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Abstract

We present a new probabilistic algorithm to find a finite set of points intersecting
the closure of each connected component of the realization of every sign condition over
a family of real polynomials defining regular hypersurfaces that intersect transversally.
This enables us to show a probabilistic procedure to list all feasible sign conditions
over the polynomials. In addition, we extend these results to the case of closed sign
conditions over an arbitrary family of real multivariate polynomials. The complexity
bounds for these procedures improve the known ones.

1 Introduction

Given polynomials f1,..., f; € Rlz1,...,xy], asign condition o € {<,=,>}", or a closed
sign condition o € {<, =, >}", is said to be feasible if the system fi(x)o10, ..., fm(z)opn0
has a solution in R", and the set of its solutions is called the realization of o. One of
the basic problems in computational semialgebraic geometry is to decide whether a sign
condition is feasible. This problem is a particular case of quantifier elimination and, on
the other hand, many elimination algorithms use subroutines determining all the feasible
sign conditions for a family of polynomials.

The first elimination algorithms over the reals are due to Tarski [41] and Seidenberg
[39], but their complexities are not elementary recursive. Collins [16] was the first to obtain
a doubly exponential complexity. In [21I], Grigor’ev and Vorobjov present an algorithm
with single exponential complexity to decide the consistency of a system of equalities and
inequalities by studying the critical points of a function in order to obtain a finite set
of points intersecting each connected component of the solution set. This same idea was
used to obtain more efficient quantifier elimination procedures in [25], [32] and [7]. The
procedure in this last paper relies on previous results from [§], where the authors obtain the
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best known complexity bound, in the deterministic model, for the computation of a set of
points meeting every connected component of each feasible sign condition over an arbitrary
family of polynomials: namely, for m polynomials in n variables of degrees bounded by d,
this set can be computed within m"1d®(™ arithmetic operations. The specific problem
of consistency for equalities over R was also treated through the critical point method
afterwards. In [34], the non-emptiness of a real variety defined by a single equation is
studied and, in [2], an algorithm is given to deal with arbitrary positive dimensional
systems.

Several probabilistic procedures lead to successive complexity improvements. Using
classical polar varieties, in [3] and [4], the case of a smooth compact variety given by
a regular sequence is tackled within a complexity depending polynomially on an intrin-
sic degree of the systems involved and the input length. To achieve this complexity,
straight-line program encoding of polynomials and an efficient procedure to solve poly-
nomial equation systems over the complex numbers ([I8]) are used. The compactness
assumption is dropped in [5] and [6], by introducing generalized polar varieties. The main
complexity result in these papers is that the computation of a finite set which contains at
least one sample point for each connected component of the considered real variety can be
achieved in time O((Z) Ln4m2d252) up to poly-logarithmic factors, where 6 < d"m"™~"™ is
a suitably defined degree of the real interpretation of the input reduced regular sequence
of polynomials and L is the length of a straight-line program encoding these polynomials.
The non-compact case is also considered in [36] for a smooth equidimensional variety de-
fined by a radical ideal by studying projections over polar varieties, and an extension to
the non-equidimensional situation is presented in [37]. Finally, [35] describes an algorithm
computing at least one point in each connected component of a semi-algebraic set defined
by a single inequality, which is based on the computation of generalized critical points,
within O(n’d*") arithmetic operations.

In this paper, we consider the problem of determining all feasible sign conditions (or
closed sign conditions) over a given finite family of multivariate polynomials fi,..., fin €
R[x1,...,zy,]. We first present a probabilistic algorithm that obtains a finite set of points
intersecting the closure of each connected component of the realization of every sign con-
dition over the given polynomials under the following regularity condition:

Assumption 1 For every x € C" and every {i1,...,is} C{1,...,m}, if fi,(x) =--- =
fis(x) =0, then {Vfi,(x),...,Vfi,(x)} is linearly independent.

In addition, for families of arbitrary polynomials, we show a probabilistic algorithm that
computes a finite set of points intersecting each connected component of the realization of
every closed sign condition. The input and intermediate computations in our algorithms
are encoded by straight-line programs (see Section . The output is described by means
of geometric resolutions, that is to say, by rational parametrizations of 0-dimensional
varieties represented by univariate polynomials encoded in the usual way (namely, by
their coefficient vectors). In both situations, the output of the algorithm enables us to
determine all the feasible closed sign conditions over the polynomials by evaluating their
signs at the computed points, which is done by using the techniques in [I5]; moreover, in
the first case, we can determine all feasible sign conditions (see Theorems (17| and .



A sketch of our main algorithms is the following. Given f1,..., fi, € Rlz1,...,2,], a
generic change of variables prevents asymptotic behavior with respect to the projection to
the first coordinate x; for each connected component C' C R" of every feasible (closed) sign
condition over fi,..., fi,: either C' projects onto R or its projection is a proper (possibly
unbounded) interval whose endpoints have a non-empty finite fiber in C. In the latter case,
points in C' are obtained as extremal points of 1. These extremal points are solutions of
particular systems of polynomial equations which are dealt with by deformation techniques
that enable the computation of geometric resolutions of finite sets including them. To find
points in the components projecting onto R, the set is intersected with {z1 = p1} for a
particular value p1, and the algorithm continues recursively.

The following theorem states our main results (see Theorems [15| and :

Theorem 2 Let K be an effective subfield of R. There are probabilistic algorithms to
perform the following tasks:

e Given polynomials f1,..., fm € Klz1,...,zy,] satisfying Assumption |1, with degrees
bounded by d > 2 and encoded by a straight-line program of length L, obtain a finite
set of points intersecting the closure of each connected component of the realiza-
tion of every sign condition over fi,..., fm within O(Z?:Hi{m’n} (") ((Z:ll)d”)2L)
operations in K up to poly-logarithmic factors.

e Given arbitrary polynomials f1,..., fm € Klx1,...,x,], with degrees bounded by an
even integer d and encoded by a straight-line program of length L, obtain a finite set
of points intersecting each connected component of the realization of every closed sign
condition over fi,..., fm within O( Zsmzl?{m’n} 25 (’?) ((Z:ll)d”)z(l} + d)) operations
mn K up to poly-logarithmic factors.

The condition d > 2 is only required in order to simplify some complexity bounds. Even
though Assumption [I] cannot be checked within the complexity order of our algorithms,
it is met by generic polynomial families. The factor (Z:ll)d” in the complexity estimates
is an upper bound for the bihomogeneous Bézout numbers arising from the Lagrange
characterization of critical points of projections (cf. [37]). In fact, one of the new tools
to achieve the stated complexity order, which improves the previous ones depending on
the same parameters, is the use of algorithmic deformation techniques specially designed
for bihomogeneous systems (for a similar approach to solving bihomogeneous systems,
see [23]). Up to now, the polynomial systems used to characterize critical points were
handled with general algorithms solving polynomial equations over the complex numbers
(see, for instance, [1], [33], [20] and [30]). Another important feature of the deformation
techniques we use is that they enable us to locate a finite subset of representative points
in the solution set of the considered Lagrange systems for arbitrary polynomial families.

A standard technique in real elimination is to take sums of squares and introduce
infinitesimals to reduce the problem to the study of a smooth and compact real hypersur-
face. As this leads to an artificial growth of the parameters involved in the complexity
estimates, a further advantage of our techniques is that we work directly with the input
equations, as in [36] and [6], instead of using these constructions. Moreover, our work can



be seen as an extension of [36] and [6] in the sense that we deal not only with equations but
also with inequalities. In particular, the algorithm in [36], which only works for the case of
smooth equidimensional varieties defined by a radical ideal, considers a family of equation
systems equivalent to the ones introduced in the recursive stages of our algorithm, but
those systems involve a large number of polynomials and do not have any evident struc-
ture. Let us remark that the use of infinitesimals in previous works serves also the purpose
of finding representative points for open sign conditions defined by arbitrary polynomials.
To achieve this task, which is not considered in this paper, the use of infinitesimals still
seems to be unavoidable.

We also prove that our deformation based approach can be applied to deal with sign
conditions over bivariate systems without any assumption on the polynomials. We expect
this can be extended to general multivariate polynomials. This is the subject of our
current research. Finally, we adapt our techniques to the case of an arbitrary multivariate
polynomial.

All the complexity bounds in this paper refer to the number of arithmetic operations.
The bit complexity analysis of our algorithms would require a further characterization of
the generic choices involved as well as bit complexity estimates for some previous subrou-
tines we use, which seem to be difficult to obtain.

This paper is organized as follows: In Section [2| we introduce some basic notions and
notation that will be used throughout the paper. Section [3]is devoted to presenting the
basic ingredients to be used in the design of our algorithms. In Section [4] we present
our main algorithms to determine all feasible sign conditions over polynomial families
satisfying regularity assumptions. In Section [5| we consider the same problem for closed
sign conditions over arbitrary multivariate polynomials. The last section contains our
results on sign conditions over bivariate polynomial families and over a single multivariate
polynomial.

2 Preliminaries

2.1 Notation

Throughout this paper Q, R and C denote the fields of rational, real and complex numbers
respectively, N denotes the set of positive integers and Ng := NU{0}. If k is a field, k will
denote an algebraic closure of k.

For n € N and an algebraically closed field k, we denote by A} and P} (or simply by
A™ or P" if the base field is clear from the context) the n-dimensional affine space and
projective space over k respectively, equipped with their Zariski topologies. For a subset
X of one of these spaces, we will denote by X its closure. We adopt the usual notions of
dimension and degree of an algebraic variety V' (see for instance [40] and [22]).

We will denote a projections on a set of coordinates x by 7. For short, a projection
on the kth coordinate will also be denoted by 7.

For any non-empty set A C R™, A will denote its closure with respect to the usual
Euclidean topology. We define Zi,t(A) = {(z1,...,2n) € A | 21 = infm(A)} if m(A) is
bounded from below, and Ziy¢(A) = () otherwise. Similarly, Zgp(A) = {(z1,...,2,) € A |



x1 =supmi(A)} if m1(A) is bounded from above, and Zg,,(A) = () otherwise. Finally, we
denote Z(A) = Zint(A) U Zgup(A).
Throughout this paper, log will denote logarithm to the base 2.

2.2 Algorithms and complexity

The algorithms we consider in this paper are described by arithmetic networks over an
effective base field K C R (see [43]). The notion of complezity of an algorithm we consider
is the number of operations and comparisons over K.

The objects we deal with are polynomials with coefficients in K. Throughout our
algorithms we represent each polynomial either as the array of all its coefficients in a
pre-fixed order of its monomials (dense form) or by a straight-line program. Roughly
speaking, a straight-line program (or slp, for short) over K encoding a list of polynomials
in K[z1,...,z,] is a program without branches (an arithmetic circuit) which enables us to
evaluate these polynomials at any given point in K. The number of instructions in the
program is called the length of the slp (for a precise definition we refer to [14, Definition
4.2]; see also [20]).

We will do operations with polynomials encoded in both these ways. To estimate the
complexities we will use the following results: Operations between univariate polynomials
with coefficients in a field K of degree bounded by d in dense form can be done using
O(dlog(d)loglog(d)) operations in K (see [44] Chapter 8]). From an slp of length L en-
coding a polynomial f € K[zy,...,z,], we can compute an slp with length O(L) encoding
f and all its first order partial derivatives (see [10]).

2.3 Geometric resolutions

A way of representing zero-dimensional affine varieties which is widely used in computer
algebra nowadays is a geometric resolution. This notion was first introduced in the works
of Kronecker and Koénig in the last years of the XIXth century ([29] and [28]) and appears
in the literature under different names (rational univariate representation, shape lemma,
etc.). For a detailed historical account on its application in the algorithmic framework,
we refer the reader to [20]. The precise definition we are going to use is the following:

Let k be a field of characteristic 0 and V = {¢0), ... ¢P)} ¢ A} be a zero-dimensional
variety defined by polynomials in k[z1,...,z,]. Given a separating linear form ¢ = ujx; +
o dUpy, € k[z1,. .., 3,] for V (that is, a linear form £ such that £(£®)) # £(¢€D) if i # §),
the following polynomials completely characterize the variety V:

e the minimal polynomial q = [[,<;<p(U — ((EM)) € K[U] of ¢ over the variety V
(where U is a new variable),

e a polynomial ¢ € k[U] with deg(§) < D and relatively prime to g,
e polynomials wy,...,w, € k[U] with deg(w;) < D for every 1 < j < n satisfying

Wn,

V= {(5H0. ) € [n e . gn) = 0).



The family of univariate polynomials q, ¢, w1, . . ., w, € k[U] is called a geometric resolution
of V' (associated with the linear form /).

We point out that the polynomial ¢ appearing in the above definition is invertible in
k[U]/(q(U)). Setting vi(U) := ¢ 1 (U)wr(U) mod (q(U)) for every 1 < k < n, we are lead
to the standard notion of geometric resolution: a family of n + 1 polynomials q,v1,..., v,
in k[U] satisfying V = {(vi(n),...,vn(n)) € ' nek qn = 0}. We will use both
definitions alternatively, since the complexity of passing from one representation to the
other does not modify the overall complexity of our algorithms. Which notion is used in
each case will be clear from the number of polynomials.

3 General approach

3.1 Avoiding asymptotic situations

For any non-empty set A C R" we define Ziy¢(A, k) = {(x1,...,7,) € A | 71, = inf mx(A)}
if m;(A) is bounded from below and Zi, (A, k) = 0 otherwise. Similarly, Zgp(A, k) =
{(z1,...,2,) € A| 2 = sup 7 (A)} whenever 7 (A) is bounded from above and Zgy, (4, k
(0 otherwise. Finally, Z(A,k) = Zint(A, k) U Zgp(A, k). In particular, when k = 1,
Zint(A, 1), Zsup(A, 1) and Z(A,1) will be denoted by Zins(A), Zsup(A) and Z(A) respec-
tively as has already been stated in Section [2.1

The precise conditions achieved by a generic linear change of variables are stated in
the following proposition:

Proposition 3 Let f1,..., f;n be n-variate polynomials with real coefficients. After a
generic linear change of variables over Q, for every semialgebraic set P defined in R™ by
a Boolean formula on the polynomials f1,..., fm involving equalities and inequalities to
zero and every p = (p1,...,pn) € R, if 1 < k < n and C is a connected component of
Pn{x1 =p1,...,Tk—1 = Pk—1}, then Z(C, k) is a finite set (possibly empty). Moreover, if
7(C) is bounded from below, then Zi(C, k) is not empty, and, if 7 (C) is bounded from
above, then Zg,,(C, k) is not empty.

To prove Proposition [3] we will use the following auxiliary lemma:

Lemma 4 Let {fijh<i<ni<j<i, C Rlz1,..., 2] be a family of nonzero polynomials satis-
fying simultaneously:

a) for 1 <i<n, {fij}i<j<i, is contained in Rlxq, ..., x;], it is closed under derivation
with respect to the variable x;, and every polynomial in it is quasi-monic (that is,
monic up to a constant) with respect to x;,

b) for 1 < i < n, {fu-1)jhi<j<i_, slices {fijh1<j<i; in the sense of [13, Definition
2.9.4).

Let p = (p1,...,pn) € R?, 1 < i < n, and P C R® be a semialgebraic set defined by a
Boolean formula on the polynomials f;j, 1 < j <l;, involving equalities and inequalities to
zero. For 1 <k <1, let C be a connected component of PN{x1 =pi,...,Th_1 = Pk—1}-
Then the set Z(C, k) is finite (possibly empty). Moreover, if m(C) is bounded from below,
then Zine(C, k) # 0, and, if m,(C) is bounded from above, then Zg,(C, k) # 0.



Proof: As for every 1 < k < n the family {fi;j(p1,...,pp—1,%k, -, Tn) bk<i<n,1<j<i; C
R[xg, ..., x,) satisfies the hypotheses, it is enough to prove the lemma for k = 1.

For i = 1, the result is clear.

Suppose the statement is true for i — 1. Let 7 : R® — R~! be the projection on
the first ¢ — 1 coordinates. Following the notation in [I3, Chapter 2|, let Aj,..., Ay be
the semialgebraic sets giving the slicing of R*~! with respect to fi1, ..., fu, given by the
polynomials f;_1y1,..., fi—1)y,_, and, for 1 <s < /L let {1 <+ < &54, 1 As — R be the
continuous semialgebraic functions that slice A; x R. Let Ag1,..., Asy, be the connected
components of Ag.

Note that C is a finite union of some sets of the partitions of the sets A, x R given by
€11 s,a, and m(C') is a finite union of sets Ag . If 7(C) = UpAs), u,, then Z(w(C)) C
UnZ(As), u,)- Since each As, ., is a connected component of A, , which can be described
by a Boolean formula involving equalities and inequalities to zero of fi;_1y1,- .-, fa—1),_;>
by inductive hypothesis, each Z(A, , ) is finite and, therefore, Z(m(C')) is finite too. Now,
ifwe Z(C), then m(w) € Z(w(C)). Moreover, at least one of the quasi-monic polynomials

fi1, ..., fi, vanishes at w and, therefore, Z(C') is a finite set.
Suppose now that m1(C) is an interval bounded, for example, from below. Then, by
the inductive assumption, there exists z = (21,...,2i—1) € Zine(7(C)) C 7(C). Assume

further that A1 C 7(C), 2z € Zing(A1,1) and v : [0, 1] — A1 is a continuous semialgebraic
curve such that v((0,1]) € A;; and 7(0) = z (see [I3, Theorem 2.5.5]). Let 2 = ~(1).
Since € A1 C w(C), there exists y € R such that (z,y) € C. Using [I3, Lema 2.5.6],
each &1, can be extended continuously to Aj. Let us denote by & 4 also this extension.
Depending on the position of y with respect to the values & 1(Z) < -+ < 1,4, (Z), it is
easy in any case to define a continuous semialgebraic function A : [0, 1] — R such that the
continuous function 7 : [0, 1] — R? defined as 7(t) = (y(t), h(t)) satisfies 7((0, 1]) C C (note
that the signs of the polynomials f;1,..., fi, are constant over 4((0,1])) and, therefore,
(2,h(0)) = 7(0) € C. Moreover, as z; = inf w1 (7(C)) = inf 71 (C), (2, h(0)) € Zins(C). O

Now, we can prove Proposition

Proof: By Lemma [4] it suffices to show that there exists a Zarisky open set U C Gl(n,C)
such that, for every Vo € Q"*" NU there exists a family of polynomials { fi; }1<i<n,1<j<i; C
R[z] satisfying the hypotheses of the lemma, and such that, for 1 < j < m, fpi(z) =
fi(Vox) with m <1,,. Let V be a matrix whose entries are new variables v,s, 1 < 7,5 <n
and consider {Fj;}1<i<ni<j<i; C Rlv, 2] defined in the following way:

e Take I, = m and, for 1 < j <1/, let F,,;(V,x) = f;(Vz). Then, for 1 < jo <1, if
deg, Fpj, = dpnj,, add the first d,j, — 1 derivatives of F},;, with respect to x,, to the
list to obtain {Fnj}lgjfln‘

e From {F(i0+1)j}1§j§l¢0+1 C R[’U, L1y, xio-i-l]? form {Fioj}lﬁjﬁlgo C R[’U, X1, .- ,:ITZ'O]
by taking all possible resultants and subresultants with respect to the variable x;,41
between pairs of polynomials, not taking into account the ones that are identically
zero. Then, for 1 < jo <[] , if deg, Fj,j, = diyj,, add the first d;yj, — 1 derivatives
of Fj,;, with respect to the variable z;, to obtain the family {on}lgjglio'



Let 1 <i<nand1l<j<l. Let d;; := deg, Fj; and let ¢;; € R[v] be the coefficient of
the monomial x?” in F;; € R[v][z]. It can be shown inductively for i = n,..., 1, that for

every 1 <j <lland A € Q™ F;;(V,Az) = Fy; (V( 61 Id0_~ ) ,x), for every I/ +1 <

. . B 0 B 0
1 . (i—1)x(i—1) » _ .
j<l;and B € Q , F; <V,<0 1)3:) F1]<V< 0 Idn_iﬂ),x),and

(using these identities) that, for every 1 < j <1I;, g;; # 0.

Define U = {Vh € C**" | ¢;;(Vp) # 0for 1 <i < n,1 < j <I[;}. By [9, Proposition
4.34 and Theorem 5.14], for every Vo € Q"*" NU, the set { fi;(x)}1<i<n,1<j<i, defined by
fij(x) = Fj;(Vp, x) satisfies both conditions in Lemma O

The following proposition is a major tool for our algorithms (cf. [36, Theorem 2]).

Proposition 5 Let fi,..., f,n be n-variate polynomials with real coefficients. After a
generic change of variables, for every semialgebraic set P defined in R™ by a Boolean for-
mula on fi,. .., fm involving equalities and inequalities to zero, and everyp = (p1,...,pn) €
R™, if for 1 < k < n, P(k,p) is the set of all the connected components of P N{x1 =

Dly--.,Th—1 = Pi—1}, then

fru U U ze m)

k=1CeP(k.p)

s finite and intersects the closure of each connected component of P.

Proof: Proposition [3| ensures that this set is finite. Let C7 € P(1,p). If m1(Cy) is
bounded from above or below, again Proposition [3| states that Z(C1,1) is a finite non-
empty set and is included in C7. Otherwise, m(C1) = R and C1 N {z1 = p1} # 0. Let
Cy € P(2,p) be a connected component of C; N {z1 = p1}. If m3(C2) is bounded from
above or below, Z(C3,2) # () and is included in Cy C Cp. Otherwise, m3(C3) = R and
C1N{x1 = p1,22 = pa} # (. Following this procedure, we obtain that either there exists
Cy € P(k,p) such that Z(Cy, k) # 0 and is included in Cj C C; for some 1 < k < n or
p e Cy. O

The proof above leads to the recursive structure of our algorithm: For 2 < k < n, we
may think the kth variable as the first one for the polynomials f;(p1,...,Pk—1, Tk, .-, Zn)
for 1 < j < m. Therefore, it is enough to consider the problem of finding extremal points
for the projection over the first coordinate of the closures of the connected components of
a semialgebraic set.

3.2 Equations defining extremal points

Let fi,...,fm € Rlz1,...,zp] and let S := {iy,...,is} C{l,...,m}. f1<s<n-—1,
the implicit function theorem implies that a point z with maximum or minimum first

coordinate in a connected component of {f;, = --- = f;, = 0} satisfies
oz () 0 e (2)
fil(z) =+ = fi,(z) = 0, rank 3 : <s. (1)
0 is 0 is
ORI O



This condition can be rewritten as

fi(z) =+ = fi.(2) =0, )
ijl uijij () =(0,...,0).
for pi, ..., ps € R not simultaneously zero, where V f; ;(2) denotes the vector obtained by

removing the first coordinate from the gradient Vf; (z).
When s =1, for z € R", conditions are equivalent to

_ofy _ oy

fnle) = Got(z) =+ = G

(2) = 0. (3)
When s > n, we will simply consider the conditions

fu(z) == fi,(z) = 0. (4)

For every 2 < s <n — 1, as system is homogeneous in the variables p, ..., us, we
consider the variety Wg C A7 x IP’fC_l defined as the zero set of this system. If s =1 or
s > n, let Wg be the variety defined by systems and (4)) respectively.

The following result is an adaptation to our context of the Karush-Kuhn-Tucker con-
ditions (see [31]) from non-linear optimization which generalize the Lagrange multipliers
theorem in order to consider equality and inequality constraints.

Proposition 6 Let fi,..., fm € Rlz1,...,2,) and 0 = (01,...,0m) € {<, <, =, >, >}™.
Set E; = {i | 0; = “="}. Then, for every connected component C' of the set {x € R" |
fi(x)o10, ..., fm(z)om0}, we have

Z(C) C U mWs).

EsCScC{1,..., m}

Proof: Without loss of generality, assume E, = {1,...,l} (or E, = ) and | = 0) and
71(C) is bounded from below. Let z = (z1,...,2) € Zine(C) and Sp = {i € {1,...,m} |
fi(z) = 0}. Note that E, C Sy and, even when | = 0, Sy # 0); then, we may assume that
So ={1,...,t} with max{1,1} <t <m. We will show that z € m,(Wg,).

If t > n, we have z € m;(Wg,) by the definition of this set.

Assume now that ¢ < n — 1. If 2 ¢ 7, (Ws,), the set {Vf;(z),i € Sp} is linearly
independent. Let f : R® — R! be the map f = (f1,..., ft). We may assume that the minor
corresponding to the variables n —t + 1,...,n in the Jacobian matrix D f(z) is not zero.
Applying the inverse function theorem to h(x) = (z1—21, ..., Tn—t —2n—t, f1(2), ..., fr(z)),
there exist an open neighborhood U of z, ¢ € Ryg and a map ¢ : (—¢,¢)" — U inverse to
h:U — (—e,e)". Moreover, we may assume that fii1,..., f;, have constant signs on U.

Let w € CNU and let y = h(w). Let ¢ € {<,=,>}" be such that f;(w)c;0 for
1 < i < m. Then, the conditions y; = w1 — 21 > 0,¥n—t+1010,...,4,0:0 hold. Since
w e C, for 1 <i<m, o; € {<,:} if o; = “ <7 o; € {>,:} ifo;=%“>7 and 0; = 0;
otherwise. Hence, every point satisfying o also satisfies o.

Let v : [—¢/2,y1] — (—¢,€)"™ be defined as y(u) = (u,y2,...,yn). For u € [—&/2,y1]
and 1 < i <t fi(goy(u)) = yn—t+i0;0. Taking into account that, for t +1 < i < m, f;



has constant sign over U and the image of go~ lies in U, we also have that f;(go~y(u))a;0
for t +1 < ¢ < m. Therefore, the image of g o v is contained in the realization of o
and, since it is a connected curve with a point g o y(y;) = w in the connected component
C, we conclude that it is contained in C. Now, the first coordinate of g o y(—¢/2) is
—e/2 4 21 < z1, contradicting the fact that z; = inf 71 (C). O

3.3 Deformation techniques for bihomogeneous systems
In this subsection we present briefly a symbolic deformation introduced in [19], [18], [24],
[20] and [38], adapted to the bihomogeneous setting following [23].

3.3.1 The deformation

Given polynomials hi(z),...,hs(x), her1(z,p), ... he(z,n) € Klzy, ... zp, p1, .., ps,
where 2 < s <n—1and r = s+ n — 1 such that, for 1 < i < r, deg,(h;) < d; < d
and, for s +1 < i < r, h; is homogeneous of degree 1 in the variables u, we consider the
associated equation system:

hi(z) =0,...,hs(x) =0, hsy1(z,u) =0,... hpe(x,u) = 0. (5)

Let W C A" x P5~! be the variety this system defines. By the multihomogeneous Bézout
theorem ([40, Ch. 4, Sec. 2.1]), the degree of W is bounded by

po()( ¥ TMo)s(he o

Ec{s+1,..,r},#E=n—sjeL

Let gi(x),...,95(x),gs+1(z, 1)y ..., gr(z, ) € Klz1,. .., 2pn, p1, ..., us] be polynomials
with deg,(g;) = d; for 1 < i < r and homogeneous of degree 1 in the variables u for
s+ 1 < i <r, such that:

(H) g1,-..,9, define a 0-dimensional variety in A" x {us # 0} C A" x PS~! with D points
S1,...,sp satisfying m,(s;) # m,(s;) for i # j, and the Jacobian determinant of the
polynomials obtained from gy, ..., g, by dehomogenizing them with us = 1 does not
vanish at any of these points.

We will specify polynomial systems meeting these conditions in Definitions and
below.
Let t be a new variable. For every 1 <1¢ < r, let

F;, .= (1 — t)hi +tg;. (7)
Consider the variety V C A! x A" x P5~1 defined by Fy, ..., F,, and write
Vv=vOyuy®uyy, (8)

where V(9 is the union of the irreducible components of V contained in {t = 0}, V(! is
the union of its irreducible components contained in {t = ¢} for some to € C\ {0}, and
V' is the union of the remaining irreducible components of V.

10



Lemma 7 With our previous assumptions and notation, 7., (V N {t = 0}) is a finite
subset of W containing all its isolated points.

Proof: Let Vi be an irreducible component of V and V1 be its Zariski closure in Al x P x
Ps~!. The projection of V1 to Al is onto and so, V1 N {t = 1} # (). But our assumption
on gi,...,g, implies that Vi N{t = 1} = Vi N {t = 1}; then, Vi N {t = 1} # 0 and it is
O-dimensional. It follows that dim(V;) = 1. Therefore, V is a 1-equidimensional variety
and thus 7, ,(V N {t = 0}) is a finite set.

In order to prove the second part of the statement, note that W = wx,ﬂ(f/ﬁ {t=0}) =
Teu(VOY U, (VN {t = 0}). Now, an isolated point of W cannot belong to m, ,(V®)),
since the dimension of each of its irreducible components is at least 1; hence, it lies in
2, (V 0 {t =0}). O

The same deformation can be applied to a system hi(x),...,hy(z) € K[z1,..., 2]
with g1(x),...,gn(x) € Klz1,...,zy,] such that deg(g;) = deg(h;) for every 1 <i < n and
having [, deg(g;) common zeros in A™.

3.3.2 A geometric resolution

Lemma 8 The variety defined in Ah X ]P’% by Fy,..., F, as in s 0-dimensional
and has D points Si,...,Sp in {us # 0} such that m,(S;) # m,(S;) for i # j. Moreover,

these points can be considered as elements in K[[t — 1]]".

Proof: The multihomogeneous Bézout Theorem (see, for instance, [40, Chapter 4, Section
2.1]) states that the degree of the variety is bounded by D. If s;, 1 < i < D, are

the common zeros of ¢g1,...,9s,9s+1,---,9r, the Jacobian of Fy,...,F, with respect to
Tlyeeey Ty 1,5 phs—1 at t = 1 and (z, u) = s; is nonzero. The result follows applying
the Newton-Hensel lifting (see for example [24] Lema 3]). O

Consider now new variables yi, ..., y, and define ¢(x, u,y) = (z,y) = 22:1 yjx;. For
a1, ... 0 € C, let Loz, 1) = Lo (x) = 377 ajzj. Let

D D L .
P(t,Uy) = [ (U - €(Si.p)) = Zh=01q”gf)tvy>U _ P(Z}(tjf )

=1

e K@Uy, (9

with P(t,U,y) € K[t,U,y] with no factors in K[t] \ K.

In order to compute P we will approximate its roots. The required precision is obtained
from the following upper bound for the degree of its coefficients. A similar result in the
general sparse setting appears in [27, Lemma 2.3], but to avoid a possibly cumbersome
translation of our setting into sparse systems, we give an alternative statement and its
proof here.

Lemma 9 Using the notation in (@, deg, P(t,U,y) < nD.

11



Proof: Let ® : V x A" — A"*2 be the morphism defined by ®(t,z, i1, y) = (¢, £(z,y), ).
It is easy to see that P(t,U,y) is a square-free polynomial defining Tm®.

For a generic 8 = (89, 41, ---,0n) € C*"!, the polynomial Pg(t) = P(t,ﬂo,ﬁb ooy Bn)
is square-free and satisfies deg, P(t,U,y) = deg, Pg(t); moreover, this degree equals the
number of isolated roots of the system

Fi(t,x) =0,...,Fs(t,x) =0, Fsp1(t,z,u) = 0,..., F.(t,z,u) = O,E(ﬁhmﬂn)(a:) — 3o = 0.

Using the multihomogeneous Bézout theorem in the three groups of variables z, p and ¢,
it can be seen easily that this system has at most nD isolated roots. U

Note that, if 7, (VN{t = 0}) = {z1,...,2,} C A", we have the factorization ]5((), Uy =
[T, ¢;(U,y)% in C[U,y], where ¢ = U — £(z,y) for every 1 < | < v < a. Let
6;—1

Q(U7 y) = H?:l q]] .

For a generic a = (ay,...,a,) € C", Cg?&U&O)‘) is square-free and vanishes at ¢(z;, ) for
1 <1 <. In addition, for 1 <[ < v, the kth coordinate of z; (1 < k < n) is the quotient of
By (0L(z1,0),0) 92(0,6(z1,0),

O = ()i [ 4 (2 ), ) by DG — 6 [T (2, @), ) # 0.

en:

Proposition 10 Let P(t, U,y) be as in (@ Then, for a generic o € C",

{P(O,U,a)‘%(O,U,a)‘_glﬁ((),Uva) _g;:m,v,a)}
QU,@) " QU,a) ' QUa) 7 QU,«)
is a geometric resolution of a finite set containing m,(V N {t = 0}). O

4 Regular intersections

Let fi1,...,fm € Rlz1,...,2,]. As in Section for S = {i1,...,is} C {1,...,m},
consider the solution set Wg of the system , or depending on whether 2 <
s <n—1,s=1ors > n respectively. We will deal with the deformation and the
corresponding varieties defined from the systems , and for S c {1,...,m}
with 1 < #5 < n, and an adequate initial system. We will add a subscript S in the
notation V, VO v and V to indicate that the varieties are defined from the polynomial
system associated with S.
Note that, under Assumption |1, Wy is the empty set whenever s > n. Moreover:

Lemma 11 Under Assumption |1, after a generic linear change of variables, for every
S cA{l,....m} with 1 <#S < n, the set Wyg is finite and equals 7, ,(Vs N {t = 0}).

Proof: If s = n, Assumption [I]implies that Wy is a finite set.

Now let s < n — 1. Note that m;(Wg) is the set of critical points of the map
(x1,...,2y) +— x1 over the set {x € C" | fi(x) = 0fori € S}. By the arguments in
[42, Section 2.1] based on Sard’s theorem and a holomorphic Morse lemma, it follows that

12



a generic linear form has a finite number of critical points on this complex variety. There-
fore, taking any of these generic linear forms as the first coordinate, the set 7, (Wg) turns
to be finite. Moreover, for every z € m,(Wg), since {V f;(z), i € S} is linearly independent
and {Vf;(2), i € S} is linearly dependent, it follows that there is a unique u € P¥~! such
that (z,p) € Ws.

The equality Wg = 71, ,(Vs N {t = 0}) follows from Lemma O

4.1 Symbolic deformation algorithms
First we introduce the initial systems for our first algorithmic deformation procedure.

Definition 12 For a given s with 1 < s <n andr :=s+n — 1, a type 1 initial system
is a polynomial system of the form:

gi(z) = H (xi —J) for1<i<s,
1<5<d;
giw.) = ([T ¢u@)witw) Jors+1<i<n,
1<5<d;

: _ 1 1
where, for s+1<i<r, ¢ij(z) = (Zerlgkgn (ifsfl)d+j71+kfsxk> L ey e ey e

(1< <di), and i) = Yy cpes isrrphh:
For s =1 and s = n, a type 1 initial system consists of n polynomials of the form
gitw) = ] (@i—j) A <i<n).

1<j<d;

Using basic properties of Cauchy matrices, it follows that the solutions of the sys-
tem introduced above are the D points obtained by combining each of the solutions of
the first s equations with the solutions of the linear systems associated to all possible
Viyyo - 7wi3717¢is]’s7 RN ¢in—1jn—1 with {il, RN Z'nfl} = {S +1,... ,’l“}, and that all these
points have different m,-projections. Moreover, the Jacobian matrix of the system at each
of these solutions is invertible, since it is the product of a diagonal matrix with nonzero
entries with a block diagonal matrix whose blocks are an identity matrix and two Cauchy
matrices. We conclude that Property (H) (see Section holds for any type 1 initial
System.

Now, we describe a probabilistic algorithm which computes a geometric resolution as
in Proposition [T0}

Proposition 13 There is a probabilistic algorithm that, taking as input polynomials h1, ..., h,
in K[z, ..., 20, pi1, ..., pus] as in (@ encoded by an slp of length L, obtains a geometric
resolution of a finite set containing m,(V N{t = 0}) for a deformation defined from a type

1 initial system within complexity O(nzD2 log(D)loglog(D) (L + log?(D) log log(D))).

Proof: The procedure of this algorithm is standard. The main difference with previous

known algorithms solving this task (see, for example, [20] or [24]) is that the Newton
lifting is done pointwise.

13



FIrsT STEP: Form a type 1 initial system of polynomials of the same degree structure as
hi,...,h, and compute the solutions si,...,sp of this system. The computation of each
solution amounts to solving two square linear systems of size n — s and s — 1 respectively
with Cauchy matrices, which can be done within a complexity O(nlog?(n)) by means of
[12) Ch. 2, Algorithm 4.2]).

SECOND STEP: Construct an slp encoding F1,..., F,. (see @) Since g1,...,g, can be
encoded by an slp of length O(dn?), the length of this slp can be taken to be L; =
L + O(dn?). Set F for the list of polynomials Fi,...F, dehomogenized with us = 1.
The algorithm computes, for ¢ = 1,..., D, elements S; € K[t]" such that for 1 < k < r,
(S; — S)) € (t — 1)2"PHK[[t — 1]]. Let S'Z-(O) = s; be a solution of the initial system
G(m+1) _ S(m)_

g1, ..., gr. By means of the Newton-Hensel operator we define recursively S;
DFYS™)F(S™) mod (t — 1)2""'K[[t — 1]]. For 1 < k < r and m € Ny (S“”“)),c =
(Sl(m))k mod (t—1)?"K[[t—1]], and (S’Z(m))k is a polynomial in ¢t — 1 of degree less than 2.
Since operations between polynomials of such degree can be done using O(2™mlog(m))
operations in K, the computation of gi(mH) from Sl(m) can be done within O((nL; +
n3)2™mlog(m)) operations. Therefore, the complexity of computing S; := S’i(é) from s;
for § = [log(2nD + 1)], for every 1 <i < D, is O(n(nL; + n®)D?log(D) loglog(D)).

THIRD STEP: This step consists in the computation of f’(O, U,a) = ZhD:O pr(0,@)U" and

gzi 0,U,a) = Zh 05 8ph ~ (0, a)U" for a generic a = (a1,...,a,) € Q7. We have that

pr(t, ) /q(t) and gz: (t, a)/q( ) are the coefficients corresponding to U and U"(y;, — ay)

(1 <k <mn,0<h < D) respectively in the expansion of P(t,U,y) = S r_, p;;(t,y) Uh ¢
K[[t—1]][U, y—a]. As the degrees of the polynomials involved in these fractions are bounded
by nD (see Lemma E[), they are uniquely determined by their power series expansions
modulo (t — 1)2"PHK[[t — 1]] (see [44, Corollary 5.21]).

The algorithm proceeds as follows: first, it computes the coefficients of U and U" (y;, —
ap) (1<k<n,0<h<D)in P(t,U,y) =T12,(U - £(S:,y)) € K[t][U,y] following [44,
Algorithm 10.3] in O(n?2D?log®(D) log log?(D)) operations over K. From these coefficients,
pr(t, ) and 8ph( t,a) (1 <k <n,0<h<D), and ¢(t) are obtained within complex-
ity O(n?D?log?(D)loglog(D)) over K by using [44, Corollary 5.24 and Algorithm 11.4]
and converting all rational fractions to a common denominator. Finally, the algorithm

substitutes ¢ = 0 in these polynomials to obtain P(0,U, ) and Q(O, Uya) for 1 <k <n.

FOURTH STEP: The algorithm computes Q(U, o) = ged(P(0,U, a), g}U) (0,U, «v)) within
complexity O(Dlog?(D)loglog(D)) and makes the required exact divisions by Q(U, )
leading to the geometric resolution. This last step does not change the overall order of
complexity, which is O(n?D?log(D) loglog(D) (L + n*d + log(D) loglog(D))). O

The algorithm underlying the proof of Proposition|13|can be adapted straightforwardly
to handle the cases s = 1 and s = n within the same complexity bounds.

4.2 Main algorithm

The main algorithm of this section is the following:

14



Algorithm 14

Input: Polynomials fi,..., fm € Klx1,...,z,] satisfying Assumption encoded by an slp
of length L, and positive integers dy, ..., d,, such that deg f; < d; for 1 <i <m.

Output: A finite set M C A" intersecting the closure of each connected component of the

realization of every feasible sign condition over f1,..., fm encoded by a list G of geometric
resolutions of 0-dimensional varieties.

Procedure:
1. Make a random linear change of variables with coefficients in Q.
2. Take a point p = (p1,...,pn) € Q™ at random.

3. Starting with G := 0, for k = 1,...,n — 1 and for every S C {1,...,m} with
1<#S<n—k+1:

(a) Obtain an slp encoding the polynomials which define the variety Wy, g associated

with the polynomials f1(p1, .., Pk—1, Thky -« Tn)s vy frn(P1y v oy Dhe1, Thy -+, Tn)
and the projection to the kth coordinate x.

(b) Compute a geometric resolution {q"5) (U), v,(f’s)(U), e Uq(f’s)(U)} C K[U] of
a finite set containing 7,(Wg s) = 7 (Vs N {t = 0}) C A" *+1 by means of a
deformation from a type 1 initial system, and add the geometric resolution

{d™ )1, o), W) |
to the list G.

4. Add to the list G the geometric resolutions {fi(p1,...,Pn-1,U) 01, Pn-1,U}, for
1<i<m, and {U,p1,...,pn}

We point out that under Assumption |1} by Lemma Step 3. (b) of the previous algo-
rithm could be achieved by any subroutine solving zero-dimensional polynomial systems.
However, we use the deformation procedure we designed for the particular systems under
consideration in order to obtain the complexity bounds stated in Theorem The first
part of this theorem is proved in the following:

Theorem 15 Algorithm[1]] is a probabilistic procedure that, from a family of polynomials
fiseoos fm € Klzy, ..., 2] satisfying Assumption obtains a finite set M intersecting
the closure of each connected component of the realization of every sign condition over
fi,--o, fm- If the input polynomials have degrees bounded by d > 2 and are encoded by an

slp of length L, the algorithm performs O((Z?:hi{m’n} (™ (2:11)2)d2"n4 log(d) (log(n) +

log log(d)) (L + n% + nlog?(d)(log(n) + loglog(d)))) operations in K.

Proof: Assuming that the random linear change of variables made in the first step of the
algorithm is generic in the sense of Proposition [3] by Proposition [5] it suffices to show that

wu(U U zen)cm

k=1CeC(k.p)
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where C(k,p) denotes the set of all the connected components of the R"-subsets I' N {z; =
Ply...,Tk—1 = pr—1} with I' a connected component of a feasible sign condition over
flv ) fm
Note that for a generic point p = (p1,...,pn) € K", for every 2 < k < n, Assumption
also holds for the polynomials f;(p1,...,Pk—1, Tk, .-, Zn), 1 <i <n. Thus, by taking p
at random, we may assume that the assumption is met at each step of the recursion.
Then, for every 1 < k < n — 1, by Proposition [6] and Lemma we have that

U zerc U Apnopea1) x me(Vis 0 {t = 0}),
CeC(kp) 133;33’}?—72-};-1

and Step 3 of the algorithm computes geometric resolutions for finite sets containing
those in the right-hand side union; therefore, UCeC(k,p) Z(C,k) C M. Finally, note that
UCGC(W,) Z(C,n) c UM {fi(p1, .. pn—1,2n) = 0}, which along with the point p, is added
to the set M in Step 4 of the algorithm. This proves the correctness of Algorithm

For every 1 < k <n—1 and each S C {1,...,m} of cardinality at most n — k + 1,
the slp encoding the polynomials which define the variety W}, g computed at Step 2 of the
algorithm can be taken of length O(nL+n?). Moreover, the number of points in Vi, gN{t =
0} is bounded by (Z:f ) d"~F+1 Therefore, the result follows using the complexity estimate
in Proposition [T3] O

Now we will show how to get the entire list of feasible sign conditions over the polyno-
mials f1,. .., fim satisfying Assumption [T using the output of Algorithm[T4] The procedure
relies on the following:

Proposition 16 Let f1,..., fm € Klz1,...,2,] be polynomials satisfying Assumption
and let M be a finite set such that M N C # () for every connected component C of the
realization of each feasible sign condition over fi,..., fm. Then, the set of all feasible sign
conditions over fu,..., fm is Uyepom) Po where LIM) is the set of all sign conditions
satisfied by the elements of M and P, denotes the subset of {<,=,>}" consisting of all

the elements that can be obtained from o by replacing some of its “=” coordinates with
{ﬁ< 2” or “> 77.

Proof: Let 6 be a feasible sign condition and C' a connected component of {z € R" |
f1(2)610, ..., fm(x)6:m0}. Consider a point z € M N C and let o € L(M) be the sign
condition over f1,... f;, at z. By continuity, it follows that ¢ € P,.

Now, let o € L(M) and z € M such that f;(z)0;0 for 1 < i < m. Without loss of
generality, assume 0 = (=,...,=,>,...,>) with ¢t “=" and m—t “>". If t =0, P, = {0 }.
Suppose now ¢t > 0, and let 6 € P,. We may assume 6 = (=,...,=,>,...,>) with [ “=",
where 0 < [ < t. Since the vectors Vfi(z),...,Vfi(z) are linearly independent, there
exists v € R™ such that (Vf;(z),v) =0 for 1 <i<land (Vfi(z),v) >0for i +1<i<t.
Consider a C* curve v : [-1,1] — {f1 = --- = f; = 0} such that v(0) = z and 7/(0) = v.
For I +1 < i <t fioy(0) =0 and (f; o) (0) = (Vfi(2),v) > 0; therefore, for a
sufficiently small v > 0, f; o y(u) > 0 holds. In addition, for 1 < i <1, f; o y(u) = 0 for
every u € [—1,1]. Finally, for t +1 <7 < m, as f; oy(0) > 0, we have f; oy(u) > 0 for a
sufficiently small u. We conclude that & is feasible. O
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Given a geometric resolution {q(U),v1(U),...,v,(U)} C K[U] consisting of polynomi-
als of degree bounded by 6, if fi,..., fi, are encoded by an slp of length L, it is possible
to obtain the signs they have at the points represented by the geometric resolution within
complexity O(Lélog(d) loglog(d) + md“) (here w < 2.376 is a positive real number such
that for any field k it is possible to invert matrices in k™" with O(r*) operations, see
[17]): first, for 1 < i < m, compute f;(vi(U),...,v,(U)) mod ¢(U) within complexity
O(Ldlog()loglog(d)) ([44, Chapter 8]) and then, evaluate the signs of these polynomials
at the roots of ¢ by using the procedure described in [I5, Section 3] within complexity
O(md*). Thus, we have:

Theorem 17 There is a probabilistic algorithm that, given polynomials fi,..., fm €
Klz1,...,x,] of degrees bounded by d > 2 satisfying Assumptz’on and encoded by an slp of
length L, computes the list of all feasible sign conditions over these polynomials within com-
plezity O( E;n:ni{mn} ("™ ((L+n?d) (Z:ll) 22t log(d)(log(n)+loglog(d))+md“™ (Z:ll)w)) )
O

Our algorithms and complexity results can be refined if we are interested in a particular
sign condition o over fi,..., fi:

Remark 18 Let 0 € {<,=,>}" and E, = {i | o, = “ ="}. Due to Proposition |6, in
the third step of Algorithm it suffices to consider those sets S C {1,...m} such that
E, C S. Then, if #E, =1, in the complexities of Theorems [15 and[I7, the sum can be

taken over | < s < min{m,n} and the combinatorial factor (”;) can be replaced by (ZL__ZI)

5 Closed sign conditions over arbitrary polynomials

In the case of arbitrary polynomials, the sets Wg may not be finite. To overcome this
problem, we will consider the same kind of deformations as in the previous section but
with different initial systems whose particular properties enable us to recover extremal
points. This approach is similar to the one in [7].

5.1 Initial systems for deformations

Let d be an even positive integer and 1" the Tchebychev polynomial of degree d.

Definition 19 For a given s € N with 1 < s <n andr := s+ n — 1, a type 2 initial
system is a polynomial system of the form:

gl(ZL‘) =T (n —+ Ai(n+1) + Zlgkgn AlkT({L‘k)> fOT‘ 1< < s,

a .
g9i(w, p) = Z Mja,igj(fﬁ) fors+1<i<r,

where 7; € {+,—} for 1 < i < s, and A € Q"D s the Cauchy matriz defined as

Ay = ﬁ for1 <i<s,1<k<n+1 with0 <a3 < --- < as integers such that
as +n+1 is a prime number.
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For s = 1, a type 2 initial system consists of a polynomial gi(x) as above and its
991 () 991 (x)

Oxre """ Oxpn

n polynomials g1, ..., gn constructed as above from the Cauchy matriz A € Qm*(nt+1),

partial derivatives . Finally, for s =n, a type 2 initial system consists of

Note that if 7, = “+ 7, then g;(x) > 0 for every z € R" and, if , = “ —", then
gi(xz) < 0 for every z € R"™. Moreover, for s +1 <3 <,

gi(z,p) = T’(%‘—s+1)< Z TjAj(iferl)Mj)- (10)
1<5<s

The Bézout number of a type 2 initial system is D = (nfll)ds(d — 1) < ("71)d".

s— — \s—1
Lemma 20 Property (H) (see Section holds for any type 2 initial system.

Proof: Assume 1 < s <n. For s+1 <14 <7, let gi(x,u1,...,us—1) = gi(x, 1, ..., fs—1,1).
Let B C {2,...,n} be a set with n — s elements, let e : B — {—1,1} and suppose
e(k) =1 for a elements in B. Let Sp . be the set of solutions (Z, i) of the system

g1(x) = -+ = gs(x) = Gs1(z, p) = Gr(w, 1) = 0 (11)
which also satisfy
T'(xx) = 0 and T(zy) = e(k) for every k € B. (12)

Since ged(T",T + 1) = Ty, and ged(T",T — 1) = T"/Ty5 (where Ty, is the Tchebychev
polynomial of degree d/2), the number of (n — s)-uples satisfying is (d/2)"57%(d/2—
1)®. By using the explicit formula for the determinant of a Cauchy matrix and properties
of Tchebychev polynomials, it can be seen that each of these (n— s)-uples can be extended
to a solution (Z, i) of (11 in d* different ways. Then, Sp. has (d/2)" 7 %(d/2 — 1)%d®
elements.

As for (z,11) € Spe, T(Z) = e(k) = £1 for every k € B, the sets S, are mutu-
ally disjoint. Then, if (:E(l),ﬂ(l)),(jr(2),ﬂ(2)) are two different solutions of (11), z(1) #
(2. By taking into account every B C {2,...,n}, every a (0 < a < n — s) and ev-
ery function e : B — {—1,1} whose value is 1 at exactly a elements in B, we find
() Socazns (50 ()" (4 1) d = (0 (d — 1) solutions of (11

Consider now the Jacobian matrix of this system evaluated at each of these solutions

and suppose, without loss of generality, that the solution (Z, i) considered corresponds to
B ={s+1,...,n}. Then, this matrix is of the form

S { Cl 0 0
s—1 { * 0 | Co
n—s { x | Cs *
—~ O~~~
s n—s s—1
with C7, Cy and (5 invertible matrices.
For s =1 and s = n, the proof is similar. O
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5.2 Geometric properties

Let fi,...,fm € Rlzy,...,2,] and let S := {i1,...,is} C {1,...,m} with 1 < s < n.
As explained in Section for every point z € R" with maximum or minimum first
coordinate over the set {x € R" | f;,(x) =0,..., fi,(x) = 0}, there exists a nonzero vector
= (u1,...,us) such that (z, ) is a solution of the system

fil (Z) = = fls(z) - 07
afi, afi, (13)
21<J<5 K5z, ;(2) = Zl<]<s H35 5z, L(z) = 0.

Now, a homotopic deformation of this system by means of a type 2 initial system is as
follows: for every 1 < k <s, F(t,x) = (1 —1t)f;, +tgr(x), and, for every s +1 <k <,

Fi(t,z,pu) = (1—1) Z e )+t Z Big— Z ujﬂ(t,m).

_ ox O0xp_
1<j<s k 1<j<s k— +1 1<j<s k—s+1

Thus, for any t5 € R and every xp € R™ at which the first coordinate function attains a

local maximum or minimum over the set {x € R" | Fi(tg,z) = --- = Fs(to,x) = 0}, by the
implicit function theorem, there is a nonzero vector pg € R® such that Fy(tg,z9) = -+ =
Fy(to,z0) = Fst1(to, zo, o) = - -+ = Fs(to, zo, o) = 0.

In the sequel we will consider deformations by means of specific type 2 initial systems.
Let d € N be an even positive integer with d > deg f; for every 1 < ¢ < m. Let
q1 < -+ < qm be the first m prime numbers greater than n. For 1 <i < m, let

1 1
() = - - d = —qgt(2).
9; (z) = n+qz+l<§k< > T(zx) and g; (z)=—g; (z)

Note that for each S = {i1,...,is} C {1,...,m} with 1 < s < n and every list 71, ..., 7s of
+ and — signs, the polynomials g;l, . ,g[; form a type 2 initial system with a; = ¢;; —n—1
for 1 < j < s (see Definition . In addition, for 1 < i < m, we denote

Fif(t,2) = (1= t)fi(x) +tg () and  F; (t,2) = (1 —)fi(z) +tg; (x).

Lemma 21 Let S = {i1,...,is} C {1,...,m} with s > n and 11,...,7s a list of + and
— signs. Then, the set {t € C | 3z € C" with F}'(t,z) = --- = F*(t,z) = 0} is finite
(possibly empty).

Proof: Denote by Fz? FTs,giTll, ..+, g;* the polynomials obtained by homogenizing

1s

Fll, o F and gf',...,g]° with a new variable xg. Let Z C Al x P" be the set of

11 7
common zeros of FT1 ,Fizs. In order to prove the statement it suffices to show that
m¢(Z) is a finite set. Slnce 7t is a closed map, this can be proved by showing that 1 ¢ m(2),
or equivalently, that the system g;'(z) = --- = g;*(z) = 0 has no solution in P".
First, note that, if (1 : 1 : - -+ : x,) is a solution of this system, then (T'(z1),...,T(x,))

is a solution of the linear system B.y' = —(n+ _ i N %)t where B € Qth)xn jg
tn+41
Tn+1

the Cauchy matrix of coefficients of g;l, i) . But this linear system has no solutions,
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since its augmented matrix has a nonzero determinant. Finally, we have that, for 1 < j < s,
g[j(o,ml, oy y) = 22471 Y 1<k<n H%Hk:rz. Considering the equations for 1 < j < n,
—v_= ’Lj

we deduce that (z{,...,2%) is in the kernel of the Cauchy matrix (m)lg’%n and

therefore, it is the zero vector. Thus, the system g;! (x) = --- = §;*(z) = 0 has no solutions
in {zo = 0}. O

Notation 22 For S = {i1,...,is} C{l,...,m} with1 < s <mn, and 7 = (11,...,75) €
{+,—}*, we denote Vs, C A x A"xP*~1 the variety defined by the polynomials constructed
as in (@ by taking hi,...,h, as the polynomials in system and gi,...,9g, the type 2
atial system given by giTll, . ,giT:. We consider the decomposition VSJ = ngg) UVé}g UVs. -

as in (@

The following proposition will enable us to adapt Algorithm [14]in order to solve the
problem in this general setting.

Proposition 23 Let 0 € {<,=,>}", E, ={i| oy =“="}, U, ={i| oy = “>"}
and Lo = {i | o5 = “ <7} For S = {i1,...,is} C {1,...,m} with 1 < s < n,
let Ts = {1 € {4+,—}° | 7, = “+7 ifi; € Upandr; = “—7 ifi; € Ly}. Then,

after a generic linear change of wvariables, for each connected component C of {x €
R™ | f1(z)010, ..., fm(x)om0}, we have

zoyc U U m(Vern{t=0}).
S1C§{;1¢S§7Z} T7€Tg
Proof: Without loss of generality, we may assume that E, = {1,...,1}, U, = {l+1,...,k},
and L, = {k+1,...,m} for somel, k with0 <! < k < m. By Proposition after a generic
linear change of variables, Z(C) is finite. Moreover, since P is a closed set, Z(C) C C.
Let z € Zine(C) and 0 < & < 1 such that:

¢ Bz,e)NP C C and Blz,e) N Z(C) = {2},

o for every S = {i1,...,is} C {1,...,m} with § > n and every (r,...,73) € {+, -},
e < [to] for every to in {t € C\ {0} | Jz € C" with FJ!(t,x) = --- = F*(t,x) = 0},

e for every S C {1,...,m} with 1 < #S < n and every 7 € Tg, ¢ < |to| for every
to € C such that nglT) has an irreducible component contained in {t = to}.

For t € R, let R, = {x € B(z,¢e) | F{ (t,x) > 0,...,F"(t,z) > 0,F, (t,z) <0,...,
F(tx) <0,FL (tx) > 0,..., Ff(t,z) > 0,F_(t,z) <0,...,F, (t,z) < 0}. We have
that Ry = C' N B(z,¢) and, for every t € [0,1], z € Ry.

Let v > 0 be the distance between the compact sets dB(z,e) N {x1 < z1} and Ry.
We claim that for some ¢1, 0 < t; < &, the connected component C’ of Ry, containing z
is included in {z € B(z,¢) | d(z, Ryp) < v/2}. Suppose this is not the case. Let (¢ )nen
be a decreasing sequence of positive numbers converging to 0 and with #| < e, and for
every n € N, let C}, be the connected component of Ry containing z. Since C), intersects

{z € B(z,¢) | d(z, Ry) > v/2}, there is a point r,, € C}, such that d(r,, Ro) = v/2. Then,
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there is a limit point r € B(z,e) with d(r, Ry) = v/2 such that, for 1 <i < k, F.7(0,7) > 0,
and for every 1 <i<land k+1<1i<m, F; (0,7) <0. Therefore r € Ry, contradicting
the fact that d(r, Ro) = v/2 > 0.

Let w € C' be a point at which the function x; attains its minimum over C’. Since
z € ', we have w; < z. If w € dB(z,¢), then w € 9B(z,e) N {z1 < z1}, and so,
d(w, Ry) > v, contradicting the fact that d(w, Ry) < v/2. Therefore, w € B(z,¢).

As each of the polynomials F1+, e 7}T,Ff, .. .,Fl_,Flil, e ,FJ,F,;I, ..., F, that
does not vanish at (¢1,w) takes a constant sign in a neighborhood of this point, we conclude
that, if F',..., F;® are all the polynomials vanishing at (¢1,w), then the function x,
attains a local minimum over the set {z € R™ | F/!(t1,2) = 0,...,F*(t;,z) = 0} at
w. Let Sy = {i1,...,is}, which is not empty. For 1 < i < m, F;'(t;,w) and F, (t;,w)
cannot be both zero; then, i1,...,7s are all distinct. Because of the way we chose ¢, we
also have that s < n. Now, if 79 = (71,...,7s), we have that (t1,w) € wt@(vsm), but
taking into account that 0 < ¢; < ¢, it follows that (t1,w) € 7 (Vsyr). Therefore,
(t1,w) € USf};g;’;} Urery m,2(Vs,r) and 0 < |(t1,w) — (0, 2)| < V2e.

Since the previous construction can be done for every € > 0 sufficiently small and the
sets m (Vs +) are closed, we conclude that (0, z) € Uslc<{1 my Urery Tt (Vs,r)- O

,,,,,

#S<n

5.3 Symbolic deformation algorithm

In the sequel, Q will denote a positive real number such that for any ring R, addition,
multiplication and the computation of determinant and adjoint of matrices in R*** can
be performed within O(k®) operations in R. We may assume Q < 4 (see [I1]) and, in
order to simplify complexity estimations, we will also assume that € > 3.

Proposition 24 There is a probabilistic algorithm that, taking as input polynomials
hi,....he in Kz, ..., @p, 1, ..., ps] as in (3) encoded by an slp of length L, obtains
a geometric resolution of a finite set containing w,(V N{t = 0}) for a deformation defined
from a type 2 initial system within complexity O(n3(L+dn+nQ*1)D2 log?(D) log logQ(D)),
where d is an even integer such that d > deg,(h;) for every 1 <i <r.

Proof: The structure of the algorithm is similar to that of the algorithm underlying the
proof of Proposition

FIRST STEP: Take a = (g, ..., ) € Q" at random and compute a geometric resolution
associated to the linear form ¢, (z) = ayx1 + -+ - + apxy, of the variety defined in A” by
the (dehomogenized) type 2 initial system.

As shown in the proof of Lemma this variety can be partitioned into subsets Sp.
So, we first compute a geometric resolution associated with ¢, (z) for each Sp.: after
solving a linear system, the z-coordinates of points in Sp . turn to be defined by a square
polynomial system in separated variables; then, the required computation can be achieved
as in [27, Section 5.2.1] within complexity O(D% _log?(Dp ) loglog(Dp.)), where Dp . is
the cardinality of Sp. 7

Finally, a geometric resolution of the whole variety is obtained following the split-
ting strategy given in [44] Algorithm 10.3], and noticing that, if {q, qo,w1,...,w,} and
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{4, Go, W1, ..., W, } are geometric resolutions of disjoint sets with ¢ and ¢ coprime poly-
nomials, then {qq, ¢oq + Goq, w14 + W1q, ..., w,§ + Wyq} is a geometric resolution of their
union. This can be done within O(nD log?(D)loglog(D)) operations in Q.

The whole complexity of this step is O(nD?log?(D) loglog(D)).

SECOND STEP: Compute P(t,U,y) mod ((t — 1)2"P*1 4 (y1 —aq1,...,yn — an)?)K[[t —
1)U, .

First, from the geometric resolution computed in the previous step, obtain a geometric
resolution associated with ¢(x,y) = y121 + - - - + ynxyp of the variety defined by the initial
system over K(y), modulo the ideal (y1 — a1,...,Yn — an)?, applying [20, Algorithm 1]
within complexity O((dn?4n)D?1log?(D)loglog?(D)). Then, consider the variety defined
by Fi,...,F. over K(¢,y) (see Lemma . Since Fi,..., F, can be encoded by an slp of
length L + O((d + s)n), a geometric resolution of this variety associated with the linear
form £(x, ) modulo the ideal (t—1)?"P*+1 4 (y;—ay, ..., yn—ay,)? can be obtained from the
previously computed geometric resolution by applying [20, Algorithm 1] within complexity
O(n*(L 4 dn + n~1)D?log?(D) loglog?(D)).

THIRD STEP: From the approximation to P(t,U,y) obtain the required geometric resolu-
tion, by performing the same computations as in the third and forth steps of the algorithm
underlying the proof of Proposition which does not modify the overall complexity. [J

The algorithm underlying the proof of Proposition[24] can be adapted straightforwardly
to handle the cases s = 1 and s = n within the same complexity bounds.

5.4 Main algorithm

Here we prove the main result of this section, which is the second part of Theorem [2}

Theorem 25 Given polynomials fi,..., fm € Klz1,...,z,] with degrees bounded by an
even integer d and encoded by an slp of length L, for generic choices of the param-
eters required at intermediate steps, the algorithm obtained from Algorithm taking
p=1(0,...,0) and replacing part (b) of step 3 with

(b’) For every T € {4, —}#5, compute a geometric resolution {q57)(U), v,(gk’S’T)(U), cee

v%k’S’T)(U)} C K[U] of a finite set containing my(Vi.5.- N {t = 0})) C A"k py

means of a deformation from a type 2 initial system, and add the geometric resolution
{a=50@),0,...,0050 @), ... oE5D@) }

to the list G.

computes a finite set M C A" intersecting each connected component of the realization

of every feasible closed sign condition over fi,..., fm. The complexity of the algorithm is
0 <n6 (L + d + n2) log?(d) (log(n) + log log(d)) *a2* (o mh "} s (m) (g;;)Q)) .

Proof: As in the proof of Theorem by Proposition it suffices to show that
Ui<k<n1 UCeC(,w) Z(C,k) C M, which is a consequence of Proposition
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Taking into account the linear change of variables performed at the first step of the
algorithm, for 1 <k <n—1and every S C {1,...,m} with 1 <#S5 <n—k+ 1, we can
obtain an slp of length O(nL + n?) encoding the polynomials involved in system (13)). In
(b%), the algorithm underlying the proof of Proposition [24is used. The stated complexity
is obtained by adding up the complexities of these steps for all (k, S, 7). O

As explained at the end of Section from a geometric resolution of a finite set
intersecting each feasible sign condition over f1, ..., fi,,, we can obtain the list of all closed
sign conditions over these polynomials. We deduce:

Theorem 26 There is a probabilistic algorithm which, given polynomials f1,..., fm €
K[z1,...,2,] of degrees bounded by an even integer d and encoded by an slp of length
L, computes the list of all feasible closed sign conditions over these polynomials within
O i) () (=) 2 (290 L d+n2) 1og2(d) log(n)+og log(d)) -+md =2 (1) ~2))
operations in K. O

6 Some particular cases

6.1 The bivariate case

Here we will show that when n = 2, Algorithm [14]solves our main problem for an arbitrary
finite family of polynomials.

Lemma 27 Let f € Clzy,z2] be a nonzero polynomial with no factors in Clzq] \ {0}.
Let g1, g2 be polynomials satisfying property (H), with g1 relatively prime to f. Let F} =
(1—t)f+tgr and Fy = (1—t)§7];+tgg and V be the variety defined in @/ If z € C? satisfies
that either two or more non-associate irreducible factors of f vanish at z or an irreducible
factor of f and its derivative with respect to xo both vanish at z, then z € w,(VN{t = 0}).

Proof: In order to simplify the notation, we write f’ = %. Set I = (Fy, Fy) C K[t, z1, x2].
Then VN {t =0} =V((I:t>°)+(t)).

Let hy = f/ged(f, f') and ho = f'/ged(f, f'). We claim that (I : t) = (Fy, Fs, hogy —
hig2) holds: first note that (heogi — h1g2)t = hoFy — hyF», which shows the inclusion D.
Now, if p(t,z) € (I : t), we have p(x,t)t = (a1 (t,z)t + ap(x))F1 + (B1(t, )t + Bo(x)) Fa
for polynomials o, ap, 31, 3. Substituting t = 0, we obtain agf = —Fyf" and so, agh; =
—Bohg. Then, there exists ¢ € Clz]| such that oy = che and By = —chy and therefore,
p(t,z) = a1 (t,z)Fy + Bi(t, ) Fo + c(hagi — h19g2).

Using similar arguments, it follows that (I : #2) C (I : t) and so, (I : t°) = (I : t) =
(F1, Fa, hag1 —hi1g2). Then, since each condition in the lemma implies that hy(2) = ha(z) =
0, we deduce that (0,z) € V(I : t*°) and, therefore, z € m,(V N {t = 0}).

O

Proposition 28 Let fi,..., fn, be arbitrary bivariate real polynomials and o € {<,=,>
}™. Then, after a generic linear change of variables, for each connected component C of

{z e R" [ f1(z)010,..., fm(z)om0} we have that Z(C) C Ugcqr,  my, 1<p5<2 Ta(VsN{t =
0}), where the varieties Vs are defined from type 1 initial systems.
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Proof: After a generic linear change of variables we may assume that, for each connected
component C, either 71(C) = R or Z(C) is a non-empty finite set (see Proposition [3)).

Assume Zjne(C) # 0 and let z = (21, 22) € Zine(C). Since z € IC, there is an index i
such that f;, # 0 and f;,(z) = 0. If f;, has two or more non-associate irreducible factors
vanishing at z, or an irreducible factor vanishing at z and whose derivative with respect
to x2 also vanishes at z, by Lemma 27, 2 € 7,(V{;,) N {t = 0}) (note that, because of the
generic change of variables, f;, does not have factors of the form x; —«). Otherwise, there
is a unique irreducible factor p of f;, vanishing at z which must have all real coefficients
(since its complex conjugate also divides f;, and vanishes at z) such that 8%(2) # 0.

By the implicit function theorem applied to p at the point z, there is a continuous
curve (z1,z2(z1)) defined in a neighborhood of 21, and a neighborhood of z such that the
polynomial p (as well as any power of p and also f;,) has constant signs above, below and
on the curve in this neighborhood. Since z; = inf 71 (C'), there must be an index i; # i
such that f;, (z) = 0. Moreover, we may assume that f;, has a unique irreducible factor ¢
vanishing at z that is not an associate to p. In this second case, z is an isolated point of
Wiiginy = V (fio, fiy) and then, by Lemma 2 € Tu(Vigg,iy Nt = 0}). O

Using this proposition, following the proof of Theorem we have:

Theorem 29 Algorithm[14is a probabilistic procedure that, given polynomials f1, ..., fm €
K[x1,x2] of degrees bounded by d > 2 that are encoded by an slp of length L, obtains a
finite set M intersecting the closure of each connected component of the realization of
every sign condition on the polynomials within complexity O(m?d*log(d)loglog(d)(L +
log?(d) loglog(d))). O

6.2 A single polynomial

In this section we will show the procedure described in Section [5] can be adapted to solve
the problem of computing a point in the closure of each connected component of {f = 0},
{f >0} and {f < 0} for an arbitrary polynomial f € K[z1,...,Z,].

Let d be an even positive integer such that d > deg(f). Let T be the Tchebychev
polynomial of degree d. We define g(z) = n+ 1 + 37, mT(xk), where ¢ is the
smallest prime greater than n; F(t,z) = (1 —t)f(z) +tg(x), and, for 2 <i < n, F(t,z) =
(1 —t)(%i(x) —i—tg—wgi(x) = g—i(t,x). Note that g > 0 over R™ and, therefore, F' > 0 over the
set {f = 0}. Moreover, this is a deformation with a type 2 initial system (see Definition
. As in Section @ welet V={F=F = -.=F,=0}CA! x A", and consider
its decomposition ED

Lemma 30 After a generic linear change of variables, for each connected component C
of {f =0}, {f >0} or {f <0}, we have Z(C) C mz(V N {t = 0}).

Proof: Consider first a connected component C' of {f = 0} (for a similar approach in this
case with an alternative deformation, see [34]). Let z € Zj,¢(C). Take € > 0 such that
B(z,e) meets neither a connected component of {f = 0} different from C' nor the finite
set Z(C) \ {z}, and € < |to| for each tg € C such that V1) has a connected component
contained in {t = t¢}.
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Let p € (21,21 + €) be such that 0B(z,e) N C C {x1 > p}. Without loss of generality,
we may assume that f is positive over the compact set 0B(z,e)N{z1 < p}. Let g € (0,¢)
be such that F' is positive over [—eg,e0] X (0B(z,¢) N {z1 < p}). Now, let y € B(z,¢)
with y1 < 21 (thus, f(y) # 0). Since F(—¢eg,2) <0, F(go,2) > 0 and F(0,y) # 0, there is
a point (¢1,7) in the union of the line segments joining (—eo, 2), (0,y), and (0,y), (co, 2)
respectively, such that F'(¢;,5) = 0. We have t; # 0 and 31 < z1. Let w € {z € B(z,¢) |
F(t1,2) = 0} be a point at which the coordinate function x; attains its minimum over
this compact set. Note that w ¢ 0B(z,¢), since wy < 91 < z1 < p and F' is positive over
[—e0,€0] X (0B(z,e)N{z1 < u}). Therefore, w € B(z, ) and so, (t;,w) € V. Moreover, as
0 < |t1] < &, we have (t;,w) € V. Since 0 < |(t1,w) — (0,2)| < v/2¢, and the construction
can be done for an arbitrary sufficiently small € > 0, it follows that (0,2) € V.

Assume now that C' is a connected component of {f > 0} and let z € Z¢(C) (then,
f(2) = 0). Let C be the connected component of {f = 0} containing z, and ¢ > 0 such
that B(z,e) meets neither a connected component of {f = 0} different from C nor the
finite set Z(C) \ {2}, and ¢ < [to| for every to € C such that V(! has an irreducible
component included in {t = ty}.

Let p € (21,21 + €) be such that dB(z,6) N C C {x; > u} and v : [0,1] — R” a
continuous semialgebraic curve such that v(0) = z and v((0,1]) € CN B(z,e) N{z1 < p}.
Let Cy be the connected component of C' N B(z,¢e) with v((0,1]) € C;. Take t1 € (—¢,0)
small enough so that F(¢;,v(1)) > 0. Since F(t1,7(0)) < 0, there exists u € (0,1) such
that F(t1,v(u)) = 0. Let C’ be the connected component of {z € B(z,¢) | F(t1,z) = 0}
containing y(u). As y(u) € C'NCy, C"UCy is a connected set. Therefore C' C (1, as
C’ € B(z,e)\C and C is a connected component of this set. Now let K = C’U(B(z,¢)N
{21 > u}), which is a compact set, since C" = C" U (0B(z,e)NC’) C C'U(0B(z,6)NC) C
K. If w € K is a point at which the function x; attains its minimum over K, then
w & B(z,e)N{x1 > p}. Then, w is a minimum of z; over the set C' N B(z,e) N{x1 < p}.
Therefore, (t,w) € V, but since 0 < |t1]| < &, we have (t;,w) € V. As before, we conclude
that (0,z) € V. O

Then, due to Proposition [5| and proceeding as in the proof of Theorem we have:

Theorem 31 Given a polynomial f € K[x1,...,x,] of degree bounded by an even integer
d and encoded by an slp of length L, for generic choices of the parameters required at
intermediate steps, the algorithm obtained from Algom'thm modifying step 3.(b) in order
to deal with type 2 initial systems, computes a finite set M C A" intersecting the closure
of each connected component of the sets {f < 0}, {f = 0} and {f > 0}. The complezity
of the algorithm is O(n®(L 4+ nd 4+ nf~1) log?(d) (log(n) + log log(d))zd%). O
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