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Abstract

We present an algorithm to compute a parametric description of the totally mixed
Nash equilibria of a generic game in normal form with a fixed structure. Using this
representation, we also show an algorithm to compute polynomial inequality conditions
under which a game has the maximum possible number of this kind of equilibria. Then,
we present symbolic procedures to describe the set of isolated totally mixed Nash
equilibria of an arbitrary game and to compute, under certain general assumptions, the
exact number of these equilibria. The complexity of all these algorithms is polynomial
in the number of players, the number of each player’s strategies and the generic number
of totally mixed Nash equilibria of a game with the considered structure.

1 Introduction

Noncooperative game theory is used to model and analyze strategic interaction situations.
Among its most outstanding applications, we can mention the fundamental role this theory
has played in economics (see, for example, the classical reference book [1]). Moreover,
game theory has also been applied to politics, sociology and psychology, and to biology
and evolution as well.

One of the main concepts in this theory is that of Nash equilibrium, which consists in
a situation in which no player can increase his payoff by unilaterally changing his strategy.
Since within this theory the players cannot communicate in order to decide a simultaneous
change of strategies, in a Nash equilibrium the game stabilizes. In [2], it is proved that
any noncooperative game in normal form has at least one Nash equilibrium. However, the
proof is not constructive and does not give any information about the existence of more
than one Nash equilibrium. The question posed is how to compute algorithmically Nash
equilibria and to determine the number of them in a given game.
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Nash equilibria of noncooperative games in normal form can be regarded as real solu-
tions to systems of polynomial equations and inequalities (see, for instance, [3, Chapter 6]).
In the case of two players, each equilibrium is the solution of a linear system of equations,
and therefore, equilibria may be found exactly by using simplex type algorithms (see, for
instance, [4]); however, there is no polynomial time algorithm solving the problem (see
[5]). In the general case of a game with more than two players, the polynomials appearing
are multilinear. To solve the problem of finding one equilibrium, some numerical methods
have been applied successfully (for example, some methods derived from Scarf’s algorithm,
[6]). Nevertheless, sometimes it is not sufficient to compute only one equilibrium because,
depending on the problem to be solved, not all the equilibria of a game are equally in-
teresting and the methods developed to compute only one equilibrium do not allow us to
decide beforehand whether it fulfills some additional properties or to compare different
equilibria.

A comparative study of different known methods for the computation of all the Nash
equilibria of a game may be found in [7]. In [8], a new algorithm solving this problem
for generic games by means of homotopy methods is presented, but no complexity bounds
are shown (for a recent treatment of numerical methods for solving polynomials systems
see the book [9]). Regarding implementation, the Gambit software (see [10]) provides
some tools for finding Nash equilibria and studying games. In addition, the application of
symbolic algorithms solving systems of equations and inequalities over the real numbers
(see, for instance [11]) is being studied in this context, motivated by the characterization
of the set of all the Nash equilibria of a game as a semi-algebraic set (an example of
this fact is the application of quantifier elimination algorithms over the real numbers to
compute approximated equilibria in [12]; see also the survey [13]). However, up to now,
no significative result had been obtained concerning the adaptation of these algorithms
in order to profit from the particular properties of the algebraic systems arising in game
theory.

In this paper, we study totally mixed Nash equilibria, that is to say, Nash equilibria in
which every player allocates a positive probability to each of his available strategies. Note
that a procedure to compute these equilibria can be used as a subroutine to compute all
Nash equilibria of the game by recursing over all possible subsets of used strategies.

The aim of this paper is to design symbolic algorithms to describe the set of totally
mixed Nash equilibria of a game, either in the generic parametric case or in particular cases,
taking into account the multihomogeneity of the polynomials involved in its definition. Our
goal is to do so within a complexity polynomial in certain natural invariants associated to
the problem, lower than the one that could be obtained by directly applying the known
general polynomial equation solving algorithms (see, for instance, [14], [15], [16], [17], [18],
[19], [20], [21], [22]; also [23] and the references therein).

A key ingredient to achieve the desired complexities in all the algorithms in this paper
is the use of straight-line programs (see Subsection 2.1) to encode the polynomials we work
with. This alternative data structure, which comes from numerical analysis, has already
been applied in the polynomial equation solving framework yielding a significant reduction
in the previously known complexities (see, for instance, [16] and [20] among many other
works).

Our first result presents a symbolic method to find a parametric description (a so-
called geometric resolution, see Section 2.4 for a definition) of the set of totally mixed
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Nash equilibria of a generic game with a pre-fixed structure. This method is based on the
symbolic procedure for the computation of multihomogeneous resultants with complexity
polynomial in the degree and the number of variables of the resultant described in [24]
(see also this paper for previous works on resultant computation). We summarize it as
follows:

Theorem I There is an algorithm which computes a geometric resolution of the set of
totally mixed Nash equilibria of a generic game with r players having n1 + 1, . . . , nr +
1 pure strategies respectively, within complexity O(δ3n8(log(n) + log(δ))r2n1 . . . nr(n3 +
r2
∏

1≤i≤r(ni + 1))), where δ is the number of totally mixed Nash equilibria of a generic
game with the given structure and n =

∑
1≤i≤r ni.

A more precise statement of our result will be given in Theorem 1. Note that the
complexity of the algorithm is polynomial in the number of players, the number of each
player’s pure strategies and the number of totally mixed Nash equilibria of a generic game
with the given structure. These are the invariants we mentioned above, in terms of which
we will express the complexity of all the algorithms in this paper.

There are already known probabilistic algorithms using straight-line programs that
could be adapted in order to compute a geometric resolution of the set of totally mixed
Nash equilibria of a generic game: for instance, the algorithm solving parametric poly-
nomial equation systems by means of deformation techniques given in [25], or the one
developed in [26] in the bihomogeneous setting, which takes into account the structure
of the polynomial equations within a similar approach. However, the more ad hoc pro-
cedure we present in Theorem I, based on multihomogeneous resultant computations, is
deterministic and works within the same or even better complexities.

Our following result is concerned with the characterization of games with the maximum
possible finite number of totally mixed Nash equilibria for the considered structure. The
existence of such games was proved in [27]; however, no characterization has been provided.
Using the description obtained by the algorithm in Theorem 1, we give an algorithm to
compute a finite set of polynomial inequalities in the payoff values under which a game
with the given pre-fixed structure will have the maximum number of such equilibria (for
a more precise statement, see Theorem 2):

Theorem II Under the same notation as in Theorem I, there is a family of nδ + 1
polynomials with rational coefficients S0, S(h)

ij , 1 ≤ i ≤ r, 1 ≤ j ≤ ni and 1 ≤ h ≤ δ, in
the payoff values of a game with r players with n1 + 1, . . . , nr + 1 pure strategies such that
for every payoff vector c satisfying the conditions

S0(c) 6= 0, S(h)
ij (c) > 0 (1 ≤ i ≤ r, 1 ≤ j ≤ ni, 1 ≤ h ≤ δ),

the associated game has δ totally mixed Nash equilibria. The polynomials S0 and S(h)
ij have

degrees bounded by 4δ2n2 and can be computed within complexity O(δ2(nδ2 + L)) from a
straight-line program of length L encoding a geometric resolution of the set of totally mixed
Nash equilibria of the generic game.

A further parametrical classification of games according to their set of Nash equilibria
could be achieved using the algorithms in [28], but they rely on the more expensive Gröbner
bases approach. In the same spirit, the work in [29] might be adapted to handle this
problem.
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After analyzing the generic situation, we deal with particular games. In this case, we
give algorithms to compute a geometric resolution of a finite set of points including all
the isolated (in the complex space) totally mixed Nash equilibria of the game. First, in
Theorem 4, we obtain a procedure to achieve this task under some genericity assumptions
implying, in particular, that the number of totally mixed Nash equilibria of the game
is finite, and then we show how to compute this number (see Proposition 5). Finally,
in Theorem 7, we consider the same problem in the general case, for which we design a
probabilistic algorithm. The output of this algorithm enables us to bound the number of
isolated equilibria of the game.

This paper is organized as follows:
In Section 2, we introduce some basic notions on game theory and polynomial system

solving. In Section 3, we present algorithms for computing a geometric resolution of
the totally mixed Nash equilibria of a generic game and for obtaining conditions under
which a game has the maximum number of these equilibria. Section 4 deals with the
isolated totally mixed Nash equilibria of particular games. In Sections 5 and 6 we make
some concluding remarks on complexity and future implementation issues. Finally, two
appendices are devoted to proving some complementary results about the algorithmic
computation of multihomogeneous resultants and upper bounds for their degrees which
are used throughout the paper, implying that the complexities of all the algorithms in this
work are polynomial in the number of players, the number of each player’s pure strategies
and the number of totally mixed Nash equilibria of a generic game with the considered
structure.

2 Preliminaries

2.1 Basic definitions and notation

Throughout this paper Q denotes the field of rational numbers, N denotes the set of
positive integers and N0 := N ∪ {0}.

If K is a field, we denote an algebraic closure of K by K. As usual, the ring of
polynomials in the variables x1, . . . , xn with coefficients in K is denoted by K[x1, . . . , xn].
For a polynomial f ∈ K[x1, . . . , xn] we write deg f to refer to the total degree of f and
degxi f to refer to the degree of f in the variable xi.

For n ∈ N and an algebraically closed field k, we denote by An(k) and Pn(k) (or simply
by An or Pn if the base field is clear from the context) the n-dimensional affine space and
projective space over k respectively, equipped with their Zariski topologies. We adopt the
usual notion of dimension of an algebraic variety V (see for instance [30] and [31]).

The algorithms we consider in this paper are described by arithmetic networks over
the base field Q (see [32]). The notion of complexity of an algorithm we consider is the
number of operations and comparisons over Q.

The objects we deal with are polynomials with coefficients in Q. Throughout our
algorithms we represent each polynomial either as the array of all its coefficients in a pre-
fixed order of its monomials (dense form) or by a straight-line program. Roughly speaking,
a straight-line program (or slp, for short) over Q encoding a polynomial f ∈ Q[x1, . . . , xn]
is a program (an arithmetic circuit) which enables us to evaluate the polynomial f at any
given point in Qn. The number of instructions in the program is called the length of the
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slp (for a precise definition we refer to [33, Definition 4.2]; see also [34]).

2.2 Game theory

In this section we present some basic game theory concepts. For a more detailed account
on the subject we refer the reader to any standard game theory text such as [35].

We consider non-cooperative games in normal form; that is to say, games in which there
is only one time step at which all the players move simultaneously without communicating
among themselves. We will assume that there are r players in the game having n1 +
1, . . . , nr + 1 different available pure strategies respectively (n1, . . . , nr ∈ N).

For i = 1, . . . , r, c(i) := (c(i)
j1...jr

)0≤jk≤nk is the given payoff matrix of player i, where

c
(i)
j1...jr

is the payoff to player i if, for every 1 ≤ k ≤ r, player k chooses the strategy jk
and Xi := (xi0, xi1, . . . , xini) is a vector representing a mixed strategy of the ith player,
which is a probability distribution on his set of pure strategies (that is to say, xij is the
probability that the ith player allocates to his jth pure strategy). With these notations,
for every 1 ≤ i ≤ r, the payoff to player i if the mixed strategies X1, . . . , Xr are played is

πi(X1, . . . , Xr) :=
∑

0≤j1≤n1

· · ·
∑

0≤jr≤nr

c
(i)
j1...jr

x1j1 . . . xrjr .

A Nash equilibrium is a vector of mixed strategies such that no player can increase
his payoff by changing unilaterally to another strategy while the other players keep their
strategies fixed; that is, a vector of mixed strategiesX1, . . . , Xr satisfying πi(X1, . . . , Xi−1, Xi, Xi+1, . . . , Xr) ≥
πi(X1, . . . , Xi−1, X

′
i, Xi+1, . . . , Xr) for every 1 ≤ i ≤ r and every mixed strategy X ′i. A to-

tally mixed Nash equilibrium is a Nash equilibrium in which each pure strategy is assigned
a positive probability, that is, one that satisfies xij > 0 for every 1 ≤ i ≤ r, 0 ≤ j ≤ ni.

The totally mixed Nash equilibria of an r-person game in normal form can be regarded
as real solutions to a polynomial equation system (see, for example, [3, Sec. 6.3]). They
are the real vectors (X1, . . . , Xr) with Xi := (xi0, . . . , xini) for every 1 ≤ i ≤ r satisfying:

(a) xij > 0 for i = 1, . . . , r and j = 0, . . . , ni,

(b)
∑

0≤j≤ni

xij = 1 for i = 1, . . . , r,

(c)
∑
J−i

(
c

(i)
j1...ji−1kji+1...jr

− c(i)
j1...ji−10ji+1...jr

)
x1j1 . . . xi−1ji−1xi+1ji+1 . . . xrjr = 0 for i =

1, . . . , r, k = 1, . . . , ni, where the sum runs over all J−i := j1 . . . ji−1ji+1 . . . jr with
0 ≤ jt ≤ nt for every t 6= i.

Observe that (c) is a system of n := n1 + · · ·+nr multihomogeneous polynomial equa-
tions in the r groups of variables X1, . . . , Xr with n1 + 1, . . . , nr + 1 variables respectively
(with degrees 1 or 0 with respect to each group) and, therefore, it defines a (possibly
empty) projective variety in Pn1(C) × · · · × Pnr(C). The projective complex solutions to
the polynomial equation system (c) will be called quasi-equilibria of the game (see [7]),
and those solutions not lying in any of the infinite hyperplanes {xi0 = 0} (1 ≤ i ≤ r) will
be called affine quasi-equilibria of the game.
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Every quasi-equilibrium ξ := (ξ1, . . . , ξr) determines at most one totally mixed Nash
equilibrium of the game: for every 1 ≤ i ≤ r, let sξi :=

∑
0≤j≤ni ξij be the sum of the

coordinates of ξi. If sξi 6= 0 for every 1 ≤ i ≤ r, the unique associated representation of
ξ whose coordinates satisfy condition (b) is (ξ1/sξ1 , . . . , ξr/sξr), and it will be a totally
mixed Nash equilibrium if and only if all its coordinates are positive real numbers.

2.3 On the number of solutions to a multihomogeneous system

Let r ∈ N. Fix positive integers n1, . . . , nr and consider r groups of variables Xj :=
(xj0, . . . , xj nj ), j = 1, . . . , r. We say that F ∈ K[X1, . . . , Xr] is multihomogeneous of
multidegree v := (v1, . . . , vr), where (v1, . . . , vr) ∈ Nr

0 , if F is homogeneous of degree vj in
the group of variables Xj for every 1 ≤ j ≤ r.

Set n :=
∑r

j=1 nj . The classical Multihomogeneous Bézout Theorem, which follows
from the intersection theory for divisors (see for instance [30, Chapter 4]), states that
the set of common zeroes (over an algebraically closed field) in the projective variety
Pn1 × · · · × Pnr of n generic multihomogeneous polynomials F1, . . . , Fn with multidegrees
νi := (νi1, . . . , νir) for i = 1, . . . , n is a zero-dimensional variety with

Bezn1...,nr(ν1; . . . ; νn) :=
∑

(j1,...,jn)∈J

( n∏
i=1

νiji

)
(1)

points, where J := {(j1, . . . , jn) / #{k : jk = i} = ni ∀ 1 ≤ i ≤ r}. For alternative proofs
of this result using deformation techniques, we refer the reader to [36], [37] and [26]. Note
that this can also be seen as a particular case of Bernstein’s theorem on the number of
common roots of sparse systems [38].

The quantity Bezn1...,nr(ν1; . . . ; νn) is called the Bézout number of the generic mul-
tihomogeneous polynomial system. If k1, . . . , kt are positive integers with

∑t
i=1 ki = n,

Bezn1,...,nr(ν1, k1; . . . ; νt, kt) will denote the Bézout number of a multihomogeneous system
with ki polynomials of multidegree νi for every 1 ≤ i ≤ t.

The equations arising in the computation of totally mixed Nash equilibria of a game are
multilinear (see the previous section): for a game with r players with n1+1, . . . , nr+1 pure
strategies respectively, we have a system of n =

∑r
j=1 nj polynomial equations consisting

of exactly ni polynomials of multidegrees equal to di := (1, . . . , 1, 0, 1, . . . , 1) ∈ (N0)r

(where the 0 lies in the ith coordinate of di) for every 1 ≤ i ≤ r. The multihomogeneous
Bézout number associated to this system will be denoted by δ. In fact, for a “generic”
game, this is the number of totally mixed Nash equilibria (see [27]).

Taking into account that dii = 0 for every 1 ≤ i ≤ r, it is straightforward to see that
δ equals the cardinality of the set

J0 = {(j11, . . . , jrnr) / jik 6= i∀ 1 ≤ k ≤ ni and #{jhk / jhk = i} = ni ∀ 1 ≤ i ≤ r}. (2)

We are going to deal with the case in which δ > 0. This inequality can be determined
by considering the set of exponents appearing with nonzero coefficients in each of the
polynomials in the system (see [39, Chapter IV, Proposition 2.3]) and in our particular
case, it is equivalent to the fact that nj ≤

∑
1≤k≤r, k 6=j nk = n − nj for every 1 ≤ j ≤ r.

From now on, we will assume that these inequalities hold.
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2.4 Geometric resolutions

A way of representing zero-dimensional affine varieties which is widely used in computer
algebra nowadays is a geometric resolution. This notion was first introduced in the works
of Kronecker and König in the last years of the XIXth century ([40] and [41]) and appears
in the literature under different names (rational univariate representation, shape lemma,
etc.). For a detailed historical account on its application in the algorithmic framework,
we refer the reader to [21]. An efficient polynomial algorithm using geometric resolutions
and straight-line program encoding of polynomials can be found in [22] (see also [42] for
a simplified approach to this solver). Roughly speaking, a geometric resolution consists
in a rational parametrization of the variety in which the parameter values range over the
set of roots of a univariate polynomial. Now, we give the precise definition we are going
to use.

Let V = {ξ(1), . . . , ξ(δ)} ⊂ An be a zero-dimensional variety defined by polynomials in
K[x1, . . . , xn]. Given a separating linear form ` = u1x1 + · · · + unxn ∈ K[x1, . . . , xn] for
V (that is, a linear form ` such that `(ξ(i)) 6= `(ξ(k)) if i 6= k), the following polynomials
completely characterize the variety V :

• the minimal polynomial p :=
∏

1≤i≤δ(T − `(ξ(i))) ∈ K[T ] of ` over the variety V
(where T is a new variable),

• polynomials w1, . . . , wn ∈ K[T ] with degwj < δ for every 1 ≤ j ≤ n satisfying

V =
{(w1

p′
(η), . . . ,

wn
p′

(η)
)
∈ Kn

/ η ∈ K, p(η) = 0
}
.

The family of univariate polynomials p, w1, . . . , wn ∈ K[T ] is called the geometric resolu-
tion of V (associated with the linear form `).

In our particular setting of totally mixed Nash equilibria computation, we will not
only deal with zero-dimensional varieties in an affine space, but we will also consider
zero-dimensional subvarieties of Pn1 × · · · × Pnr .

Write ξ := (ξ1, . . . , ξr) with ξi := (ξi0 : · · · : ξini) (1 ≤ i ≤ r) to denote a point in
Pn1 × · · · ×Pnr . Assume that V ⊂ Pn1 × · · · ×Pnr is a zero-dimensional variety defined by
multihomogeneous polynomials in K[X1, . . . , Xr] such that ξi0 6= 0 (1 ≤ i ≤ r) holds for
every point ξ ∈ V . Then, we may associate with V the following zero-dimensional variety
in An, where n := n1 + · · ·+ nr:

{(ξ′1, . . . , ξ′r) ∈ An / ξ′i = (ξi1/ξi0, . . . , ξini/ξi0) ∀ 1 ≤ i ≤ r, ξ ∈ V }.

A geometric resolution p, w11, . . . , w1n1 , . . . , wr1, . . . , wrnr ∈ K[T ] of this zero-dimensional
variety will also be called a geometric resolution of V ⊂ Pn1 × · · · × Pnr . In this case, the
geometric resolution of V provides the following description of the variety:

V =
{(

(p′(η) : w11(η) : · · · : w1n1(η)), . . . , (p′(η) : wr1(η) : · · · : wrnr(η))
)
/ η ∈ K, p(η) = 0

}
.

3 On the totally mixed Nash equilibria of a generic game

This section is devoted to the study of totally mixed Nash equilibria of generic games. In
order to do this, we will treat the payoff values as parameters and compute a geometric
resolution of the set of quasi-equilibria of the associated generic game.
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3.1 The set of quasi-equilibria of a generic game

Here we present an algorithm that computes a geometric resolution of the set of quasi-
equilibria of a generic game with r players with n1 + 1, . . . , nr + 1 pure strategies respec-
tively, where ni ∈ N for every 1 ≤ i ≤ r.

For 1 ≤ i ≤ r, 1 ≤ k ≤ ni, let A(ik) := (A(ik)
j1...ji−1ji+1...jr

)0≤jt≤nt be a set of new
indeterminates and

F
(i)
k :=

∑
J−i

A
(ik)
J−i

x1j1 . . . xi−1ji−1xi+1ji+1 . . . xrjr , (3)

where the sum runs over all J−i := j1 . . . ji−1ji+1 . . . jr with 0 ≤ jt ≤ nt for every
t 6= i; that is, F (i)

k is a generic multihomogeneous polynomial of multidegree di :=
(1, . . . , 1, 0, 1, . . . , 1) ∈ (N0)r (where 0 is in the i-th coordinate). We also introduce a
set of new indeterminates A(0) := (A(0)

0 , A
(0)
ij : 1 ≤ i ≤ r, 1 ≤ j ≤ ni) which stand for the

coefficients of a generic affine linear form A
(0)
0 +

∑
1≤i≤r

1≤j≤ni
A

(0)
ij xij in the n = n1 + · · ·+ nr

variables xij (1 ≤ i ≤ r, 1 ≤ j ≤ ni), and we consider the multilinear polynomial

F0 := A
(0)
0 x10 . . . xr0 +

∑
1 ≤ i ≤ r

1 ≤ j ≤ ni

A
(0)
ij x10 . . . xi−1 0xijxi+1 0 . . . xr0,

which is obtained by homogenizing the generic affine linear form with respect to each
group of variables X1, . . . , Xr.

Algorithm GenericGame

Input : The number of players r and the number of pure strategies n1 + 1, . . . , nr + 1 to
each player.
Output : A (parametric) geometric resolution {P,Wij ; 1 ≤ i ≤ r, 1 ≤ j ≤ ni} ⊂
Q[C(i)

j1,...,jr
][T ] of the set of quasi-equilibria of a generic game with the input structure.

Procedure:

1. Compute an slp encoding the resultantR = Res(F0, F
(1)
1 , . . . , F

(1)
n1 , . . . , F

(r)
1 , . . . , F

(r)
nr ).

2. Compute the partial derivatives R0 = ∂R/∂A(0)
0 and Rij = ∂R/∂A(0)

ij for 1 ≤ i ≤
r, 1 ≤ j ≤ ni.

3. Specialize A(0)
0 = T, A

(0)
i1 = −1 for 1 ≤ i ≤ r, A

(0)
ij = 0 for 1 ≤ i ≤ r, 2 ≤ j ≤ ni,

and A
(ik)
J−i

= C
(i)
j1...ji−1kji+1...jr

− C(i)
j1...ji−10ji+1...jr

for 1 ≤ i ≤ r, 1 ≤ k ≤ ni and each
J−i = j1 . . . ji−1ji+1 . . . jr in the polynomials R, R0 and Rij to obtain P, ∂P/∂T and
Wij for 1 ≤ i ≤ r, 1 ≤ j ≤ ni.
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Theorem 1 Algorithm GenericGame computes a geometric resolution of the set of
quasi-equilibria of a generic game with r players having n1 + 1, . . . , nr + 1 pure strategies
respectively, within complexity O(D2(D + n1 . . . nr δ log(D)r2n4(n3 + rN))), where

D :=
∑

0≤i≤r
niBezn1,...,nr(d0, n0; d1, n1; . . . ; di, ni − 1; . . . ; dr, nr) (n0 := 1, d0 := (1, . . . , 1)),

δ := Bezn1,...,nr(d1, n1; . . . ; dr, nr),

n :=
∑

1≤i≤r
ni,

N :=
∏

1≤i≤r
(ni + 1) +

∑
1≤i≤r

ni(n1 + 1) . . . (ni−1 + 1)(ni+1 + 1) . . . (nr + 1).

The algorithm obtains polynomials P (T ), Wij(T ) ∈ Q[C(i)
j1...jr

][T ] giving the geometric reso-
lution with
degT P = δ, degT Wij < δ and degrees bounded by D in the parameters C(i)

j1...jr
, which are

encoded by a straight-line program of length O(D2(D + n1 . . . nr δ log(D)r2n4(n3 + rN))).

T he first step of the algorithm consists in the computation of the polynomial R which
is the specialization of the resultant of a system of multihomogeneous polynomials of
respective multidegrees d0 = (1, . . . , 1), d(1)

j = (0, 1, . . . , 1) for 1 ≤ j ≤ n1, . . . , d
(r)
j =

(1, . . . , 1, 0) for 1 ≤ j ≤ nr, in which all the coefficients of the polynomial of multidegree
d0 corresponding to monomials not appearing in F0 are substituted for 0 (see [43, Theorem
1]). This polynomial is obtained by applying an adapted version of the algorithm in [24,
Theorem 5] (see Subsection A). The complexity of this algorithm is of order O(D2(D +
n1 . . . nrδ log(D)r2n4(n3 + rN))) and it computes an slp for R whose length is of the same
order.

The algorithm to compute a geometric resolution of the zero-dimensional variety de-
fined by the system F

(i)
k = 0 (1 ≤ i ≤ r, 1 ≤ k ≤ ni) from R is standard: the parametriza-

tions of the points in the variety are obtained from the partial derivatives R0 = ∂R/∂A(0)
0

and Rij = ∂R/∂A(0)
ij for 1 ≤ i ≤ r, 1 ≤ j ≤ ni. An slp which encode these derivatives can

be computed from the slp representing R within the same complexity order and length of
the same order as the slp which encodes R (see [33]). Note that deg

A
(0)
0

Rij < δ for every
1 ≤ i ≤ r, 1 ≤ j ≤ ni.

Let L :=
∑

1≤i≤r
1≤j≤ni

Lijxij be a generic linear form in the variables xij , where Lij are new

variables, and let T be another new variable. Let PL ∈ Q[A(ik), Lij ][T ] be the polynomial
obtained by specializing

A
(0)
0 7→ T, A

(0)
ij 7→ −Lijxi0 (1 ≤ i ≤ r, 1 ≤ j ≤ ni) (4)

in R. Since R ∈ (F0, F
(i)
k : 1 ≤ k ≤ r, 1 ≤ i ≤ nk), substituting L for T in PL, we obtain

a polynomial P ∈ (F (i)
k : 1 ≤ k ≤ r, 1 ≤ i ≤ nk). As degT (PL) = δ, PL must be a multiple

by a nonzero factor in Q[A(ik)] of the minimal polynomial of L. On the other hand,

∂P
∂Lij

= − ∂R
∂A

(0)
ij

(L,−Lij , A(ik))xi0 +
∂R
∂A

(0)
0

(L,−Lij , A(ik))xij

9



belongs to the ideal (F (i)
k : 1 ≤ k ≤ r, 1 ≤ i ≤ nk). We conclude that making the

substitution (4) in R0 and Rij (1 ≤ i ≤ r, 1 ≤ j ≤ ni), polynomials which complete the
geometric resolution of the variety defined by F

(i)
k = 0 with respect to the generic linear

form L :=
∑

1≤i≤r
1≤j≤ni

Lijxij can be obtained.

Now, we choose a separating linear form and we substitute its coefficients for the
parameters Lij . As the multihomogeneous system F

(i)
k = 0 is generic, it has no zeroes

in the hyperplanes xi0 = 0 (1 ≤ i ≤ r) and we can consider its zeroes as affine points
by setting xi0 = 1 (1 ≤ i ≤ r). The linear form ` :=

∑
1≤i≤r xi1 separates these affine

points. To see this, choose coefficient vectors for the polynomials F (i)
k so as to obtain a

specific system f
(i)
k with the maximum number of affine solutions, and take a linear form

l ∈ Q[xij ; 1 ≤ i ≤ r, 1 ≤ j ≤ ni] separating these solutions. Now, making a linear change
of variables in each group Xi (1 ≤ i ≤ r), the linear form l maps to ` and the specific
system considered leads to a system of the same structure in the new variables having the
maximum number of affine roots and that are separated by `. As ` is a separating linear
form for a specific system, it is also separating for the generic one.

Hence, specializing

A
(0)
0 7→ T, A

(0)
i1 7→ −1 (1 ≤ i ≤ r), A(0)

ij 7→ 0 (1 ≤ i ≤ r, 2 ≤ j ≤ ni)

in the polynomials R, R0 and Rij (1 ≤ i ≤ r, 1 ≤ j ≤ ni), new polynomials giving a
geometric resolution of the set of common zeros of the polynomials F (i)

k in Pn1 × · · · ×Pnr
are obtained. Finally, substituting

A
(ik)
J−i

= C
(i)
j1...ji−1kji+1...jr

− C(i)
j1...ji−10ji+1...jr

(5)

for every 1 ≤ i ≤ r, 1 ≤ k ≤ ni and each J−i = j1 . . . ji−1ji+1 . . . jr with 0 ≤ jt ≤
nt for every t 6= i, the algorithm obtains polynomials P (T ), ∂P/∂T (T ) and Wij(T ) in
Q[C(i)

j1...jr
][T ] such that the set of quasi-equilibria of the generic game in Pn1 × · · · × Pnr is

represented as follows:{(
(
∂P

∂T
(t) : W11(t) : · · · : W1n1(t)), . . . , (

∂P

∂T
(t) : Wr1(t) : · · · : Wrnr(t))

)
/ t ∈ K, P (t) = 0

}
,

(6)
where K := Q(C(i)

j1...jr
) (note that the linear form ` still separates the quasi-equilibria of

the generic game). The polynomials P , ∂P/∂T and Wij are encoded by an slp of length
O(D2(D+ n1 . . . nrδ log(D)r2n4(n3 + rN))) over Q, which is also the order of complexity
of the whole computation. The upper bounds degT P ≤ δ and degT Wij < δ follow from
the stated upper bounds for the degrees of R and Rij in the variable A(0)

0 . � �

3.2 Games with the maximum number of totally mixed Nash equilibria

The existence of games with the maximum possible number of totally mixed Nash equilib-
ria, namely the multihomogeneous Bézout number δ of the associated polynomial equation
system, was proved in [27]. In this subsection, we will give an algorithm to obtain a finite
family of polynomial conditions (inequalities over the reals) ensuring that a given game
satisfying those conditions has δ totally mixed Nash equilibria. To this end, we will use
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signed subresultant sequences as in [44]. We do not use the most sophisticated algorithmic
version of this approach (see, for instance, [45]) because the polynomials we are working
with depend on some parameters and are encoded by slp’s. So, we will use the classical
determinant-based construction of subresultants suitably adapted to our situation.

We will first recall some definitions and notation we will use (see, for example, [11,
Sections 2.2.2 and 4.2.2]). For arbitrary polynomials P,Q ∈ R[T ] with P 6= 0, the Tarski
query (also known as Sturm query) of Q for P is the number TaQ(Q,P ) = #{t ∈ R :
P (t) = 0, Q(t) > 0}−#{t ∈ R : P (t) = 0, Q(t) < 0} and the Cauchy index, I(Q/P ) of the
rational function Q/P is, informally, the number of “jumps” from −∞ to +∞ minus the
number of “jumps” from +∞ to −∞ of the rational function Q/P . For polynomials P and
Q over any field, if p > q are the degrees of P and Q respectively, then for 0 ≤ h ≤ q, the h-
th Sylvester-Habitch matrix of P and Q, SyHah(P,Q), is the (p+q−2h)×(p+q−h)-matrix
of the polynomials T q−h−1P, . . . , P,Q, . . . , T p−h−1Q in the basis {T p+q−h−1, . . . , T, 1} and
the h-th signed subresultant coefficient, sResh(P,Q), is the determinant of the square
matrix ŜyHah(P,Q) obtained from SyHah(P,Q) by deleting the last h columns. Besides,
for P and Q in R[T ], sResp(P,Q) is defined as the sign of the main coefficient in P to the
(p− q)th power.

The main result of this section is the following:

Theorem 2 With our previous notation, there is a family of nδ+ 1 polynomials S0, S(h)
ij ,

1 ≤ i ≤ r, 1 ≤ j ≤ ni, 1 ≤ h ≤ δ, in Q[C(i)
j1...jr

]1≤i≤r, 0≤jt≤nt \ {0} with total degrees

bounded by 4δD, such that for every vector c := (c(i)
j1...jr

)1≤i≤r, 0≤jt≤nt with real coordinates
satisfying the conditions

S0(c) 6= 0, S(h)
ij (c) > 0 (1 ≤ i ≤ r, 1 ≤ j ≤ ni, 1 ≤ h ≤ δ),

the game with r players with n1 + 1, . . . , nr + 1 pure strategies and payoff values given by
c has δ totally mixed Nash equilibria.

The polynomials S0 and S(h)
ij can be computed within complexity O(δ2(nδ2 + L)) from

a straight-line program of length L encoding polynomials P, Wij as in Theorem 1. The
algorithm obtains straight-line programs of length O(δ2(δ2 + L)) which encode these poly-
nomials.

Proof. Consider a specific choice of payoff values c := (c(i)
j1...jr

)1≤i≤r, 0≤jt≤nt over R and
assume that the polynomials P (c)(T ) and Wij(c)(T ) obtained from P (T ) and Wij(T ) by
specializing the parameters at c provide a geometric resolution of the set of quasi-equilibria
of the game with the given payoffs. Then, the totally mixed Nash equilibria of the game
are those points (ξ1, . . . , ξr) ∈ Rn1+1 × · · · × Rnr+1 of the form

ξi =
(P ′(c)(t)
Si(c)(t)

,
Wi1(c)(t)
Si(c)(t)

, . . . ,
Wi ni(c)(t)
Si(c)(t)

)
(1 ≤ i ≤ r),

where P ′ := ∂P/∂T and Si := P ′ +
∑

1≤j≤niWij , having all their coordinates real and
positive; that is, with t belonging to {t ∈ R : P (c)(t) = 0, P ′(c)(t) > 0, Wij(c)(t) >
0 ∀ 1 ≤ i ≤ r, 1 ≤ j ≤ ni} or {t ∈ R : P (c)(t) = 0, P ′(c)(t) < 0, Wij(c)(t) < 0 ∀ 1 ≤ i ≤
r, 1 ≤ j ≤ ni}. Equivalently, t must belong to the intersection⋂

1≤i≤r, 1≤j≤ni

{t ∈ R : P (c)(t) = 0, (P ′(c)Wij(c))(t) > 0}.
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For every 1 ≤ i ≤ r, 1 ≤ k ≤ ni, let G(i)
k ∈ Q[C(i)

j1...jr
][X1, . . . , Xr] be the polynomial

obtained from F
(i)
k (see (3)) by means of the substitution stated in (5). Let us consider

the resultant
S0 := Resδ,δ−1(P (T ), P ′(T )) ∈ Q[C(i)

j1...jr
]

of P (T ) and P ′(T ) regarded as polynomials in the variable T with coefficients in Q[C(i)
j1...jr

],
where the subindices indicate the degrees in T of P and P ′ respectively. Observe that, for
every real vector c = (c(i)

j1...jr
)1≤i≤r, 0≤jt≤nt with S0(c) 6= 0, P (c)(T ) is a nonzero square-

free polynomial of degree δ. Furthermore, the solution set of the system G
(i)
k (c) = 0,

1 ≤ i ≤ r, 1 ≤ k ≤ ni, is a zero-dimensional sub-variety of Pn1 × · · · × Pnr with δ distinct
points and P (c)(T ), Wij(c)(T ) (1 ≤ i ≤ r, 1 ≤ j ≤ ni) give a geometric resolution of this
variety. Therefore, if the condition S0(c) 6= 0 holds, the game with payoff vector c will have
δ different totally mixed Nash equilibria if and only if, for every 1 ≤ i ≤ r, 1 ≤ j ≤ ni,

#{t ∈ R : P (c)(t) = 0, (P ′Wij(c))(t) > 0} = δ. (7)

Let us fix i and j, 1 ≤ i ≤ r, 1 ≤ j ≤ ni. Since the condition S0(c) 6= 0 implies that
the degree of P (c) is δ, we have that (7) is equivalent to TaQ(P ′(c)Wij(c), P (c)) = δ. By
[11, Proposition 2.57], this equality is the same as I((P ′(c))2Wij(c)/P (c)) = δ, which is
equivalent to I(Wij(c)/P (c)) = δ, since P (c) is a square-free polynomial. By [11, Remark
2.55], the last identity implies that degT (Wij(c)) = δ − 1. Moreover, provided that this
degree condition is met, by [11, Theorem 9.12], identity (7) is equivalent to the fact that
there are no sign changes in the sequence sResδ(P (c),Wij(c)), sResδ−1(P (c),Wij(c)), . . . ,
sRes0(P (c),Wij(c)). Thus, we define

S
(h)
ij = sResh(P,Wij) sResh−1(P,Wij) for 1 ≤ h ≤ δ − 1 and S

(δ)
ij = pδ sResδ−1(P,Wij),

where P,Wij are regarded as polynomials in the variable T with coefficients in Q[C(i)
j1...jr

]
and pδ is the leading coefficient of P . Then, for every payoff vector c with S0(c) 6= 0, we
have that (7) is equivalent to S(h)

ij (c) > 0 for 1 ≤ h ≤ δ (since sResδ−1(P (c),Wij(c)) equals
the coefficient of degree δ − 1 of Wij(c), the condition on the degree of Wij(c) is ensured
by S(δ)

ij (c) being positive).
Note that each of the polynomials S0 and sResh(P,Wij) for 0 ≤ h ≤ δ − 1 is the

determinant of a matrix of size at most 2δ− 1 whose entries are polynomials in Q[C(i)
j1...jr

]
of total degrees bounded by D and so, their degrees are bounded by 2δD. Therefore, the
degree of S(h)

ij (1 ≤ i ≤ r, 1 ≤ j ≤ ni, 1 ≤ h ≤ δ) is bounded by 4δD.
Finally, we detail the successive steps of the algorithm and we estimate its complexity

and the length of an slp encoding the output polynomials. First, from an slp of length
L encoding P and Wij (1 ≤ i ≤ r, 1 ≤ j ≤ ni), we obtain an slp of length O(δ2L)
within the same complexity for the coefficients of P , P ′ and Wij (1 ≤ i ≤ r, 1 ≤ j ≤ ni)
in the variable T (see [33, Lemma 21.25]). Then, we apply the division-free algorithm
described in [46] in order to compute the determinants giving the resultant S0 and the
signed subresultants required. This algorithm computes, in fact, all the coefficients of the
characteristic polynomial of a matrix and it proceeds recursively, computing at each step
the characteristic polynomial of a matrix obtained by deleting a row and a column from
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the matrix considered in the previous step. In our case, for every 1 ≤ i ≤ r, 1 ≤ j ≤
ni, we have that for h = 1, . . . , δ − 1, the matrix ŜyHah(P,Wij) may be obtained from
ŜyHah−1(P,Wij) by deleting the first and last row and the last two columns. Thus, all the
signed subresultants sResh(P,Wij) (1 ≤ h ≤ δ − 1) are obtained as intermediate results
in the computation of sRes0(P,Wij) by means of an adequate choice of rows and columns
during the execution of the algorithm in [46]. Therefore, for each 1 ≤ i ≤ r, 1 ≤ j ≤ ni,
the algorithm obtains slp’s of length O(δ2(δ2 + L)) encoding the polynomials S(h)

ij within
complexity O(δ4). The computation of an slp of length O(δ2(δ2 + L)) encoding S0 is
achieved within the same complexity order. The overall complexity of the algorithm is
then O(δ2(nδ2 + L)). � �

Note that, with the same notation as in the previous theorem, for a generic game
with the given structure (namely, any game whose payoff vector c satisfies S0(c) 6= 0)
the conditions S(h)

ij (c) > 0 are equivalent to the fact that the considered game has the
maximum possible number of totally mixed Nash equilibria.

4 The set of totally mixed Nash equilibria of an arbitrary
game

When dealing with a particular game with specific payoff values, evaluating the geometric
resolution of the set of quasi-equilibria of a generic game with the same structure may fail
to describe the quasi-equilibria of the given game. This section is aimed at adapting the
procedures previously developed in order to handle this problem.

In fact, the main idea of this section is to describe by means of geometric resolutions
finite sets which contain the isolated (in the complex sense) totally mixed Nash equilib-
ria of any game. In the context of computational algebra, there are already algorithms
computing the isolated solutions for any system of polynomial equations. The possible
advantage of our approach is that, as we take into account the multihomogeneous struc-
ture of the systems involved, as in [26], the order of complexity of our algorithms may be
lower than the known ones when the multihomogenous bound for the number of equilibra
is small.

4.1 Games with a zero-dimensional set of quasi-equilibria

As before, consider an r-person non-cooperative game in normal form in which the play-
ers have n1 + 1, . . . , nr + 1 distinct available pure strategies respectively. Let c(i) :=
(c(i)
j1...jr

)0≤jk≤nk denote the payoff matrix to player i for every 1 ≤ i ≤ r. The polynomial
equations defining the Nash equilibria of the game (see Section 2.2) can be obtained by
specializing the coefficients of F (i)

k introduced in (3) in a(ik) := (a(ik)
j1...ji−1ji+1...jr

)0≤jt≤nt

defined as follows a
(ik)
j1...ji−1ji+1...jr

:= c
(i)
j1...ji−1kji+1...jr

− c
(i)
j1...ji−10ji+1...jr

. Thus, if a :=
(a(ik))1≤i≤r, 1≤k≤ni , the set of quasi-equilibria of the game is

Va := {ξ := (ξ1, . . . , ξr) ∈ Pn1 × · · · × Pnr / F (i)
k (a, ξ) = 0 ∀1 ≤ i ≤ r, 1 ≤ k ≤ ni}.
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Lemma 3 Under the previous notation, there exists an algorithm which decides whether
Va has only finitely many points within complexity O(D2(n1 . . . nr)2 δ(D+n1 . . . nrδ log(D)r2n4(n3+
rN))).

Proof. Consider a generic polynomial of multidegree d0 := (1, . . . , 1) in the groups of
variables X1, . . . , Xr,

F0 =
∑

1 ≤ i ≤ r
0 ≤ ji ≤ ni

A
(0)
j1...jr

x1j1 . . . xrjr

and the resultant R := Res(F0, F
(1)
1 , . . . , F

(1)
n1 , . . . , F

(r)
1 , . . . , F

(r)
nr ). Let Ra(A

(0)
j1...jr

) be the
polynomial obtained by substituting the coordinates of a = (a(ik))1≤i≤r, 1≤k≤ni for A(ik)

in R. Then Va is either zero-dimensional or empty if and only if Ra is not identically
zero: If Va is empty, the result is straightforward. If Va is zero-dimensional, there exists
a multilinear polynomial f ∈ Q[X1, . . . , Xr] which does not vanish at any of the (finitely
many) points of Va and therefore, Ra does not vanish at the coefficients of f . On the
other hand, if Va has positive dimension, any multilinear polynomial f has zeros in Va
and, therefore, Ra is identically zero.

The first step of the algorithm computes an slp of length L := O(D2(D+n1 . . . nrδ log(D)r2n4(n3+
rN))) which encodes the multihomogeneous resultant R by using the algorithm described
in [24], adapted according to Subsection A below, within complexity of the same order as
L. The specialization to obtain Ra does not modify this complexity order.

Let f0 ∈ Q[t][X1, . . . , Xr] be the polynomial obtained by specializing the variables
A

(0)
j1...jr

in F0 into successive powers of a new variable t:

A
(0)
j1...jr

= tj1+(n1+1)j2+(n1+1)(n2+1)j3+···+(
Qr−1
j=0(nj+1))jr . (8)

For every ξ := (ξ1, . . . , ξr) ∈ Pn1 × · · · × Pnr , we have

f0(ξ)(t) =
∑
j1...jr

ξ1j1 . . . ξrjr t
j1+(n1+1)j2+(n1+1)(n2+1)j3+···+(

Qr−1
j=0(nj+1))jr ∈ C[t],

which is a nonzero polynomial due to the fact that there exists at least one choice of
j1, . . . , jr for which the product ξ1j1 . . . ξrjr is not 0. Now, if Va is a finite set, let ∆(t) :=∏
ξ∈Va f0(ξ)(t). Note that there exists t0 ∈ Q with ∆(t0) 6= 0. Then f0(t0) ∈ Q[X1, . . . , Xr]

does not vanish at any point of Va and therefore the polynomial Ra,t ∈ Q[t] obtained by
specializing Ra following (8) does not vanish at t0. Then Ra,t is not the zero polynomial.

To decide whetherRa ∈ Q[A(0)
j1...jr

] is zero or not, it suffices to decide whetherRa,t ∈ Q[t]
is zero or not. Taking into account that deg(Ra,t) ≤ (

∏
1≤i≤r(ni + 1)− 1)δ, this task can

be achieved by evaluating Ra,t at (
∏

1≤i≤r(ni + 1))δ different values of t, which is done by

substituting the powers of these values for A(0)
j1...jr

as in (8) in the slp for Ra. The overall

complexity of this procedure is
(

(
∏

1≤i≤r(ni + 1)) + L
)

(
∏

1≤i≤r(ni + 1))δ. � �

Once we know Va is zero-dimensional, even though the game does not have the maxi-
mum number of quasi-equilibria, we can obtain a geometric resolution of its set of affine
quasi-equilibria

V aff
a := {ξ ∈ Va : ξi0 6= 0 ∀ 1 ≤ i ≤ r}
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by means of a deterministic algorithm within a complexity polynomial in the same pa-
rameters as in the generic case.

We will use the following notation: given F ∈ Q[A(0)
0 , A

(0)
ij ], F (t) ∈ Q[t][A(0)

0 ] will
denote the polynomial obtained from F by specializing, as before, all the variables, except
for A(0)

0 , into successive powers of a variable t.

Algorithm AffineQuasiEquilibria

Input: A family of payoff matrices c(i) := (c(i)
j1...jr

)0≤jk≤nk for 1 ≤ i ≤ r defining a game
with a finite number of quasi-equilibria.
Output: A geometric resolution of the set of affine quasi-equilibria of the game.

Procedure:

1. Compute the resultant R of a family of multihomogeneous polynomials with multi-
degrees d0 = (1, . . . , 1), d(i)

j = (1, . . . , 0, . . . , 1) (where the 0 is in the ith coordinate)
for 1 ≤ i ≤ r and 1 ≤ j ≤ ni.

2. Compute a(ik)
j1...ji−1ji+1...jr

:= c
(i)
j1...ji−1kji+1...jr

− c(i)
j1...ji−10ji+1...jr

and set a for the vector
with these entries.

3. Specialize A(ik) = a(ik) in R to obtain the polynomial Ra(A
(0)
j1...jr

).

4. Compute the leading coefficient of Ra in the variable A(0)
0...0 and divide Ra by this

coefficient, obtaining a polynomial Raff
a .

5. Specialize A(0)
0...0 = A

(0)
0 , A(0)

0...0 j 0...0 = A
(0)
ij (where the index j is in the ith place) for

1 ≤ j ≤ ni and A
(0)
j1...jr

= 0 otherwise in Raff
a , obtaining a polynomial P̃a.

6. Compute the first nonzero subresultant of P̃ (t)
a , ∂

eP (t)
a

∂A
(0)
0

and an element τ ∈ Q at which

this subresultant does not vanish.

7. Compute Pa = P̃a/gcd(P̃a, ∂ ePa
∂A

(0)
0

) and its partial derivatives.

8. Evaluate the variables A(0)
ij for 1 ≤ i ≤ r, 1 ≤ j ≤ ni, at (−τk)0≤k≤n−1 in the poly-

nomial Pa and its partial derivatives to obtain the polynomials giving the geometric
resolution.

Theorem 4 Algorithm AffineQuasiEquilibria computes a geometric resolution of the
set of affine quasi-equilibria of the game with r players having n1 + 1, . . . , nr + 1 pure
strategies respectively and payoff matrices c(1), . . . , c(r) within complexity O(δ8D2(D +
n1 . . . nrδ log(D)r2n5(n3 +rN))) provided that the associated set of quasi-equilibria is zero-
dimensional.
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S et Fa :=
∏
ξ∈Va F0(ξ) ∈ Q[A(0)]. For a given coefficient vector a(0), Fa(a(0)) = 0 if

and only if there is ξ ∈ Va such that F0(a(0), ξ) = 0; that is, if and only if F0(a(0)),
F

(1)
1 (a(11)), . . . , F (r)

nr (a(rnr)) have a common root in Pn1 × · · · × Pnr . But this is equivalent
to the fact that Res(F0, F

(1)
1 , . . . , F

(r)
nr ) vanishes at a(0), a(11), . . . , a(rnr) or, equivalently,

that Ra(a(0)) = 0. Then

Ra = Ca
∏
ξ∈Va

F0(ξ)mξ , with Ca ∈ Q, mξ ∈ N. (9)

To describe the set V aff
a of affine quasi-equilibria of the game, we compute Raff

a :=∏
ξ∈V aff

a
F0(ξ)mξ . Note that Raff

a is monic in the variable A(0)
0...0 and

∏
ξ∈Va−V aff

a
F0(ξ)mξ

does not depend on this variable. Then, Ca
∏
ξ∈Va−V aff

a
F0(ξ)mξ is the leading coefficient

of Ra in the variable A(0)
0...0.

Consider the generic form f0 := A
(0)
0 x10 . . . xr0+

∑
1 ≤ i ≤ r

1 ≤ j ≤ ni

A
(0)
ij x10 . . . xi−1 0xijxi+1 0 . . . xr0.

After specializing Raff
a as follows:

A
(0)
0...0 7→ A

(0)
0

A
(0)
0...0 j 0...0 7→ A

(0)
ij where the index j is in the ith place (1 ≤ j ≤ ni)

A
(0)
j1...jr

7→ 0 otherwise

(10)

we obtain P̃a :=
∏
ξ∈V aff

a
f0(ξ)mξ . The geometric resolution of V aff

a can be obtained from

the square-free part Pa :=
∏
ξ∈V aff

a
f0(ξ) of P̃a and the partial derivatives of Pa as shown

in the proof of Theorem 1 and substituting afterwards the powers of a conveniently chosen
scalar for the variables A(0)

ij .
Complexity and details of the different steps of the algorithm:
Computation of Raff

a : Let t0 ∈ Q be obtained as in the proof of Lemma 3 so that
Ra,t(t0) 6= 0, and let R(t0)

a ∈ Q[A(0)
0...0] be the (nonzero) polynomial obtained from Ra after

specializing it as in (8) for every (j1, . . . , jr) 6= (0, . . . , 0) setting t = t0. Because of (9),
deg(R(t0)

a ) = da. Then, in order to compute da := deg
A

(0)
0...0

(Ra), it suffices to compute the

coefficients of R(t0)
a up to degree δ (an a priori upper bound for da). The complexity of

this computation is of order O(δ2L). Now, after computing an slp of length O(δ2L) for the
coefficient of (A(0)

0...0)da of Ra, Raff
a can be obtained by dividing Ra by this coefficient. As

the divisor does not vanish when its variables are specialized in the successive powers of
t0, this division can be done by a classical division avoiding algorithm within complexity
O(δ4L), which produces an slp of the same order ([47]).

Computation of Pa: This polynomial is obtained by applying the well-known subresultant-
based procedure for the computation of the gcd of two polynomials (see, for instance, [48]).

Let G = gcd(P̃a, ∂ ePa
∂A

(0)
0

). For ξ1 6= ξ2, f (t)
0 (ξ1) and f

(t)
0 (ξ2) are relatively prime irre-

ducible polynomials in Q[A(0)
0 , t], therefore G(t) =

∏
ξ∈V aff

a
f

(t)
0 (ξ)mξ−1 = gcd(P̃ (t)

a , ∂
eP (t)
a

∂A
(0)
0

).

Then, d̃a := deg(gcd(P̃a, ∂ ePa
∂A

(0)
0

)) can be obtained as the degree of the gcd of the polyno-

mials P̃ (t)
a and ∂ eP (t)

a

∂A
(0)
0

. To compute this degree, the algorithm looks for their first nonzero
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subresultant. In each step, to decide whether the considered subresultant (which is a poly-
nomial of degree at most 2δ2n in Q[t]) is zero or not, the algorithm evaluates the variable
t in a sufficient number of elements of Q.

First, we obtain an slp of length O(δ4L + n) for P̃
(t)
a and then an slp of length

O(δ2(δ4L + n)) for its coefficients in the variable A
(0)
0 . For a specific evaluation of t

the complexity of the computation of all the subresultants is O(δ6L + δ2n), and there-
fore, the whole complexity of this step is bounded by O(δ8Ln + δ4n2). The polyno-
mial G̃ = sa . gcd(P̃a, ∂ ePa

∂A
(0)
0

) is obtained as the d̃ath polynomial subresultant of P̃a and

∂ ePa
∂A

(0)
0

within complexity O(δ6L) (here sa = sResd̃a(P̃a, ∂ ePa
∂A

(0)
0

)). Finally, Pa is obtained

by dividing saP̃a by G̃. Note that we already know a point τ where sa does not vanish
(the value obtained when computing d̃a). Then, by evaluating the nonzero polynomial
G̃(t)(A(0)

0 , τ) ∈ Q[A(0)
0 ] of degree d̃a in at most d̃a + 1 elements in Q, we obtain a

(0)
0 ∈ Q

such that G̃(t)(a(0)
0 , τ) 6= 0. This enables us to compute the quotient Pa by applying the

algorithm in [47]. The complexity of this step is of order O(δ8L).
Computation of a geometric resolution: Observe that the linear form ` whose coeffi-

cients are (−τk)0≤k≤n−1 is a separating linear form for V aff
a . As in the proof of Theorem

1, the algorithm proceeds to compute the partial derivatives of Pa and evaluate Pa and its
derivatives at the coefficients of `. This may be done within O(δ8Ln) operations.

The overall complexity of the algorithm isO(δ8Ln+δ4n2) = O(δ8D2(D+n1 . . . nrδ log(D)r2n5(n3+
rN))). � �

Now, using standard methods (see, for instance, [49], [50]), we are able to give a
description and to compute the cardinality of the set of totally mixed Nash equilibria of a
game with zero-dimensional set of quasi-equilibria from the geometric resolution given by
Theorem 4.

Proposition 5 Following the previous notation, there is an algorithm which computes the
number of totally mixed Nash equilibria of a game with r players having n1 + 1, . . . , nr + 1
pure strategies respectively within complexity O(δ9D2(D+n1 . . . nrδ log(D)r2n5(n3+rN)))
provided that the associated set of quasi-equilibria of the game is zero-dimensional.

U sing Theorem 4, let p and wij (1 ≤ i ≤ r, 1 ≤ j ≤ ni) be the polynomials giving
the geometric resolution of V aff

a . Then, the totally mixed Nash equilibria of the game
are the points (ξ1, . . . , ξr) with ξi = (p′(t)/si(t), wi1(t)/si(t), . . . , wir(t)/si(t)), where si =
p′ +

∑ni
j=1wij for i = 1, . . . , r, and t is a root of p, having all their coordinates real and

positive. Therefore, the number of totally mixed Nash equilibria of the game equals the
cardinality of the union of the sets {t ∈ R : p(t) = 0, p′(t) > 0, wij(t) > 0 ∀ 1 ≤ i ≤ r,
1 ≤ j ≤ ni} and {t ∈ R : p(t) = 0, p′(t) < 0, wij(t) < 0 ∀ 1 ≤ i ≤ r, 1 ≤ j ≤ ni}.

Once we have p, p′ and wij (1 ≤ i ≤ r, 1 ≤ j ≤ ni}) encoded in dense form (which can
be obtained by fast interpolation techniques as explained in [51]), by using the algorithm
in [50, Section 3.3], it is possible to compute this cardinality within complexity O(nδ3).
� �

Remark 6 The algorithm of Proposition 5 can be adapted to compute the list of Thom
encodings of the real roots of the polynomial p (see [52] for a definition) in the geometric
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resolution of the set of affine quasi-equilibria of the game leading to totally mixed Nash
equilibria within the same complexity.

4.2 Computing the isolated affine quasi-equilibria of an arbitrary game

When we are dealing with an arbitrary game, it may happen that the set Va of its quasi-
equilibria has positive dimension and, therefore, the polynomial Ra introduced in the
previous subsection (see the proof of Lemma 3) is identically zero. However, the following
probabilistic algorithm computes the isolated affine quasi-equilibria of the game.

Algorithm IsolatedAffineQuasiEquilibria

Input: A family of payoff matrices c(i) := (c(i)
j1...jr

)0≤jk≤nk for 1 ≤ i ≤ r of a game.
Output: A geometric resolution of a set including the isolated affine quasi-equilibria of the
game.

Procedure:

1. Compute the resultant R of a family of multihomogeneous polynomials with multi-
degrees d0 = (1, . . . , 1), d(i)

j = (1, . . . , 0, . . . , 1) (where the 0 is in the ith coordinate)
for 1 ≤ i ≤ r and 1 ≤ j ≤ ni.

2. Choose a vector b := (b(ik))1≤i≤r,1≤k≤ni at random.

3. Compute a(ik)
j1...ji−1ji+1...jr

:= c
(i)
j1...ji−1kji+1...jr

− c(i)
j1...ji−10ji+1...jr

and set a for the vector
with these entries.

4. Specialize A(ik) = a(ik) + u · (b(ik) − a(ik)), where u is a new variable, A(0)
0...0 = A

(0)
0 ,

A
(0)
0...0 j 0...0 = A

(0)
ij , where the index j is in the ith place, and A(0)

j1...jr
= 0 otherwise in

R, obtaining P̃a+u(b−a).

5. Compute by interpolation the coefficients (p`(u))0≤`≤δ ∈ Q[A(0)
ij ][u] of P̃a+u(b−a)(A

(0)
0 ).

6. For 0 ≤ ` ≤ δ, compute the coefficients (p`k)0≤k≤D of p`(u) and ε` = min{k : p`k 6=
0}.

7. Compute ε = min{ε` : 0 ≤ ` ≤ δ} and P =
∑δ

`=0(−1)`p`εT `.

8. From the polynomial P obtain the required geometric resolution.

Theorem 7 Algorithm IsolatedAffineQuasiEquilibria is a probabilistic procedure
which computes a geometric resolution of a finite set of points including the isolated affine
quasi-equilibria of the game with r players having n1 + 1, . . . , nr + 1 pure strategies respec-
tively and payoff matrices c(1), . . . , c(r) within complexity O(D4δ3(D+n1 . . . nr δ log(D)r2n4(n3+
rN))).
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T he deformation procedure we use was applied in [26]. For the sake of completeness, we
are going to explain it briefly. We keep our previous notation.

Consider a sufficiently generic coefficient vector b := (b(ik))1≤i≤r,1≤k≤ni such that Rb 6≡
0 (b can be either chosen at random or effectively constructed as the coefficient vector of a
system with δ many common roots). Then, if u is a new variable, Ra+u(b−a) is a nonzero

polynomial. If f (i)
k is the polynomial obtained from F

(i)
k by evaluating xj0 = 1 (1 ≤ j ≤ r),

let f̃ (i)
k := f

(i)
k (a(ik) + u(b(ik) − a(ik))) (1 ≤ i ≤ r, 1 ≤ k ≤ ni). Let P̃a+u(b−a) be the

polynomial obtained from Ra+u(b−a) by specializing it as in (10) and let L :=
∑

i,j A
(0)
ij xij .

Let ε ∈ N0 such that P̃a+u(b−a) = uεP̃ for P̃ ∈ Q[u,A(0)] with P̃ (u,A(0)) |u=0 6≡ 0 and set
P := P̃ |

u=0,A
(0)
0 =−T .

Since R is a linear combination of F0, F
(i)
k (1 ≤ i ≤ r, 1 ≤ k ≤ ni), we have that

P̃a+u(b−a) |A(0)
0 =−L= uεP̃ |

A
(0)
0 =−L∈ (f̃ (i)

k : 1 ≤ i ≤ r, 1 ≤ k ≤ ni) ∈ Q[u, xij : 1 ≤ i ≤
r, 1 ≤ j ≤ ni]. Now, each irreducible component of the variety Vu defined by the ideal
(f̃ (i)
k : 1 ≤ i ≤ r, 1 ≤ k ≤ ni) in An+1 has dimension at least 1. Then, for each isolated

point ξ of V aff
a , (0, ξ) ∈ An+1 lies in an irreducible component C of Vu such that u /∈ I(C).

Therefore P̃ |
A

(0)
0 =−L∈ I(C) and P |T=L vanishes at ξ. Then P is a multiple of the minimal

polynomial of L over the set of isolated points of V aff
a .

Note that, if P̃a+u(b−a) =
∑δ

`=0 p`(u)(A(0)
0 )`, where p`(u) ∈ Q[A(0)

ij ][u] are such that
p`(u) 6≡ 0 for some 0 ≤ ` ≤ D, then ε := max{k : uk divides p` ∀ 0 ≤ ` ≤ D}.

The procedure for the computation of P from an slp encoding R runs as follows: First,
a + u(b − a) is computed within 3N operations and then, the slp for R is specialized in
a+u(b−a) and according to (10). If L is the length of an slp encoding R, an slp of length
3N + L for P̃a+u(b−a) is obtained. Then an slp encoding the coefficients p`(u) (0 ≤ ` ≤ δ)
is obtained by interpolation, which takes O(δ2(N +L)) operations. Afterwards, for every
0 ≤ ` ≤ δ, an slp which encodes the coefficients of p`(u) =

∑D
k=0 p`k u

k is obtained,
within complexity O(D2δ2(N + L)), in order to compute ε` = min{k : p`k 6= 0}. To
decide whether each of the multivariate polynomials p`k ∈ Q[A(0)

ij ] encoded by an slp
is zero or not, we apply the probabilistic Zippel-Schwartz zero test (see [53]). In this
way, ε = min{ε` : 0 ≤ ` ≤ δ} is computed. The overall complexity of this step is
O(D2δ3(N +L)). The last step of this procedure obtains an slp for P =

∑δ
`=0(−1)`p`εT `

from the slp’s encoding p`ε (0 ≤ ` ≤ δ) within the same order of complexity.
Finally, from the polynomial P , the algorithm obtains a geometric resolution for a

finite set of points including the isolated points of V aff
a in the same way we showed in

the proof of Theorem 1, except that the linear form is now taken at random, obtaining a
description for the isolated affine quasi-equilibria of the game. � �

Proceeding as in the previous subsection, now it is possible to obtain an upper bound
on the number of isolated (in the complex space) totally mixed Nash equilibria of the
game and the corresponding Thom encodings within the same order of complexity as in
Theorem 7.
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5 A final comment on complexities

The upper bound stated in Proposition 9 in Appendix B below shows that all the algo-
rithms presented in this paper are polynomial in the number of strategies n1, . . . , nr of the
r players, and the generic number δ of totally mixed Nash equilibria of a game with the
considered structure.

We point out that the polynomial dependence of our complexity estimates in the
parameter δ is due to the use of the multihomogeneous structure of the polynomial systems
involved. This is not the case for general algorithms, which only take into account degree
bounds for the polynomials leading to complexity estimates in terms of the classical Bézout
number, which in our situation equals (r − 1)n1+···+nr . Although it is not easy to give a
precise estimate of the multihomogeneous Bézout number in terms of r and n1, . . . , nr, the
following table borrowed from [27] illustrates its order of magnitude when n1 = · · · = nr.
In each box of the table, the first entry contains the multihomogeneous Bézout number
and the second one the classical Bézout number.

r� ni 2 3 4 5 6

2 1 1 1 1 1 1 1 1 1 1

3 2 8 10 64 56 512 346 4096 2252 32768

4 9 81 297 6561 13833 531441 748521 4.3× 107 4.4× 107 3.4× 109

5 44 1024 13756 1.0× 106 6.7× 106 1.0× 109 4.0× 109 1.0× 1012 2.7× 1012 1.1× 1015

6 265 15625 925705 2.4× 108 5.7× 109 3.8× 1012 4.5× 1013 5.9× 1016 4.1× 1017 9.3× 1020

6 Conclusions

In this paper, we showed a deterministic algorithm to compute a geometric resolution of
the totally mixed Nash equilibria of a generic game in normal form with a fixed structure
within a complexity which is cubic in the number of these equilibria. This complexity
is due to the use of straight-line programs to encode multivariate polynomials and an
efficient procedure to compute multihomogeneous resultants.

We also presented a deterministic algorithm to compute polynomial inequality condi-
tions on the payoff values under which a game has the maximum possible number of this
kind of equilibria.

Then, we designed symbolic deterministic procedures to describe the set of isolated
totally mixed Nash equilibria of a game and to compute their exact number provided the
set of quasi-equilibria of the game is finite.

The complexity of all our algorithms is polynomial in the number of players, the
number of each player’s strategies and the number of totally mixed Nash equilibria of
a generic game with the considered structure. For generic games, the theoretical cost
of our algorithms is comparable to the one that could be obtained by applying the best
probabilistic algorithms dealing with parametric polynomial systems (see [25]).

We expect that the techniques in [54], where the authors explain how to implement
algorithms handling straight-line programs efficiently, could be adapted to a future im-
plementation of our algorithms. The application of these techniques might also decrease
the exponents in the complexity of the algorithms proposed to deal with specific payoff
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values without introducing extra probabilistic aspects. These implementation issues and
the design of a deterministic algorithm for arbitrary games is the matter of future research.

A Appendix: Computing multihomogeneous resultants

The procedure in [24] computes multihomogeneous resultants under the assumption that
the coordinates of each multidegree are all positive. As this is not the case in our setting,
this subsection is devoted to showing how to adapt that procedure.

In order to do this, we are going to use the theory in [55] and [43]. We can ap-
ply these results to our situation because the multihomogeneous resultant of a family of
multihomogeneous polynomials G0, . . . , Gn in r groups of variables Xj = (xj0, . . . , xjnj ),
with

∑r
j=1 nj = n, coincides with the sparse resultant of the dehomogenized polynomials

g0, . . . , gn obtained by setting xj0 = 1 for every 1 ≤ j ≤ r.
Let A0, . . . ,An ⊂ Zn be finite sets and let g0, . . . , gn be polynomials with supports

A0, . . . ,An respectively. For any subset J ⊆ {0, . . . , n}, let LJ be the lattice generated by∑
j∈J Aj . Following [55], if I ⊂ {0, . . . , n}, the collection of supports {Ai}i∈I is said to

be essential if rank(LI) = #I − 1 and rank(LJ) ≥ #J for each proper subset J of I. If
there is a unique subcollection {Ai}i∈I which is essential, the resultant Res(g0, . . . , gn) is
not constant and coincides with the resultant Res(gi; i ∈ I) (see [55, Corollary 1.1]).

Proposition 8 Let n1, . . . , nr be positive integers such that ni ≤
∑

1≤k≤r,k 6=i nk for every
1 ≤ i ≤ r, and let n :=

∑
1≤i≤r ni. Then, the resultant of n+ 1 generic multihomogeneous

polynomials F0, F
(1)
1 , . . . , F

(1)
n1 , . . . , F

(r)
1 , . . . , F

(r)
nr in r groups of n1 +1, . . . , nr+1 variables

respectively, where F0 has multidegree d0 = (1, . . . , 1) and, for every 1 ≤ i ≤ r, F (i)
k are

polynomials of multidegree di = (1, . . . , 0, . . . , 1) (with 0 in the ith coordinate), is a non-
constant polynomial and can be computed algorithmically within complexity O(D2(D +
n1 . . . nrδ log(D)r2n4(n3 + rN))), where D, δ and N are as in Theorem 1.

T he resultant R will be computed recursively by applying Poisson’s formula ([43, Lemma
13]). Once this formula is established, all the required computations run in the same
way as in [24] and, therefore, the complexity of the algorithm is of the same order. At
each step, we will have to compute a multihomogeneous resultant in one of the following
settings, where m1, . . . ,mr ∈ N and m := m1 + · · ·+mr:

1. m+1 multihomogeneous polynomials in r groups of m1 +1, . . . ,mr+1 variables: one
polynomial with multidegree (1, . . . , 1) and, for every 1 ≤ i ≤ r, mi polynomials with
multidegrees di := (1, . . . , 0, . . . , 1) with 0 in the coordinate i, under the assumption
that mi ≤

∑
j 6=imj for every 1 ≤ i ≤ r,

2. m + 1 multihomogeneous polynomials with multidegrees (1, . . . , 1) in r groups of
m1 + 1, . . . ,mr + 1 variables each,

3. m multihomogeneous polynomials in r groups of variables with m1,m2+1, . . . ,mr+1
variables each, with mi polynomials of multidegree di for every 1 ≤ i ≤ r, under the
assumption that mi ≤

∑
j 6=imj for every 1 ≤ i ≤ r.
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Now we are going to start with the recursion.
The polynomials F0, F

(1)
1 , . . . , F

(1)
n1 , . . . , F

(r)
1 , . . . , F

(r)
nr we start with satisfy the condi-

tions in (I) with mi := ni and m := n.
Let us solve case (I) in general: Let G(0)

0 and G(i)
k (1 ≤ i ≤ r, 1 ≤ k ≤ mi) be a family

of polynomials satisfying the conditions in (I) and let I := {(0, 0)} ∪ {(i, k) : 1 ≤ i ≤
r, 1 ≤ k ≤ mi}. First, note that rank(LI) = m = #I − 1. Let J be a proper subset of
I. If there exist (i, k), (i′, k′) in J with i 6= i′, then rank(LJ) = m ≥ #J and the same
holds if (0, 0) ∈ J . On the other hand, if J ⊂ {(i, k) : 1 ≤ k ≤ mi} for a fixed i 6= 0,
then rank(LJ) =

∑
j 6=imj ≥ mi ≥ #J . Therefore, the set of all supports is the unique

essential subset. So, the resultant is not constant and the following identity holds:

Res(G(0)
0 , (G(i)

k )1≤i≤r;1≤k≤mi) =
∏
ξ∈V

g
(0)
0 (ξ)

∏
1≤j≤r

Res((G(i)
kj )1≤i≤r,1≤k≤mi),

where g(0)
0 is the dehomogeneized polynomial obtained from G

(0)
0 by evaluating x`m` = 1

(1 ≤ ` ≤ r), V is the set of common zeros in Am of the polynomials g(i)
k obtained in the

same way from the G(i)
k (1 ≤ i ≤ r, 1 ≤ k ≤ mi), and, for each 1 ≤ j ≤ r, G(i)

kj is the

polynomial obtained from G
(i)
k by setting xj mj = 0. (Note that this result, applied to the

polynomials F0, F
(1)
1 , . . . , F

(1)
n1 , . . . , F

(r)
1 , . . . , F

(r)
nr implies that the resultant R we want to

compute is a non-constant polynomial.)

(I.a) If mi ≥ 2 for every 1 ≤ i ≤ r, (up to renaming variables and polynomials) each of
the resultants Res(G(i)

kj ) involves a family of polynomials satisfying the conditions in
(III).

(I.b) Without loss of generality, assume now that m1 = 1. Here, when computing
Res((G(i)

k1)1≤i≤r,1≤k≤mi) we can discard the first group of variables. Then, the resul-
tant involves m polynomials in r−1 groups of m2 +1, . . . ,mr+1 variables each with
mi polynomials with multidegree (1, . . . , 0, . . . , 1), where the 0 is in the (i − 1)th
coordinate for 2 ≤ i ≤ r, and one with multidegree (1, . . . , 1).

If, for every 2 ≤ i ≤ r, mi <
∑

1≤j≤r, j 6=imj , since m1 = 1 we deduce that mi ≤∑
2≤j≤r, j 6=imj and so, the polynomial system obtained is of the form (I) but with

one group of variables less than the original one. On the other hand, if mi =
1 +

∑
2≤j≤r, j 6=imj for some 2 ≤ i ≤ r, then mj < mi for every j 6= i. Therefore, the

unique essential subset is {(i, k) : 1 ≤ k ≤ mi} and the resultant to be computed is
the resultant of the corresponding family of mi polynomials of multidegree (1, . . . , 1)
in r − 2 groups of m2 + 1, . . . ,mi−1 + 1,mi+1 + 1, . . . ,mr + 1 variables each, which
is the situation in (II).

If the conditions in (II) are met, all the coordinates of the multidegrees are not zero
and so, we can apply the algorithm in [24] for the computation of the resultant.

To analyze (III), let us consider first the case when r = 2. Here, the assumption on
the numbers mi implies that m1 = m2 := M .

(III.a) We consider the resultant of M polynomials with multidegrees (0, 1) and M polyno-
mials with multidegrees (1, 0) in two groups of M and M + 1 variables respectively.
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Now the unique essential set is the corresponding to the first M polynomials and,
therefore, as they are linear forms, the resultant equals the determinant of their
coefficient matrix.

Assume now that r > 2. Note that the equality mi =
∑

j 6=imj may be valid for at most
one value i. If, on the contrary, mi1 =

∑
j 6=i1 mj and mi2 =

∑
j 6=i2 mj hold for i1 6= i2, it

follows that
∑

j 6=i1,i2 mj = 0, which implies r = 2. Let G(i)
k (1 ≤ i ≤ r, 1 ≤ k ≤ mi) be a

family of polynomials satisfying the conditions in (III).

(III.b) If m1 = 1, we are under the same assumptions as in (I.b).

(III.c) If m1 ≥ 2 and mi =
∑

j 6=imj for some 2 ≤ i ≤ r, the set {(i, k) : 1 ≤ k ≤ mi} is the
unique essential subset. Then, the resultant involves mi polynomials of multidegrees
(1, . . . , 1) in r− 1 groups of m1,m2 + 1, . . . ,mi−1 + 1,mi+1 + 1 . . . ,mr + 1 variables
respectively and we are in situation (II).

(III.d) If m1 ≥ 2 and mi <
∑

j 6=imj for every 2 ≤ i ≤ r, then mi ≤ m1 − 1 +
∑

j 6=1,imj

for every 2 ≤ i ≤ r. Therefore, the unique essential subset is the whole family of
supports and applying Poisson’s formula we obtain:

Res((G(i)
k )1≤i≤r;1≤k≤mi) =

∏
ξ∈W

g
(1)
1 (ξ)

∏
2≤l≤r

Res((G(1)
kl )2≤k≤m1 ; (G(i)

kl )2≤i≤r,1≤k≤mi),

where g(1)
1 is the dehomogeneized of G(1)

1 by setting xjmj = 1 for every 1 ≤ j ≤ r,

W is the set of common zeros in Am−1 of the polynomials g(1)
k (2 ≤ k ≤ m1), g(i)

k

(2 ≤ i ≤ r, 1 ≤ k ≤ mi) obtained in the same way from the G(i)
k , and G

(i)
kl is the

polynomial obtained from G
(i)
k by setting xl ml = 0.

For l = 2, . . . , r, setting m′ := m − 1, m′1 := m1 − 1 and m′i := mi for i 6= 1, the
resultant to be computed involves m′ polynomials in r groups of m′1 + 1, . . . ,m′l−1 +
1,m′l,m

′
l+1 + 1, . . . ,m′r + 1 variables each with m′i polynomials of multidegree di for

every 1 ≤ i ≤ r. We have m′1 ≤
∑

j 6=1m
′
j and, for i 6= 1, the condition mi <

∑
j 6=imj

implies that m′i ≤
∑

j 6=im
′
j ; therefore, renaming variables and polynomials, we are

again under the assumptions of (III). �

�

B Appendix: A bound for the degree of the resultant

As before, we assume n = n1 + · · ·+ nr with ni ∈ N for every 1 ≤ i ≤ r. We consider the
resultant R of a family of n+1 multilinear polynomials in r groups of n1+1, . . . , nr+1 vari-
ables each, consisting of a polynomial F0 of multidegree d0 := (1, . . . , 1) and, for every 1 ≤
i ≤ r, a set of ni polynomials F (i)

k (1 ≤ k ≤ ni) of multidegree di := (1, . . . , 1, 0, 1, . . . , 1),
where the 0 lies in the ith coordinate. Denoting

δi := Bezn1,...,nr(d0, 1; d1, n1; . . . ; di, ni − 1; . . . ; dr, nr), i = 1, . . . , r,

the resultant R is a multihomogeneous polynomial in the coefficients of F0, F
(i)
k of degree

δ in the coefficients of F0 and δi in the coefficients of F (i)
k for every 1 ≤ i ≤ r, 1 ≤ k ≤ ni

(see, for instance, [56]). Therefore, the total degree of R equals D = δ +
∑

1≤i≤r niδi.
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Proposition 9 Following the previous notations, D ≤
(

1 +
∑

1≤i≤r ni(ni + 1)
)
δ ≤ n2δ.

L et us prove that δi ≤ (ni + 1)δ for every 1 ≤ i ≤ r. Without loss of generality, suppose
i = 1. As the Bézout number is additive in each of the multidegrees involved (see identity
(1)) and d0 = d1 + e1, where e1 = (1, 0, . . . , 0), we have

δ1 = Bezn1,...,nr(d1, n1; d2, n2; . . . ; dr, nr) + Bezn1,...,nr(e1, 1; d1, n1 − 1; d2, n2; . . . ; dr, nr)
= δ + Bezn1,...,nr(e1, 1; d1, n1 − 1; d2, n2; . . . ; dr, nr).

Now, identity (1) implies that Bezn1,...,nr(e1, 1; d1, n1 − 1; d2, n2; . . . ; dr, nr) = #J1, where

J1 = {(j11, . . . , jrnr) / j11 = 1, jik 6= i∀ (i, k) 6= (1, 1) and #{jhk / jhk = i} = ni ∀ 1 ≤ i ≤ r}.

In order to finish the proof, we will show that #J1 ≤ n1δ. Since δ equals the cardinality
of the set J0 introduced in (2), we will compare the cardinalities of both sets J1 and
J0. To this end, we define the following map from J1 to J0: with a given n-tuple j :=
(1, j12, . . . , j1n1 , . . . , jr1, . . . , jrnr) ∈ J1 we associate the n-tuple j′ ∈ J0 which is obtained
by exchanging the first coordinate of j (which equals 1) with the first one which is different
from 1 and is located beyond the n1th coordinate. Note that a necessary condition for two
distinct n-tuples in J1 to lead to the same n-tuple in J0 by means of this assignment is
that they coincide in all of their coordinates except for two of them located among the n1

coordinates n1 + 1, . . . , 2n1. Moreover, the vector consisting of these n1 coordinates must
be of the form (1, . . . , 1, jhk, . . . ) for both of them (possibly with no 1 at the beginning)
and so, they can only differ in the length of the string of 1’s in this vector, which ranges
between 0 and n1 − 1. We conclude that each element of J0 is the image of at most n1

elements of J1. It follows that #J1 ≤ n1#J0 as we wanted to prove. � �
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[44] L. González Vega, H. Lombardi, T. Recio, M.-F. Roy, Spécialisation de la suite de
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