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Abstract

We extend previous results about Putinar’s Positivstellensatz for cylinders of type S×R to sets

of type S × Rr in some special cases taking into account r and the degree of the polynomial with

respect to the variables moving in Rr (this is to say, in the non-bounded directions). These special

cases are in correspondence with the ones where the equality between the cone of non-negative

polynomials and the cone of sums of squares holds. Degree bounds are provided.

1 Introduction

One of the most important results in the theory of sums of squares and certificates of non-negativity is

Putinar’s Positivstellensatz ([14]). This theorem states that given g1, . . . , gs ∈ R[X̄] = R[X1, . . . , Xn]

such that the quadratic module generated by g1, . . . , gs,

M(g1, . . . , gs) =
{
σ0 + σ1g1 + · · ·+ σsgs | σ0, σ1, . . . , σs ∈

∑
R[X̄]2

}
⊂ R[X̄]

is archimedean, every f ∈ R[X̄] positive on

S = {x̄ ∈ Rn | g1(x̄) ≥ 0, . . . , gs(x̄) ≥ 0}

belongs to M(g1, . . . , gs). An explicit expression of f as a member of M(g1, . . . , gs) is a certificate of

the non-negativity of f on S. Note that the condition of archimedeanity on M(g1, . . . , gs) implies that

S is compact (see for instance [9, Chapter 5] for the definition and equivalences of archimedeanity).

It is of interest to look for a bound for the degrees of all the different terms in the representation of f

as an element of M(g1, . . . , gs) which existence is ensured by Putinar’s Positivstellensatz. An answer

to this question was given by Nie and Schweighofer ([11, Theorem 6]). In the particular case where S

is the hypercube [0, 1]n, improved bounds were given in [3] and [8].
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Consider the norm ‖ · ‖ in R[X̄] defined as follows.

For f =
∑
α∈Nn

0
|α|≤d

(
|α|
α

)
aαX̄

α, ‖f‖ = max{|aα| |α ∈ Nn0 , |α| ≤ d}

where for α = (α1, . . . , αn) ∈ Nn0 , |α| = α1 + · · ·+ αn and
(|α|
α

)
= |α|!

α1!...αn! ∈ N. Then [11, Theorem 6]

is the following result.

Theorem 1 (Putinar’s Positivstellensatz with degree bound) Let g1, . . . , gs ∈ R[X̄] such that

∅ 6= S = {x̄ ∈ Rn | g1(x̄) ≥ 0, . . . , gs(x̄) ≥ 0} ⊂ (−1, 1)n,

and the quadratic module M(g1, . . . , gs) is archimedean. There exists a positive constant c such that

for every f ∈ R[X̄] positive on S, if deg f = d and min{f(x̄) | x̄ ∈ S} = f∗ > 0, then f can be written

as

f = σ0 + σ1g1 + · · ·+ σsgs ∈M(g1, . . . , gs)

with σ0, σ1, . . . , σs ∈
∑

R[X̄]2 and

deg(σ0),deg(σ1g1), . . . ,deg(σsgs) ≤ c e

(
‖f‖d2nd

f∗

)c

.

A natural question is if it is possible to relax the archimedeanity hyphothesis and to extend Putinar’s

Positivstellensatz to cases where S is non-compact. Even though it is well-known that this is not

possible in full generality, results in this direction were given in [6], [7], [10] and [5]. We introduce the

notation and definitions needed to state our main result from [5].

We note

C = {(y, z) ∈ R2 | y2 + z2 = 1}.

For

f =
∑

0≤i≤m
fi(X̄)Y i ∈ R[X̄, Y ]

with degY f = m, we note

f̄ =
∑

0≤i≤m
fi(X̄)Y iZm−i ∈ R[X̄, Y, Z]

its homogenization only with respect to the variable Y . Such an f is said to be fully m-ic on S if for

every x̄ ∈ S, fm(x̄) 6= 0. We define the norm ‖ · ‖• on R[X̄, Y ] as follows.

For f =
∑

0≤i≤m

∑
α∈Nn

0
|α|≤d

(
|α|
α

)
aα,iX̄

αY i, ‖f‖• = max{|aα,i| | 0 ≤ i ≤ m,α ∈ Nn0 , |α| ≤ d}.

Note that in this norm, the variable Y is not considered in the same way than the variables X̄. Finally,

for g1, . . . , gs ∈ R[X̄], we note

MR[X̄,Y ](g1, . . . , gs) =
{
σ0 + σ1g1 + · · ·+ σsgs |σ0, σ1, . . . , σs ∈

∑
R[X̄, Y ]2

}
⊂ R[X̄, Y ]
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the quadratic module generated by g1, . . . , gs in R[X̄, Y ], while the notation M(g1, . . . , gs) is kept for

the quadratic module generated by g1, . . . , gs in R[X̄].

In [5, Theorem 7], we prove an extension of Putinar’s Positivstellensatz to cylinders of type S × R
which is the following result.

Theorem 2 Let g1, . . . , gs ∈ R[X̄] such that

∅ 6= S = {x̄ ∈ Rn | g1(x̄) ≥ 0, . . . , gs(x̄) ≥ 0} ⊂ (−1, 1)n

and the quadratic module M(g1, . . . , gs) ⊂ R[X̄] is archimedean. There exists a positive constant c

such that for every f ∈ R[X̄, Y ] positive on S ×R, if degX̄ f = d, degY f = m with f fully m-ic on S

and

min{f̄(x̄, y, z) | x̄ ∈ S, (y, z) ∈ C} = f• > 0,

then f can be written as

f = σ0 + σ1g1 + · · ·+ σsgs ∈MR[X̄,Y ](g1, . . . , gs)

with σ0, σ1, . . . , σs ∈
∑

R[X̄, Y ]2 and

deg(σ0),deg(σ1g1), . . . ,deg(σsgs) ≤ c(m+ 1)2
m
2 e

(
‖f‖•(m+1)d2(3n)d

f•

)c

.

The condition of f being fully m-ic was defined originally in [12]. Under this assumption, in [12,

Theorem 3] Powers obtains an extension of Schmüdgen’s Positivstellensatz ([15]) to cylinders of type

S × F with S ⊂ Rn a compact semialgebraic set and F ⊂ R an unbounded closed semialgebraic set.

Indeed, the general idea to prove [5, Theorem 7] is the same as in [12, Theorem 3], which is to consider

the variable Y as a parameter and to obtain for each specialization of Y = y ∈ F a certificate of the

non-negativity of f(X̄, y) on S, in a uniform way such that all these certificates can be glued together

to obtain the desired representation for f(X̄, Y ).

Both in [12, Theorem 3] (in the case F = R) and in [5, Theorem 7], in the gluing process, it is used

that every univariate polynomial non-negative on R is a sum of squares in R[Y ]. This suggests that

the same approach can also be used in every other possible situation where the equality between the

cone of non-negative polynomials and the cone of sums of squares holds, which are known to be the

case of bivariate polynomials of degree 4 and the case of multivariate polynomials of degree 2 (see for

instance [1, Chapter 6]). Indeed, if separate sets of variables are considered, then the equality also

holds in the particular case of polynomials in two sets of variables, the first set consisting in a single

variable, and the degree of the polynomial with respect to the second set of variables equal to 2 (see

for instance [4] or [2, Section 7]).

We extend the notation introduced before. For r ∈ N, we note Ȳ = (Y1, . . . , Yr) and

Cr = {(ȳ, z) ∈ Rr+1 | y2
1 + · · ·+ y2

r + z2 = 1}.

Also, for even m ∈ N and

f =
∑
β∈Nr

0
|β|≤m

fβ(X̄)Ȳ β ∈ R[X̄, Ȳ ]
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with degȲ f = m, we note

f̄ =
∑
β∈Nr

0
|β|≤m

fβ(X̄)Ȳ βZm−|β| ∈ R[X̄, Ȳ , Z]

its homogenization only with respect to the variables Ȳ . For such an f , we say that f satisfies the

condition (†) on S if for every x̄ ∈ S,∑
β∈Nr

0
|β|=m

fβ(x̄)Ȳ β is a positive definite m-form in Rr.

Note that if f is positive in S × Rr and satisfies condition (†) on S, then f̄ is positive on S × Cr.
We extend the definition of the norm ‖ · ‖• to R[X̄, Ȳ ] as follows.

For f =
∑
β∈Nr

0
|β|≤m

∑
α∈Nn

0
|α|≤d

(
|α|
α

)
aα,βX̄

αȲ β, ‖f‖• = max{|aα,β| |β ∈ Nr0, |β| ≤ m,α ∈ Nn0 , |α| ≤ d}.

Finally, for g1, . . . , gs ∈ R[X̄], we note

MR[X̄,Ȳ ](g1, . . . , gs) =
{
σ0 + σ1g1 + · · ·+ σsgs |σ0, σ1, . . . , σs ∈

∑
R[X̄, Ȳ ]2

}
⊂ R[X̄, Ȳ ]

the quadratic module generated by g1, . . . , gs in R[X̄, Ȳ ].

Both the norm ‖ · ‖• and the quadratic module MR[X̄,Ȳ ] will be used later on in this paper with many

different vectors of variables Ȳ , but always distinguishing the same vector of variables X̄.

In this setting, Theorem 2 ([5, Theorem 7]) is the extension of Putinar’s Positivstellensatz corre-

sponding to the case r = 1. We present below the two new extensions corresponding to the cases

r = 2,m = 4 and m = 2.

Theorem 3 Let g1, . . . , gs ∈ R[X̄] such that

∅ 6= S = {x̄ ∈ Rn | g1(x̄) ≥ 0, . . . , gs(x̄) ≥ 0} ⊂ (−1, 1)n

and the quadratic module M(g1, . . . , gs) ⊂ R[X̄] is archimedean. There exists a positive constant c

such that for every f ∈ R[X̄, Y1, Y2] positive on S × R2, if degX̄ f = d, deg(Y1,Y2) f = 4, f satisfies

condition (†) on S and

min
{
f̄(x̄, y1, y2, z) | x̄ ∈ S, (y1, y2, z) ∈ C2

}
= f• > 0,

then f can be written as

f = σ0 + σ1g1 + · · ·+ σsgs ∈MR[X̄,Y1,Y2](g1, . . . , gs)

with σ0, σ1, . . . , σs ∈
∑

R[X̄, Y1, Y2]2 and

deg(σ0),deg(σ1g1), . . . ,deg(σsgs) ≤ ce

(
‖f‖•d2(3n)d

f•

)c

.
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Theorem 4 Let g1, . . . , gs ∈ R[X̄] such that

∅ 6= S = {x̄ ∈ Rn | g1(x̄) ≥ 0, . . . , gs(x̄) ≥ 0} ⊂ (−1, 1)n

and the quadratic module M(g1, . . . , gs) ⊂ R[X̄] is archimedean. There exists a positive constant c

such that for every f ∈ R[X̄, Ȳ ] positive on S × Rr, if degX̄ f = d, degȲ f = 2, f satisfies condition

(†) on S and

min
{
f̄(x̄, ȳ, z) | x̄ ∈ S, (ȳ, z) ∈ Cr

}
= f• > 0,

then f can be written as

f = σ0 + σ1g1 + · · ·+ σsgs ∈MR[X̄,Ȳ ](g1, . . . , gs)

with σ0, σ1, . . . , σs ∈
∑

R[X̄, Ȳ ]2 and

deg(σ0),deg(σ1g1), . . . ,deg(σsgs) ≤ cr2e

(
‖f‖•r2d2(3n)d

f•

)c

.

Finally, we introduce the notation we need to state the extension corresponding to the case of two

separate sets of variables. For r ∈ N, we note Ȳ2 = (Y21, . . . , Y2r). Also, for even m ∈ N0 and

f =
∑

0≤i≤m

∑
β∈Nr

0
|β|≤2

fi,β(X̄)Y i
1 Ȳ

β
2 ∈ R[X̄, Y1, Ȳ2]

with degY1
f = m and degȲ2

f = 2, we note

¯̄f =
∑

0≤i≤m

∑
β∈Nr

0
|β|≤2

fi,β(X̄)Y i
1Z

m−i
1 Ȳ β

2 Z
2−|β|
2 ∈ R[X̄, Y1, Z1, Ȳ2, Z2]

its bihomogenization only with respect to the variables Y1 and Ȳ2, separately. The additional

assumption playing the role of condition (†) in this case is the following one. We say that f sat-

isfies the condition (‡) on S if for every x̄ ∈ S,

i)
∑
β∈Nr

0
|β|≤2

fm,β(x̄)Ȳ β
2 is positive in Rr,

ii)
∑
β∈Nr

0
|β|=2

fm,β(x̄)Ȳ β
2 is a positive definite quadratic form in Rr,

iii) for every y1 ∈ R,
∑

0≤i≤m

∑
β∈Nr

0
|β|=2

fi,β(x̄)yi1Ȳ
β

2 is a positive definite quadratic form in Rr.

The definition of (‡) is made in such a way that if f is positive in S ×Rr+1 and satisfies condition (‡)
on S, then ¯̄f is positive on S × C × Cr.
The extension of Putinar’s Positivstellensatz in this final case is the following result.
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Theorem 5 Let g1, . . . , gs ∈ R[X̄] such that

∅ 6= S = {x̄ ∈ Rn | g1(x̄) ≥ 0, . . . , gs(x̄) ≥ 0} ⊂ (−1, 1)n

and the quadratic module M(g1, . . . , gs) ⊂ R[X̄] is archimedean. There exists a positive constant c

such that for every f ∈ R[X̄, Y1, Ȳ2] positive on S × Rr+1, if degX̄ f = d, degY1
f = m, degȲ f = 2, f

satisfies condition (‡) on S and

min
{

¯̄f(x̄, y1, z1, ȳ2, z2) | x̄ ∈ S, (y1, z1) ∈ C, (ȳ2, z2) ∈ Cr
}

= f• > 0,

then f can be written as

f = σ0 + σ1g1 + · · ·+ σsgs ∈MR[X̄,Y1,Ȳ2](g1, . . . , gs)

with σ0, σ1, . . . , σs ∈
∑

R[X̄, Y1, Ȳ2]2 and

deg(σ0),deg(σ1g1), . . . ,deg(σsgs) ≤ c(m+ 1)2
m
2 r2e

(
‖f‖•(m+1)r2d2(3n)d

f•

)c

.

2 Proof of the main results

The proofs of Theorems 3, 4 and 5 follow the same path than the proof of Theorem 2 ([5, Theorem

7]), which is itself mainly a combination and reorganization of techniques from [11], [12] and [16].

For n ∈ N, we denote by ∆̃n the simplex

∆̃n =
{
x̄ ∈ Rn |

∑
1≤i≤n

xi ≤ 1 and xi ≥ 0 for 1 ≤ i ≤ n
}

and by ∆n the standard simplex

∆n =
{

(x0, x̄) ∈ Rn+1 |
∑

0≤i≤n
xi = 1 and xi ≥ 0 for 0 ≤ i ≤ n

}
.

The following two lemmas are slight variations of [5, Lemma 16] and [11, Lemma 11] (see also [5,

Lemma 17]).

Lemma 6 Let f ∈ R[X̄, Ȳ ] such that degX̄ f = d and degȲ f = m. For every x̄ ∈ ∆̃n and (ȳ, z) ∈ Cr,

|f̄(x̄, ȳ, z)| ≤ ‖f‖•
(
m+ r

r

)
(d+ 1).

Lemma 7 Let f ∈ R[X̄, Ȳ ] such that degX̄ f = d and degȲ f = m. For every x̄1, x̄2 ∈ ∆̃n and

(ȳ, z) ∈ Cr,

|f̄(x̄1, ȳ, z)− f̄(x̄2, ȳ, z)| ≤
1

2

√
n‖f‖•

(
m+ r

r

)
d(d+ 1)‖x̄1 − x̄2‖.
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We focus on the proof of Theorem 3. Under the stronger assumption of S ⊂ ∆̃◦n, Proposition 8 below

is just a slight variant of Theorem 3 with a substantially better degree bound (which unfortunately

does not have good rescaling properties). Once Proposition 8 is proved, Theorem 3 simply follows by

composing with a linear change of variables.

Proposition 8 Let g1, . . . , gs ∈ R[X̄] such that

∅ 6= S = {x̄ ∈ Rn | g1(x̄) ≥ 0, . . . , gs(x̄) ≥ 0} ⊂ ∆̃◦n

and the quadratic module M(g1, . . . , gs) is archimedean. There exists a positive constant c such that

for every f ∈ R[X̄, Y1, Y2] positive on S ×R2, if degX̄ f = d, deg(Y1,Y2) f = 4, f satisfies condition (†)
on S and

min{f̄(x̄, y1, y2, z) | x̄ ∈ S, (y1, y2, z) ∈ C2} = f• > 0,

then f can be written as

f = σ0 + σ1g1 + · · ·+ σsgs ∈MR[X̄,Y1,Y2](g1, . . . , gs)

with σ0, σ1, . . . , σs ∈
∑

R[X̄, Y1, Y2]2 and

deg(σ0),deg(σ1g1), . . . ,deg(σsgs) ≤ ce

(
‖f‖•d2

f•

)c

.

Proof: Without loss of generality we suppose deg gi ≥ 1 and |gi| ≤ 1 in ∆̃n for 1 ≤ i ≤ s.
If d = 0 then f ∈ R[Y1, Y2] is positive on R2, and since deg(Y1,Y2) f = 4, f ∈

∑
R[Y1, Y2]2 and any

constant c ≥ 4 works. So from now on, we suppose d ≥ 1 and in the case that the final constant c

we find turns out to be less than 4, we just replace it by the result of applying [5, Lemma 18] to the

6-uple (4, 0, c, 0, 1, c).

We prove first that there exist λ ∈ R>0 and k ∈ N0 such that

h = f̄ − λ
(
Y 2

1 + Y 2
2 + Z2

)2 ∑
1≤i≤s

gi · (gi − 1)2k ∈ R[X̄, Y1, Y2, Z]

satisfies h ≥ 1
2f
• in ∆̃n × C2.

For each (y1, y2, z) ∈ C2 we consider

Ay1,y2,z =

{
x̄ ∈ ∆̃n | f̄(x̄, y1, y2, z) ≤

3

4
f•
}
.

Note that Ay1,y2,z ∩ S = ∅. To exhibit sufficient conditions for λ and k, we consider separately the

cases x̄ ∈ ∆̃n \Ay1,y2,z and x̄ ∈ Ay1,y2,z.

If x̄ ∈ ∆̃n \Ay1,y2,z

h(x̄, y1, y2, z) = f̄(x̄, y1, y2, z)− λ
(
y2

1 + y2
2 + z2

)2 ∑
1≤i≤s

gi(x̄) · (gi(x̄)− 1)2k

≥ f̄(x̄, y1, y2, z)− λ
∑

1≤i≤s
|gi(x̄)| · (|gi(x̄)| − 1)2k

>
3

4
f• − λs

2k + 1
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using [11, Remark 12]. Therefore the condition h(x̄, y1, y2, z) ≥ 1
2f
• is ensured if

2k + 1 ≥ 4λs

f•
. (1)

If x̄ ∈ Ay1,y2,z, for any x̄0 ∈ S, by Lemma 7 with r = 2 and m = 4, we have

f•

4
≤ f̄(x̄0, y1, y2, z)− f̄(x̄, y1, y2, z) ≤

15

2

√
n‖f‖•d(d+ 1)‖x̄0 − x̄‖,

then
f•

30
√
n‖f‖•d(d+ 1)

≤ ‖x̄0 − x̄‖

and therefore
f•

30
√
n‖f‖•d(d+ 1)

≤ dist(x̄, S). (2)

Using [5, Remark 13], there exist c1, c2 > 0 and 1 ≤ i0 ≤ s such that gi0(x̄) < 0 and

dist(x̄, S)c1 ≤ −c2gi0(x̄). (3)

By (2) and (3) we have

gi0(x̄) ≤ −δ. (4)

with

δ =
1

c2

(
f•

30
√
n‖f‖•d(d+ 1)

)c1
> 0.

On the other hand, defining f•y1,y2,z = min{f̄(x̄, y1, y2, z) | x̄ ∈ S}, again by Lemma 7 with r = 2 and

m = 4, we have that

|f̄(x̄, y1, y2, z)− f•y1,y2,z| ≤
15

2

√
n‖f‖•d(d+ 1)diam(∆̃n) =

15√
2

√
n‖f‖•d(d+ 1). (5)

Then, using again [11, Remark 12], (4) and (5) we have

h(x̄, y1, y2, z) ≥ f̄(x̄, y1, y2, z)− λgi0(x̄)(gi0(x̄)− 1)2k − λ(s− 1)

2k + 1

≥ f̄(x̄, y1, y2, z)− f•y1,y2,z + f•y1,y2,z + λδ − λ(s− 1)

2k + 1

≥ − 15√
2

√
n‖f‖•d(d+ 1) + f• + λδ − λ(s− 1)

2k + 1
.

Finally, the condition h(x̄, y1, y2, z) ≥ 1
2f
• is ensured if

λ ≥ 15
√
n‖f‖•d(d+ 1)√

2δ
=
c22c1(15

√
n‖f‖•d(d+ 1))c1+1

√
2f•c1

(6)

and

2k + 1 ≥ 2λ(s− 1)

f•
. (7)
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Since (1) implies (7), it is enough for λ and k to satisfy (1) and (6). So for the rest of the proof we

take

λ =
c22c1(15

√
n‖f‖•d(d+ 1))c1+1

√
2f•c1

= c3
(15‖f‖•d(d+ 1))c1+1

f•c1
> 0

with c3 = c22c1
√
n
c1+1

√
2

and

k =

⌈
1

2

(
4λs

f•
− 1

)⌉
∈ N0.

In this way,

k ≤ 1

2

(
4λs

f•
− 1

)
+ 1

= 2c3s

(
15‖f‖•d(d+ 1)

f•

)c1+1

+
1

2

≤ c4

(
15‖f‖•d(d+ 1)

f•

)c1+1

(8)

with c4 = 2c3s + 1. Here (and also several times after here) we use Lemma 6 with r = 2 and m = 4

to ensure
15‖f‖•(d+ 1)

f•
≥ 1.

Also, if we define ` = degX̄ h, we have

` ≤ max{d, (2k + 1) max
1≤i≤s

deg gi}

≤ max

{
d,

(
2c4

(
15‖f‖•d(d+ 1)

f•

)c1+1

+ 1

)
max
1≤i≤s

deg gi

}

≤ c5

(
15‖f‖•d(d+ 1)

f•

)c1+1

(9)

with c5 = (2c4 + 1) max
1≤i≤s

deg gi.

On the other hand, using conveniently [11, Proposition 14] and (8),

‖h‖• ≤ ‖f‖• + 2λs max
1≤i≤s

{(deg gi + 1)(‖gi‖+ 1)}2k+1

= ‖f‖• + 2c3s
(15‖f‖•d(d+ 1))c1+1

f•c1
max
1≤i≤s

{(deg gi + 1)(‖gi‖+ 1)}2k+1

≤ (2c3s+ 1) max
1≤i≤s

{(deg gi + 1)(‖gi‖+ 1)} ·

· (15‖f‖•d(d+ 1))c1+1

f•c1
max
1≤i≤s

{(deg gi + 1)(‖gi‖+ 1)}2c4
(

15‖f‖•d(d+1)
f•

)c1+1

= c6
(15‖f‖•d(d+ 1))c1+1

f•c1
e
c7
(

15‖f‖•d(d+1)
f•

)c1+1

(10)
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with c6 = (2c3s+ 1) max
1≤i≤s

{(deg gi + 1)(‖gi‖+ 1)} and c7 = log

(
max
1≤i≤s

{(deg gi + 1)(‖gi‖+ 1)}2c4
)

.

So far we have found λ and k such that that h ≥ 1
2f
• in ∆̃n×C2, together with bounds for k, ` = degX̄ h

and ‖h‖•. Now, we introduce a new variable X0 to homogenize with respect to the variables X̄ and

use Pólya’s Theorem. Let

h =
∑
β∈N2

0
|β|≤4

∑
0≤j≤`

hj,β(X̄)Y β1
1 Y β2

2 Z4−|β|

with hj,β ∈ R[X̄] equal to zero or homogeneous of degree j for β ∈ N2
0, 0 ≤ |β| ≤ 4 and 0 ≤ j ≤ `. We

define

H =
∑
β∈N2

0
|β|≤4

∑
0≤j≤`

hj,β(X̄)(X0 +X1 · · ·+Xn)`−jY β1
1 Y β2

2 Z4−|β| ∈ R[X0, X̄, Y1, Y2, Z]

which is bihomogeneous in (X0, X̄) and (Y1, Y2, Z) of bidegree (`, 4).

Since H(x0, x̄, y1, y2, z) = h(x̄, y1, y2, z) for every (x0, x̄, y1, y2, z) ∈ ∆n × C2, it is clear that H ≥ 1
2f
•

in ∆n × C2.

On the other hand, for each (y1, y2, z) ∈ C2, we consider H(X0, X, y1, y2, z) ∈ R[X0, X̄]. Using again

[11, Proposition 14] we have

‖H(X0, X, y1, y2, z)‖ ≤
∑
β∈N2

0
|β|≤4

∑
0≤j≤`

‖hj,β(X̄)(X0 + · · ·+Xn)`−jyβ1
1 yβ2

2 z4−|β|‖

≤
∑
β∈N2

0
|β|≤4

∑
0≤j≤`

‖hj,β(X̄)(X0 + · · ·+Xn)`−j‖

≤
∑
β∈N2

0
|β|≤4

∑
0≤j≤`

‖hj,β(X̄)‖

≤ 15(`+ 1)‖h‖•.

We use now the bound for Pólya’s Theorem from [13, Theorem 1]. Take N ∈ N given by

N =

⌊
15(`+ 1)`(`− 1)‖h‖•

f•
− `
⌋

+ 1.

Then for each (y1, y2, z) ∈ C2 we have that H
(
X0, X̄, y1, y2, z

)
(X0 +X1 + · · ·+Xn)N ∈ R[X0, X̄] is

a homogeneous polynomial such that all its coefficients are positive. More precisely, suppose we write

H
(
X0, X̄, Y, Z

)
(X0 +X1 + · · ·+Xn)N =

∑
α=(α0,ᾱ)∈Nn+1

0
|α|=N+`

bα(Y1, Y2, Z)Xα0
0 X̄ ᾱ ∈ R[X0, X̄, Y, Z] (11)

with bα ∈ R[Y1, Y2, Z] homogeneous of degree 4. The conclusion is that for every α ∈ Nn+1
0 with

|α| = N + `, the polynomial bα is positive in C2, and therefore, since it is a homogenous polynomial,

bα is non-negative in R3.

Before going on, we bound N + ` using (9) and (10) as follows.

10



N + ` ≤ 15(`+ 1)`(`− 1)‖h‖•
f•

+ 1

≤ 15`3‖h‖•
f•

+ 1

≤ 15c3
5c6

(
15‖f‖•d(d+ 1)

f•

)4(c1+1)

e
c7
(

15‖f‖•d(d+1)
f•

)c1+1

+ 1

≤ c8

(
15‖f‖•d(d+ 1)

f•

)4(c1+1)

e
c7
(

15‖f‖•d(d+1)
f•

)c1+1

(12)

with c8 = 15c3
5c6 + 1.

Now we substitute X0 = 1−X1 − · · · −Xn and Z = 1 in (11) and we obtain

f = λ
(
Y 2

1 +Y 2
2 +1

)2 ∑
1≤i≤s

gi(gi−1)2k+
∑

α=(α0,ᾱ)∈Nn+1
0

|α|=N+`

bα(Y1, Y2, 1)(1−X1−· · ·−Xn)α0X̄ ᾱ ∈ R[X̄, Y1, Y2].

(13)

From (13) we want to conclude that f ∈MR[X̄,Y1,Y2](g1 . . . , gs) and to find the positive constant c such

that the degree bound holds.

The first term on the right hand side of (13) clearly belongs to MR[X̄,Y1,Y2](g1 . . . , gs). Moreover, for

1 ≤ i ≤ s,
deg

(
Y 2

1 + Y 2
2 + 1

)2
gi(gi − 1)2k = 4 + (2k + 1) deg gi. (14)

Now we focus on the second term on the right hand side of (13), which is itself a sum. Take a fixed

α ∈ Nn+1
0 with |α| = N + `.

Since bα(Y1, Y2, 1) is non-negative in R2 and deg(Y1,Y2) bα(Y1, Y2, 1) ≤ 4, bα(Y1, Y2, 1) ∈
∑

R[Y1, Y2]2.

Moreover, we can write bα(Y1, Y2, 1) as a sum of squares with the degree of each square bounded by 4.

Also, take v(α) = (v0, v̄) ∈ {0, 1}n+1 such that αi ≡ vi (mod 2) for 0 ≤ i ≤ n. Denoting g0 = 1 ∈ R[X̄],

since S ⊂ ∆̃◦n, by Putinar’s classical Positivstellensatz we have representations

(1−X1 − · · · −Xn)v0X̄ v̄ =
∑

0≤i≤s
σv(α)igi,

with σv(α)i ∈
∑

R[X̄]2 for 0 ≤ i ≤ s, and then

(1−X1 − · · · −Xn)α0X̄ ᾱ = (1−X1 − · · · −Xn)α0−v0X̄ ᾱ−v̄
∑

0≤i≤s
σv(α)igi

belongs to M(g1, . . . , gs) since (1−X1 − · · · −Xn)α0−v0X̄ ᾱ−v̄ ∈ R[X̄]2.

We conclude that each term in the sum belongs to MR[X̄,Y1,Y2](g1, . . . , gs). In addition, for 0 ≤ i ≤ s

we have

deg bα(Y1, Y2, 1)(1−X1 − · · · −Xn)α0−v0X̄ ᾱ−v̄σv(α)igi ≤ 4 +N + `+ c9 (15)

with c9 = max{deg σvigi | v ∈ {0, 1}n+1, 0 ≤ i ≤ s}.
To finish the proof, we only need to bound simultaneously the right hand side of (14) and (15).

11



On the one hand, using (8),

4 + (2k + 1) max
1≤i≤s

deg gi ≤ 4 +

(
2c4

(
15‖f‖•d(d+ 1)

f•

)c1+1

+ 1

)
max
1≤i≤s

deg gi

≤ c10

(
‖f‖•d2

f•

)c1+1

with c10 = (2c4 + 5)30c1+1 max
1≤i≤s

deg gi, since d ≥ 1.

On the other hand, using (12),

4 +N + `+ c9 ≤ 4 + c8

(
15‖f‖•d(d+ 1)

f•

)4(c1+1)

e
c7
(

15‖f̄‖•d(d+1)
f•

)c1+1

+ c9

≤ c11

(
‖f‖•d2

f•

)4(c1+1)

e
c12

(
‖f‖•d2

f•

)c1+1

with c11 = (4 + c8 + c9)304(c1+1) and c12 = c730c1+1, again since d ≥ 1.

Finally, we define c as the positive constant obtained applying [5, Lemma 18] to the 6-uple (c10, c1 +1,

c11, 4(c1 + 1), c12, c1 + 1). �

We are ready now to prove Theorem 3. The proof consists basically in a linear change of variables

and the application of Proposition 8, as in the proof of [5, Theorem 7].

Proof of Theorem 3: We consider the affine change of variables ` : Rn → Rn given by

`(X1, . . . , Xn) =

(
X1 + 1

2n
, . . . ,

Xn + 1

2n

)
.

For 0 ≤ i ≤ s, we take g̃i(X̄) = gi(`
−1(X̄)) ∈ R[X̄] and we define

S̃ = {x̄ ∈ Rn | g̃1(x̄) ≥ 0, . . . , g̃s(x̄) ≥ 0}.

It is easy to see that

∅ 6= S̃ = `(S) ⊆ ∆̃◦n.

Moreover, since M(g1, . . . , gn) is archimedean, M(g̃1, . . . , g̃s) is also archimedean (see [5, Proof of

Theorem 7]).

Let f ∈ R[X̄, Y1, Y2] be as in the statement of Theorem 3 and let f̃(X̄, Y1, Y2) = f(`−1(X̄), Y1, Y2) ∈
R[X̄, Y1, Y2]. It can be easily seen that f̃ is positive on S̃ × R2, degX̄ f̃ = degX̄ f = d, deg(Y1,Y2) f̃ =

deg(Y1,Y2) f = 4, f̃ satisfies condition (†) on S̃ and

min{ ¯̃
f(x̄, y1, y2, z) | x̄ ∈ S̃, (y1, y2, z) ∈ C2} = min{f̄(x̄, y1, y2, z) | x̄ ∈ S, (y1, y2, z) ∈ C2} = f• > 0.

In addition, ‖f̃‖• ≤ ‖f‖•(3n)d (again, see [5, Proof of Theorem 7]).

Take c as the positive constant from Proposition 8 applied to g̃1, . . . , g̃s. Therefore, f̃ can be written

as

f̃ = σ̃0 + σ̃1g̃1 + · · ·+ σ̃sg̃s ∈MR[X̄,Y ](g̃1, . . . , g̃s)
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with σ̃0, σ̃1, . . . , σ̃s ∈
∑

R[X̄, Y1, Y2]2 and

deg(σ̃0),deg(σ̃1g̃1), . . . ,deg(σ̃sg̃s) ≤ ce

(
‖f‖•d2(3n)d

f•

)c

and the final representation for f is simply obtained by composing with `. �

The proof of Theorem 4 is a straightforward adaptation of the proof of Theorem 3 (and Proposition

8), and we omit it.

To prove Theorem 5, we need the following two auxilary lemmas, which are again slight variations of

[5, Lemma 16] and [11, Lemma 11].

Lemma 9 Let f ∈ R[X̄, Y1, Ȳ2] such that degX̄ f = d degY1
f = m, and degȲ2

f = 2. For every

x̄ ∈ ∆̃n, (y1, z1) ∈ C and (ȳ2, z2) ∈ Cr,

| ¯̄f(x̄, y1, z1, ȳ2, z2)| ≤ 1

2
‖f‖•(m+ 1)(r + 1)(r + 2)(d+ 1).

Lemma 10 Let f ∈ R[X̄, Y1, Ȳ2] such that degX̄ f = d degY1
f = m, and degȲ2

f = 2. For every

x̄1, x̄2 ∈ ∆̃n (y1, z1) ∈ C and (ȳ2, z2) ∈ Cr,

| ¯̄f(x̄1, y1, z1, ȳ2, z2)− ¯̄f(x̄2, y1, z1, ȳ2, z2)| ≤ 1

4

√
n‖f‖•(m+ 1)(r + 1)(r + 2)d(d+ 1)‖x̄1 − x̄2‖.

Then, the proof of Theorem 5 is also a straightforward adaptation of the proof of Theorem 3 (and

Proposition 8), with the only caveat that the auxiliary polynomial h (at the beginning of the proof of

Proposition 8) should be defined as

h = ¯̄f − λ
(
Y 2

1 + Z2
1 )

m
2 (Y 2

21 + · · ·+ Y 2
2r + Z2

2

) ∑
1≤i≤s

gi · (gi − 1)2k ∈ R[X̄, Y1, Z1, Ȳ2, Z2]

and then

‖h‖• ≤ ‖f‖• + λs2
m
2 max

1≤i≤s
{(deg gi + 1)(‖gi‖+ 1)}2k+1.

Acknowledgements: We are very grateful to Michel Coste for suggesting us these extensions of our

results from [5].
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