |S|, and its coefficients have an absolute value lower than

MS,σ = (2H0)
M1(2H̃)sM2+nM3dnM3NM1

1 N sM2
2 NnM3

3

(
M1 +N1 − 1

N1 − 1

)(
M2 +N2 − 1

N2 − 1

)s(M3 +N3 − 1

N3 − 1

)n
,

where

• H̃ = max{H, 2n+ 2m},

• M1 =
(
n
s

)
ds(d− 1)n−s, M2 =

(
n
s

)
d0d

s−1(d− 1)n−s, M3 =
(
n−1
s

)
d0d

s(d− 1)n−s−1,

• N1 =
(
d0+n
n

)
, N2 =

(
d+n
n

)
, N3 =

(
d−1+n
n

)
(s+ 1).

Proof. Since R̃S,σ(t0, t, U) is homogeneous in the variables (t0, t) and it is not a multiple of t, it
follows that QS,σ(U) is not identically zero.

The degree of the polynomials fi is bounded by d and their coefficients are of absolute value
at most H. The corresponding quantities for g are d0 ≤ d and H0. By abuse of notation, let A
be an upper bound for the absolute values of the elements of the matrix A. From Lemma 3, we
may assume A ≤ 2(n+m).

We deduce that P ∈ (Z[U ])[x0, x] is a polynomial of degree d0 and its coefficients are

linear polynomials in U with coefficients of magnitude at most H0. Also, F±i (t0, t, x0, x) ∈
(Z[t0, t])[x0, x] are polynomials of degree d and their coefficients are linear forms in (t0, t) with
coefficients of magnitude at most H̃. Finally, GS,σ,j(t0, t, x0, x, λ0, λ) ∈ (Z[t0, t])[x0, x, λ0, λ] are
bihomogeneous polynomials in ((x0, x), (λ0, λ)) of degree d − 1 in the variables (x0, x) and lin-
ear in the variables (λ0, λ), and their coefficients are linear forms in (t0, t) with coefficients of
magnitude at most dH̃.

We compute the resultant RS,σ that eliminates ((x0, x), (λ0, λ)), which is a polynomial in
(Z[U ])[t0, t]. Recall that the bihomogeneous resultant Res(x0,x),(λ,λ0) of a bihomogeneous system
of n+ s+ 1 polynomials consisting of a polynomial of bidegree (d0, 0), s polynomials of bidegree
(d, 0) and n polynomials of bidegree (d− 1, 1) is a multihomogeneous polynomial of degree

M1 = Bez((d, 0), s; (d− 1, 1), n) =

(
n

s

)
ds(d− 1)n−s

in the coefficients of the polynomial of bidegree (d0, 0), of degree

M2 = Bez((d0, 0), 1; (d, 0), s− 1; (d− 1, 1), n) =

(
n

s

)
d0d

s−1(d− 1)n−s

9



in the coefficients of each of the s polynomials of bidegree (d, 0), and of degree

M3 = Bez((d0, 0), 1; (d, 0), s; (d− 1, 1), n− 1) =

(
n− 1

s

)
d0d

s(d− 1)n−s−1

in the coefficients of each of the n polynomials of bidegree (d−1, 1). Here Bez(d1, s1; . . . ;dr, sr)
denotes the Bézout number of a bihomogeneous system formed by si polynomials of bi-degree
di = (di,1, di,2) for 1 ≤ i ≤ r (see [18, Chapter IV, Sec. 2]).

It follows that RS,σ is a sum of terms of the form

ρα
∏
i∈S

βi
∏

1≤j≤n
γj , (1)

where ρ ∈ Z is a coefficient of the bihomogeneous resultant Res(x0,x),(λ,λ0), α denotes a monomial

in the coefficients of P of total degree M1, βi denotes a monomial in the coefficients of F±i of
total degree M2 for every i ∈ S, and γj denotes a monomial in the coefficients of GS,σ,j of total
degree M3 for every 1 ≤ j ≤ n. In particular, the degree of RS,σ in the variable U is at most
M1.

Note that the polynomial QS,σ(U) is the coefficient of RS,σ ∈ (Z[U ])[t0, t] corresponding to
the smallest power of t. Therefore,

degQS,σ(U) ≤ degU RS,σ(U, t0, t) ≤M1 =

(
n

s

)
ds(d− 1)n−s.

In order to estimate the magnitude of its coefficients, we may set t0 = 1 in RS,σ and, by
abuse of notation, write RS,σ for the specialized polynomial. For every k, we will compute an
upper bound for the magnitude of the coefficients of the polynomial in Z[U ] that appears as
coefficient of tk in RS,σ.

First, we apply [19, Theorem 1.1] to bound the coefficients ρ ∈ Z of the resultant Res(x0,x),(λ0,λ).
We obtain:

|ρ| ≤ NM1
1 (NM2

2 )s (NM3
3 )n, (2)

where N1 =
(
d0+n
n

)
and N2 =

(
d+n
n

)
are the cardinalities of the supports of generic homogeneous

polynomials of degrees d0 and d respectively, and N3 =
(
d−1+n
n

)
(s+ 1) is the cardinality of the

support of a generic bihomogeneous polynomial of bidegree (d− 1, 1) in (x0, x), (λ0, λ).
Note that α ∈ Z[U ] is a polynomial in U with integer coefficients and degree bounded by

M1, and the absolute value of the coefficient of the power U j in αM1 is at most(
M1

j

)
HM1−j

0 < (2H0)
M1 . (3)

On the other hand, the product
∏
i∈S βi

∏
1≤j≤n γj ∈ Z[t] is a polynomial in the variable t

with integer coefficients, which is a product of sM2 linear factors that are coefficients of the F±i
and nM3 linear factors that are coefficients of the GS,σ,j . Thus, for a fixed k, using the upper

bounds on the coefficients of the polynomials F±i and GS,σ,j , it follows that the coefficient of tk

in this product is at most(
sM2 + nM3

k

)
H̃sM2(dH̃)nM3 < (2H̃)sM2+nM3dnM3 . (4)

10



Finally, taking into account the multihomogeneous structure of the resultant, it follows that
RS,σ is a sum of at most(

M1 +N1 − 1

N1 − 1

)(
M2 +N2 − 1

N2 − 1

)s(M3 +N3 − 1

N3 − 1

)n
(5)

terms of the form (1).
Combining the upper bounds (2), (3), (4) and (5) we obtain the stated upper bound for the

absolute value of the coefficients of QS,σ(U). �

To prove Theorem 1, we will use the bounds for the degree and the absolute value of the
coefficients of the polynomials QS,σ(U) just obtained and the following bound on the roots of a
univariate polynomial in terms of its coefficients:

Proposition 11 ([13, Proposition 2.5.9]) Let P (x) =
∑n

j=0 cjx
j ∈ C[x], cn 6= 0. If z ∈ C and

P (z) = 0, then |z| ≤ 1 + max0≤j≤n−1 | cjcn |.

The following corollary follows easily from the previous proposition:

Corollary 12 Let P (x) =
∑n

j=0 cjx
j ∈ Z[x] be a non-zero polynomial and M ∈ Z such that

|cj | < M for every 0 ≤ j ≤ n. If z ∈ C− {0} and P (z) = 0, then |z| ≥M−1.

We can prove now the main result of the paper:

Proof of Theorem 1. By Proposition 7, the polynomial g attains its minimum value over C at
a point z0 ∈ C such that (0, z0) ∈ Π(t,x)(VS,σ) for certain S ⊂ {1, . . . ,m} with 0 ≤ |S| ≤ n, and

σ ∈ {+,−}S with σi = + for l + 1 ≤ i ≤ m. Now, for every (0, z) ∈ Π(t,x)(VS,σ), we have that
QS,σ(g(z)) = 0.

Then, if s = |S|, we have that 0 ≤ s ≤ min{m,n} and Proposition 10 implies that g(z0) is
an algebraic number of degree at most(

n

s

)
ds(d− 1)n−s ≤ 2n−1dn.

Furthermore, if g(z0) 6= 0, by Corollary 12, its absolute value is greater than or equal to M−1S,σ.
We keep the notation in Proposition 10. In order to get the stated bound for the minimum,

we use the following facts:

• N1, N2 ≤ 3
2d

n,

• N3 ≤ 9
4d

n: for n = 2 and n = 3 the bound holds easily, for n ≥ 4,

N3 ≤ (n+1)

n∏
i=1

d− 1 + i

i
≤ (n+1)d

(∑n
i=2

d−1+i
i

n− 1

)n−1
≤ (n+1)d

(
(d−1)

log(n)

n− 1
+1
)n−1

≤

≤ (n+ 1)d
(

(d− 1)0.47 + 1
)n−1

≤ (n+ 1)0.74n−1dn ≤ 9

4
dn.

•
(
Mi+Ni−1
Ni−1

)
≤ 2Mi+Ni for 1 ≤ i ≤ 3.

11



Then we have

MS,σ ≤ 22(M1+sM2+nM3)+(log2(3)−1)(M1+sM2)+2(log2(3)−1)nM3+N1+sN2+nN3 ·

· H̃M1+sM2+nM3dn(M3+M1+sM2+nM3).

Since M1 + sM2 + nM3 ≤ (n+ 1)
(
n
s

)
dn ≤ (n+ 1)2n−1dn and M3 ≤ 2n−2dn, we have

MS,σ ≤ 2(((3 log2(3)+1)n+2 log2(3)+2)2n−2+ 3
2
(n+1)+ 9

4
n)dnH̃(n+1)2n−1dnd(2n

2+3n)2n−2dn .

Taking into account that H̃ ≥ 4 and d ≥ 2, we obtain

MS,σ ≤ 2((−2n
2+3 log2(3)n+2 log2(3)+6)2n−2+ 15

4
n+ 3

2
)dnH̃n2ndndn

22ndn ,

and the bound follows since, for n ≥ 2,

(−2n2 + 3 log2(3)n+ 2 log2(3) + 6)2n−2 +
15

4
n+

3

2
≤
(

4− n

2

)
n2n.

�

Remark 13 The algebraic degrees of the coordinates of a minimizer are also bounded by
max0≤s≤min{m,n}

(
n
s

)
ds(d−1)n−s ≤ 2n−1dn. This can be seen simply by replacing the polynomial

g by a coordinate xi in the previous construction, namely, taking P (U, x0, x) = Ux0 − xi.

2.4 Non-compact situations

In applications (see Sections 3 and 4), sometimes the minimization of a polynomial needs to be
done over a component which is not necessarily compact, but with a compact set of minimizers.
The result in Theorem 1 can be extended to this situation:

Theorem 14 Let T = {x ∈ Rn | f1(x) = · · · = fl(x) = 0, fl+1(x) ≥ 0, . . . , fm(x) ≥ 0} be
defined by polynomials f1, . . . , fm ∈ Z[x1, . . . , xn] with n ≥ 2, degrees bounded by an even integer
d and coefficients of absolute value at most H, and let C be a connected component of T . Let
g ∈ Z[x1, . . . , xn] be a polynomial of degree at most d and coefficients of absolute value bounded
by H that takes a minimum value gmin,C over C. Assume that the set

Cmin = {z ∈ C | g(z) = gmin,C}

is compact. Then, gmin,C is an algebraic number of degree at most

max
0≤s≤min{m,n}

(
n

s

)
ds(d− 1)n−s ≤ 2n−1dn

and, if it is not zero, its absolute value is greater than or equal to

(24−
n
2 H̃dn)−n2

ndn ,

where H̃ = max{H, 2n+ 2m}.

12



Proof. Take M ∈ R>0 so that Cmin is contained in the open ball B(0,M), and let C ′ be a
connected component of the set

T ′ = {x ∈ Rn | f1(x) = · · · = fl(x) = 0, fl+1(x) ≥ 0, . . . , fm(x) ≥ 0,M2 −
n∑
i=1

x2i ≥ 0}

that contains a connected component of Cmin. Note that C ′ is compact, since T ′ is bounded.
By Proposition 7, there exist z0 ∈ C ′, S ⊂ {1, . . . ,m + 1} with |S| ≤ n, and σ ∈ {+,−}S

such that (0, z0) ∈ Π(t,x)(VS,σ) (for the corresponding variety VS,σ associated to the equations of
T ′) such that g(z0) = gmin,C .

Since M2 −
∑n

i=1(z0,i)
2 6= 0, we have that S ⊂ {1, . . . ,m} (see the proof of Proposition 7).

Therefore, to define the deformation varieties we may consider an initial matrixA ∈ Z(m+2)×(n+1)

obtained by taking an (m + 1) × (n + 1) matrix as in Lemma 3 and adding as a last row any
n+ 1 vector with positive entries and such that every submatrix of A has maximal rank. In this
way, all the entries of the first m + 1 rows of A, which are those relevant to our estimations,
are natural numbers less than or equal to 2(n + m). Now the result follows by Proposition 10,
proceeding as in the proof of Theorem 1. �

Under the weaker assumption that the minimium is attained, we can deduce from Theorem
1 a bound for the algebraic degree of the minimum.

Theorem 15 Let T = {x ∈ Rn | f1(x) = · · · = fl(x) = 0, fl+1(x) ≥ 0, . . . , fm(x) ≥ 0} be
defined by polynomials f1, . . . , fm ∈ Z[x1, . . . , xn] with n ≥ 2, degrees bounded by an even integer
d and coefficients of absolute value at most H, and let C be a connected component of T . Let
g ∈ Z[x1, . . . , xn] be a polynomial of degree at most d and coefficients of absolute value bounded
by H that takes a minimum value gmin,C over C. Then, gmin,C is an algebraic number of degree
at most

max
0≤s≤min{m+1,n}

(
n

s

)
ds(d− 1)n−s ≤ 2n−1dn.

Proof. Take M ∈ N so that gmin,C is attained in the open ball B(0,M), and let C ′ be a connected
component of the set

T ′ = {x ∈ Rn | f1(x) = · · · = fl(x) = 0, fl+1(x) ≥ 0, . . . , fm(x) ≥ 0,M2 −
n∑
i=1

x2i ≥ 0}

that contains a point of C where gmin,C is attained. Since C ′ is compact, the result follows by
applying the bound for the algebraic degree in Theorem 1. �

3 Bounds for the separation between disjoint connected com-
ponents of basic closed semialgebraic sets

In this section we apply our previous results to the case when g is the square of the Euclidean
distance in order to obtain bounds for the separation between two disjoint (and at least one
compact) connected components of semialgebraic sets defined by non-strict inequalities. In
particular, this gives a separation bound for two connected components of a closed semialgebraic
set provided that one of them is compact.

13



Proof of Theorem 2. We have that C1 × C2 is a connected component of the set T1 × T2 =
{(x, y) ∈ R2n | f1(x) = · · · = fl1(x) = 0, fl1+1(x) ≥ 0, . . . , fm1(x) ≥ 0, g1(y) = · · · = gl2(y) =
0, gl2+1(y) ≥ 0, . . . , gm2(y) ≥ 0}, and if D(x, y) =

∑n
i=1(xi − yi)2, then the minimum value that

D takes over C1×C2 equals dist2(C1, C2) > 0. In addition, the set{(x, y) ∈ C1×C2 | dist(x, y) =
dist(C1, C2)} is bounded and, therefore, compact. Then, the result follows from Theorem 14. �

Example 16 Consider d,H, n ∈ N with even d and f1, . . . , fn ∈ Z[x1, . . . , xn] defined by

f1(x) = Hx1 − 1, fi(x) = xi − xdi−1 for 2 ≤ i ≤ n− 1, fn(x) = x2n − xdn−1.

The set {x ∈ Rn | f1(x) = · · · = fn(x) = 0} equals {p, q} with

p = (H−1, H−d, . . . ,H−d
n−2

, H−
1
2
dn−1

), q = (H−1, H−d, . . . ,H−d
n−2

,−H−
1
2
dn−1

)

and the distance between p and q is 2H−
1
2
dn−1

. This shows that the double exponential nature of
our bound is unavoidable even in the case of different connected components of a single closed
semialgebraic set.

4 Further applications

In this section, we apply Theorems 1, 14 and 15 to some standard optimization problems (c.f.
[14, Section 3]).

Example 17 (Unconstrained optimization) Let n ≥ 2 and g ∈ Z[x1, . . . , xn] a polynomial
of degree bounded by an even integer d and coefficients of absolute value at most H. Then:

• If the minimum of g is attained, by Theorem 15, it is an algebraic number of degree at
most nd(d− 1)n−1.

• If the set where the minimum of g is attained is non-empty and compact, by Theorem 14,
the minimum is an algebraic number of degree at most (d − 1)n and, if it is not zero, its
absolute value is greater than or equal to (24−

n
2 H̃dn)−n2

ndn, where H̃ = max{H, 2n}.

Example 18 (Quadratically constrained quadratic programming (QCQP)) Let n ≥ 2.
The standard form of QCQP is the following:

min
x∈Rn

1
2 x

TA0 x+ bT0 x+ c0

s.t. 1
2 x

TAi x+ bTi x+ ci ≤ 0, 1 ≤ i ≤ m,

with symmetric Ai ∈ Rn×n, bi ∈ Rn and ci ∈ R for 0 ≤ i ≤ m. Consider a feasible instance of
QCQP defined by integer data and let H be an upper bound for the absolute value of the entries
of all Ai, bi and ci. Our results enable us to obtain the following bounds:

• If the minimum is attained, by Theorem 15, it is an algebraic number of degree at most
max0≤s≤min{m+1,n}

(
n
s

)
2s.

• If the feasible set is compact, or, more generally, if the set where the mimimum is attained
is non-empty and compact, by Theorem 1 or 14 respectively, the minimum is an algebraic
number of degree at most max0≤s≤min{m,n}

(
n
s

)
2s and, if it is not zero, its absolute value is

greater than or equal to (24+
n
2 H̃)−n2

2n
, where H̃ = max{H, 2n+ 2m}.
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Note that the feasible set is compact if, for instance, Ai is positive definite for at least one
i, 1 ≤ i ≤ m. On the other hand, the set where the minimum is attained is non-empty and
compact if, for instance, A0 is positive definite.

Example 19 (Semidefinite programming (SDP)) Let n ≥ 2. The standard form of SDP
is the following:

min
X∈Sn

A0 ·X

s.t. Ai ·X = bi, 1 ≤ i ≤ m,
X � 0,

with symmetric Ai ∈ Rn×n for 0 ≤ i ≤ m, and bi ∈ R for 1 ≤ i ≤ m. Recall that Sn is the set
of symmetric matrices of size n with real coefficients, A ·X = tr(AX) and the notation X � 0
means that X is positive semidefinite.

This problem can be seen as a polynomial minimization problem in n(n+1)
2 real variables

which represent the entries of the matrix X, since the condition X � 0 can be described by the
non-negativity of the 2n − 1 principal minors of X.

Consider feasible instances defined by integer data. The problem of computing the algebraic
degree in SDP in the generic case has been studied in [15] and in [7], where precise formulas in
terms of combinatorial numbers and Pfaffians are given. Our results enable us to obtain a simple
upper bound for the algebraic degree and a lower bound for the absolute value of the minimum:

• Since the number of polynomial constraints is always greater than or equal to the number
of variables, the bounds in Theorems 1, 14 and 15 for the algebraic degree are the same.
Therefore, if the minimum is attained, by Theorem 15, it is an algebraic number of degree
at most

max
0≤s≤n(n+1)

2

(n(n+1)
2

s

)
n̂s(n̂− 1)n−s,

where n̂ is the smallest even integer greater than or equal to n.

• If the feasible set is compact, or, more generally, if the set where the mimimum is attained
is non-empty and compact, and the minimum is not zero, by Theorem 1 or 14 respectively,
its absolute value is greater than or equal to

(24−
n(n+1)

4 H̃n̂
n(n+1)

2 )−
n(n+1)

2
(2n̂)

n(n+1)
2 ,

where n̂ is the smallest even integer greater than or equal to n and H̃ = max{2H,n(n +
1) + 2m+ 2n+1 − 2} with H an upper bound for the absolute value of the entries of all Ai
and bi (the value of H̃ is obtained taking into account that 2n is an upper bound for the
absolute value of the coefficients of the principal minors of X).

Note that the feasible set is compact if, for instance, Ai is positive definite for at least one
i, 1 ≤ i ≤ m. On the other hand, the set where the minimum is attained is non-empty and
compact if, for instance, A0 is positive definite, or, more generally, if the dual problem is strictly
feasible.
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