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Abstract

We extend previous results about Putinar’s Positivstellensatz for cylinders of type S X R to sets
of type S x R” in some special cases taking into account r and the degree of the polynomial with
respect to the variables moving in R” (this is to say, in the non-bounded directions). These special
cases are in correspondence with the ones where the equality between the cone of non-negative
polynomials and the cone of sums of squares holds. Degree bounds are provided.

1 Introduction

One of the most important results in the theory of sums of squares and certificates of non-negativity is

Putinar’s Positivstellensatz ([14]). This theorem states that given gi,...,gs € R[X] = R[Xq,..., X})]
such that the quadratic module generated by g¢1,...,gs,

M(g1,....95) = {0'0+0’191+"'+Usgs | 00,01,...,05 € ZR[X]Q} C R[X]

is archimedean, every f € R[X] positive on
S={zeR"|9(z)=0,...,9:(7) = 0}

belongs to M(g1,...,9s). An explicit expression of f as a member of M(g1,...,gs) is a certificate of
the non-negativity of f on S. Note that the condition of archimedeanity on M(g1, ..., gs) implies that
S is compact (see for instance [9, Chapter 5] for the definition and equivalences of archimedeanity).

It is of interest to look for a bound for the degrees of all the different terms in the representation of f
as an element of M (g1, ...,gs) which existence is ensured by Putinar’s Positivstellensatz. An answer
to this question was given by Nie and Schweighofer ([I1, Theorem 6]). In the particular case where S
is the hypercube [0,1]", improved bounds were given in [3] and [§].
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Consider the norm | - || in R[X] defined as follows.

For f= ) ('j')aaxa, £l = masxlaa| |or € NG, o] < d}
aeNy
laf<d

o]
aql...

!n! € N. Then [11, Theorem 6]

67

where for o = (a1,...,a,) € NI, |a| = a1 + -+ + a;, and (Izl) —

is the following result.

Theorem 1 (Putinar’s Positivstellensatz with degree bound) Let g1,...,9s € R[X] such that
0#S5={zeR" | q(x)=0,...,9:(z) = 0} C (-1,1)",

and the quadratic module M(gi,...,gs) is archimedean. There exists a positive constant ¢ such that
for every f € R[X] positive on S, if deg f = d and min{f(z)|z € S} = f* > 0, then f can be written
as

f=o00+o1g1+ - +0s9s € M(g1,...,9s)

with 09,01, ...,05 € Y. R[X]? and

(I\f\\dfn‘i)c
deg(09),deg(01g1), - - ., deg(osgs) < ce\ ’ :

A natural question is if it is possible to relax the archimedeanity hyphothesis and to extend Putinar’s
Positivstellensatz to cases where S is non-compact. Even though it is well-known that this is not
possible in full generality, results in this direction were given in [6], [7], [L0] and [5]. We introduce the
notation and definitions needed to state our main result from [5].

We note
C={(y,2) eR? | y* + 27 =1}.

For

f= > XY €R[X,Y]

0<i<m
with degy f = m, we note
f= f(X)Y'Z" " € RIX,Y, Z]
0<i<m

its homogenization only with respect to the variable Y. Such an f is said to be fully m-ic on S if for
every T € S, fm(Z) # 0. We define the norm || - |ls on R[X, Y] as follows.

a — .
For f= ) (’ ')amxaw, 1£]le = max{|as| |0 < i <m,a€Ng,|a| < d}.
0<i<m aeNy @
la|<d

Note that in this norm, the variable Y is not considered in the same way than the variables X. Finally,

for g1,...,9s € R[X], we note
MR[X,Y}(glw-ﬂgS) = {UO+0191 + - +Usgs|007017"'705 € ZR[X7Y]2} C ]R[X7Y]
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the quadratic module generated by g1,...,gs in R[X, Y], while the notation M (g, ...,gs) is kept for

the quadratic module generated by g1, ..., gs in R[X].

In [5] Theorem 7], we prove an extension of Putinar’s Positivstellensatz to cylinders of type S x R
which is the following result.

Theorem 2 Let ¢1,...,9s € R[X] such that

D#S={zeR" | q(z)20,...,9:(2) 2 0} C (-1, 1)"

and the quadratic module M(g1,...,9s) C R[X] is archimedean. There ezists a positive constant c
such that for every f € R[X,Y] positive on S x R, if deg f = d, degy f = m with f fully m-ic on S
and

min{f(z,y,2) |2 € 9, (y,2) € C} = f* >0,

then f can be written as

f =00+0191+ -+ 0sgs € MR[)_(,Y](glv"wgs)
with oo, 01, ...,05 € Y. R[X,Y]? and

deg(op),deg(o191), . ..,deg(osgs) < c(m+1)22e i

The condition of f being fully m-ic was defined originally in [I12]. Under this assumption, in [12]
Theorem 3] Powers obtains an extension of Schmiidgen’s Positivstellensatz ([I5]) to cylinders of type
S x F with § C R™ a compact semialgebraic set and F' C R an unbounded closed semialgebraic set.
Indeed, the general idea to prove [5, Theorem 7] is the same as in [12, Theorem 3], which is to consider
the variable Y as a parameter and to obtain for each specialization of Y = y € F a certificate of the
non-negativity of f(X,y) on S, in a uniform way such that all these certificates can be glued together
to obtain the desired representation for f(X,Y).

Both in [I2, Theorem 3] (in the case F' = R) and in [5, Theorem 7], in the gluing process, it is used
that every univariate polynomial non-negative on R is a sum of squares in R[Y]. This suggests that
the same approach can also be used in every other possible situation where the equality between the
cone of non-negative polynomials and the cone of sums of squares holds, which are known to be the
case of bivariate polynomials of degree 4 and the case of multivariate polynomials of degree 2 (see for
instance [I, Chapter 6]). Indeed, if separate sets of variables are considered, then the equality also
holds in the particular case of polynomials in two sets of variables, the first set consisting in a single
variable, and the degree of the polynomial with respect to the second set of variables equal to 2 (see
for instance [4] or [2, Section 7]).

We extend the notation introduced before. For r € N, we note Y = (Y1,...,Y;) and
C"={(5,2) R | yf+---+yf + 27 =1}

Also, for even m € N and

f=> XY eRX,Y]
BENG,
|B|<m.



with degy f = m, we note

= > fa(X)YPzm Il e RIX,Y, Z]

BeNg

|8]<m
its homogenization only with respect to the variables Y. For such an f, we say that f satisfies the
condition (1) on S if for every z € S,

Z f5(2)Y? is a positive definite m-form in R”.

BENG

|8l=m
Note that if f is positive in S x R” and satisfies condition (1) on S, then f is positive on S x C".
We extend the definition of the norm || - ||¢ to R[X, Y] as follows.

o -
For f=3% > (’a’>aa,ﬁxwﬂ, /1l = max{laqs

BENS aeN?
|B|<m |a|<d

| 8 € Ng, |B] <m,aeNg,|af <d}.

Finally, for g1,...,gs € R[X], we note
MR[X,Y}(glv"')gs) = {UO+O'191 + - +Usgs|007017" ,0s € ZRX Y } C R[X’Y]

the quadratic module generated by g1, ..., gs in R[X,Y].

Both the norm || [|o and the quadratic module Mg y| will be used later on in this paper with many
different vectors of variables Y, but always distinguishing the same vector of variables X.

In this setting, Theorem [2| ([5, Theorem 7]) is the extension of Putinar’s Positivstellensatz corre-
sponding to the case r = 1. We present below the two new extensions corresponding to the cases
r=2,m=4and m=2.

Theorem 3 Let g1, ..., gs € R[X] such that

0#S={zeR" | g(@)=0,...,9:() 2 0} C (-1,1)"

and the quadratic module M(g1,...,9s) C R[X] is archimedean. There exists a positive constant c
such that for every f € R[X,Y1,Ys] positive on S x R?, if degg f = d, deg(y, v) f =4, [ satisfies
condition (1) on S and

min { f(Z,y1,92,2) |2 € S, (y1,2,2) € C*} = f* >0,
then f can be written as

f=00+0191+ -+ 0595 € Myx v, v, (915, 9s)

with og,01,...,05 € Y. R[X, Y1, Y2]? and

( Hfllod2.<3n>d)
deg(oy),deg(o191), - - .,deg(osgs) < ce ! )



Theorem 4 Let g1, ...,gs € R[X] such that
0#S={zeR" | q(z)20,...,95(2) 20} C (-1, 1)"

and the quadratic module M (g1, ...,gs) C R[X] is archimedean. There exists a positive constant c
such that for every f € R[X,Y] positive on S x R”, if degg f = d, degy f = 2, f satisfies condition
(t) on S and

min { f(z,9,2)|Z € S, (7,2) € C"} = f* >0,

then f can be written as

f =00+0191+ -+ 0sgs € M]R{[X,Y](glanwgs)

with oo, 01,...,05 € Y. R[X,Y]? and

(HfHor «f@n)d)
deg(op),deg(o191), .. .,deg(osgs) < crle ! .

Finally, we introduce the notation we need to state the extension corresponding to the case of two

separate sets of variables. For 7 € N, we note Yo = (Ya1,..., Y2,). Also, for even m € Ny and
= > Y fis(XOYYy €R[X, Y1,V
0<i<m BeNy
[Bl<2

with degy, f =m and degy, f = 2, we note

F= Y 3 rsXYizp—v)zy ¥ e RIX V1, 20, Yo, Zo)]
0<i<m BeN}
|5\§2
its bihomogenization only with respect to the variables Y; and Ys, separately. The additional
assumption playing the role of condition () in this case is the following one. We say that f sat-
isfies the condition (f) on S if for every = € S,

Z fmp(Z _2 is positive in R",

BeNg
|ﬂ\<2

ii) Z Jm,p(Z 2 is a positive definite quadratic form in R",

BeNg
|8]=2
iii) for every y; € R, Z Z fip( lef is a positive definite quadratic form in R".
0<i<m BeNy
181=2

The definition of (f) is made in such a way that if f is positive in ' x R"*! and satisfies condition (1)
on S, then f is positive on S x C' x C".

The extension of Putinar’s Positivstellensatz in this final case is the following result.



Theorem 5 Let g1,...,9s € R[X] such that

0#S={zeR"| g =0,...,9:(2) 2 0} C (-1,1)"

and the quadratic module M(g1,...,9s) C R[X] is archimedean. There exists a positive constant c
such that for every f € R[X,Y1,Ys] positive on S x R™! if degg f = d, degy, f =m, degy f =2, f
satisfies condition () on S and

min{f(ff,yl,zl,%,zz) |z €5, (y1,21) € C, (J2,22) € Cr} =[*>0,
then f can be written as

f =00 +Ulgl + - +USgS € M]R[X,Yl,?g](gla cee 798)

with 09,01, ...,05 € Y. R[X, Y1, Y2]? and

- (I\f\\o(7n+1).r2d2(3n)d)c
deg(00), deg(a191), - .., deg(0sgs) < c(m +1)22 1% !

2 Proof of the main results

The proofs of Theorems and [5[ follow the same path than the proof of Theorem [2| ([5, Theorem
7]), which is itself mainly a combination and reorganization of techniques from [11], [12] and [16].

For n € N, we denote by A, the simplex

An:{jeRM Z aziglandxiEOforlgign}

1<i<n

and by A, the standard simplex

An:{(azo,i)eR"+1| Z xizlandaciZOforOSign}.

0<i<n

The following two lemmas are slight variations of [5, Lemma 16] and [II, Lemma 11] (see also [5l
Lemma 17]).

Lemma 6 Let f € R[X,Y] such that degs f = d and degy f = m. For every T € A, and (j,2) € C",
= _ m+r
gl < U (" )@,

Lemma 7 Let f € R[X,Y] such that degy f = d and degy f = m. For every 71,Ta € A, and
(7,2) € C7,

Fon5.2) = a2 < gyl (")t 1)l -zl

r



We focus on the proof of Theorem |3l Under the stronger assumption of S C 5%, Proposition |8 below
is just a slight variant of Theorem [3| with a substantially better degree bound (which unfortunately
does not have good rescaling properties). Once Proposition [§]is proved, Theorem 3| simply follows by
composing with a linear change of variables.

Proposition 8 Let g1, ...,gs € R[X] such that
0£5= {5 R | gi(5) >0,...,0(x) > 0} € AS

and the quadratic module M(gi,...,qgs) is archimedean. There exists a positive constant ¢ such that
for every f € R[X, Y1, Ya] positive on S x R?, if degg f = d, deg(y, vy) f =4, f satisfies condition ()
on S and

min{ f(Z,y1,y2, 2) | T € S, (y1,y2,2) € C?} = f* >0,

then f can be written as

f=o00+0o191+ - +0s9s € Myx v, v, (915, 9s)
with og,01,...,05 € Y. R[X, Y1, Y2]? and

(HfH:dz)
deg(0g), deg(o1g1), - . ., deg(osgs) < ce\ T /.

Proof: Without loss of generality we suppose degg; > 1 and |g;| < 1 in A, for1<i<s.
If d = 0 then f € R[Y3,Ys] is positive on R2, and since degiy, vo) f =4, f € S R[Y7, Y3]? and any
constant ¢ > 4 works. So from now on, we suppose d > 1 and in the case that the final constant ¢
we find turns out to be less than 4, we just replace it by the result of applying [5, Lemma 18] to the
6-uple (4,0,¢,0,1,c¢).
We prove first that there exist A € Ry and k € Ny such that

h=f-AY2+Y2+2%)° Y gi- (9~ D)* €RIX, Y1, Y2, 7]

1<i<s

satisfies h > %f‘ in ﬁn x C2.

For each (y1, 2, 2) € C? we consider

_ o~ — 3 ..
Ay oz = {x €Ay | f(Z,y1,2,2) < Zf }

Note that Ay, ,, . NS = 0. To exhibit sufficient conditions for A and k, we consider separately the
cases T € Ay \ Ay, yo,- and T € Ay, 4, -

Iz €A, \ Ay oy

h(jvyl’y%z) = f(jayhy%z) - A(y% + y% + 22)2 Z gl(j) : (gl(j) - 1)2k

1<i<s
> [(Zy1,2,2) = A Y 1gi(@)] - (|lga(@)| — 1)
1<i<s
3 .. As
T T



using [IT, Remark 12]. Therefore the condition h(Z,y1,ys,2) > 5 f* is ensured if

AN
2% +1 > f—s (1)

If £ € Ay, y,.2, for any o € S, by Lemma[7] with 7 = 2 and m = 4, we have

B < F@on.2) — T, 12, 2) < 2l flld(d 4 1) 70 ],
then
s < |z0— 2]
B0vAlfled(d+ 1)
and therefore .
/ < dist(z, S). (2)

30yl f e+ 1)
Using [5, Remark 13], there exist ¢j,co > 0 and 1 < iy < s such that ¢;,(Z) < 0 and

dist(z, S) < —cagi, (T). (3)
By and we have
with . e o
0=— > 0.
C2 (30\/ﬁHfH-d(d + 1))
On the other hand, defining fJ, ., , = min{f(Z,y1,y2,2) | € S}, again by Lemma [7| with r = 2 and

m = 4, we have that

<. 15

_ . 15 .
(@ 91,92,2) = f1 a.el < 5 VRl flled(d + 1)diam(Ay) ﬂ\/ﬁllfl\-d(d +1). (5)
Then, using again [11, Remark 12], and we have
_ 5 _ _ As—1)
W, 1,42, 2) > F(Z 91,92, 2) — Agio () (930 (2) — 1)°F — 1

7= . . )‘(S — 1)
> (T y1,2,2) — fy17y272 + fyhymz + A0 — 2% + 1

15 As—1)

> —— od(d+1 A ———

> VAl edd+ 1) + 17+ 0 - S

Finally, the condition h(z,y1,y2,2) > % f¢ is ensured if

15y flled(d +1) _ 2 (15y/n[[f]lod(d + 1)
2> NT = Vi (6)

and
2A(s —1)

2k+1>
fe



Since implies @, it is enough for A and k to satisfy and @ So for the rest of the proof we

take

3 = 2 ASVAlfld(d+ 1) (5| flled(d+ 1)+

\/if.q foC1
=35 )]

1 /4)s
< Z _
e (20

15][ fllod(d = 1)\ 1
:263S< | flled(d + )) v

. e /pe1tt
with c3 = % and

In this way,

f.
c1+1
< o, (1edta+ 1)

with ¢4 = 2c3s + 1. Here (and also several times after here) we use Lemma [6] with 7 = 2 and m = 4

to ensure

5 flle(d+1) _

f. > 1.

Also, if we define ¢ = deg g h, we have

¢ < max{d, (2k + 1) max deg g}

c1+1
< max {d, (204 <15||f”°;l.(d + 1)> + 1) 11;1?; deggi} (9)
c1+1
< o (oM ledtd 1))

with ¢5 = (2¢4 + 1)lnga<x deg g;.
<i<s

On the other hand, using conveniently [I1, Proposition 14] and ,

[lle < 171l + 25 mas {(deg gi + 1) (lgill + 1)+

(15]|f||ed(d + 1))+
f.cl
< (2ess + 1) max {(deg g; + D(lgill + 1)} - "

~(15]| flled(d + 1))
fee

<15||f||-db,5.dcl+ D) por (gt )™

= [[flle +2¢3s

max {(deg gi + 1)([|gill + 1)}***!
1<i<s

(1sufu.d<d+1> ) crtl
f.

2cy
max {(deg g; + 1)(lgill + 1)}




with cg = (2c3s + 1)1H<13<X{(deggi + 1) (Jlgi]l + 1)} and ¢7 = log <1max (deg g; + 1)(||gi]| + 1)}254).

<i<
So far we have found A and k such that that h > %f’ in A, x C?, together with bounds for k, £ = deg ¢ h
and ||h|le. Now, we introduce a new variable Xy to homogenize with respect to the variables X and

h= Y hsX)y vzl

BEN2 0<j<L
18]<4

use Pdélya’s Theorem. Let

with h; 3 € R[X] equal to zero or homogeneous of degree j for 3 € N3, 0 < [8] <4 and 0 < j <. We
define
H=>" 3" hja(X)(Xo+ X1+ X)) 7YY 24Pl € R[Xo, X, 11, Y2, Z)

BEN2 0<j<t
|B]<4

which is bihomogeneous in (Xg, X) and (Y1, Ya, Z) of bidegree (¢,4).

Since H(z0,Z,Y1,Y2, 2) = h(Z,y1,y2, 2) for every (zo,Z,vy1,v2,2) € Ay, x C2, it is clear that H > %f’
in A, x C2.

On the other hand, for each (y1,y2,2) € C?, we consider H(Xo, X, 91,2, 2) € R[ X0, X]. Using again
[11, Proposition 14] we have

IH (X0, X,y1,92, 2| < D > 1hja(X)(Xo+ -+ X))ty 2471

BEN2 0<5<t
|8l<4

< DY I+ 4+ Xa)

BENZ 0<j <t

|B]<4

> IhsX)l
BENZ 0<5<4

|Bl<4

< 156+ D)||hle-

IN

We use now the bound for Pélya’s Theorem from [I3, Theorem 1]. Take N € N given by

_ |15+ Dee—Djal
v-| -

Then for each (y1,2,2) € C? we have that H(XO,)_(,yl,yg,z) (Xo+ X1+ + Xn)N € R[Xo, X] is
a homogeneous polynomial such that all its coefficients are positive. More precisely, suppose we write

EJ—i—l.

H(X0, X,Y,Z) (Xo+ X1+ + X))V = > ba(V1, Y2, 2)X° XY € R[Xo, X, Y, Z] (1)
oz:(oe07a)€Ng+1

|a|=N+£

with b, € R[Y7, Y2, Z] homogeneous of degree 4. The conclusion is that for every a € NSLH with
|a| = N + ¢, the polynomial b, is positive in C?, and therefore, since it is a homogenous polynomial,
be is non-negative in R3.

Before going on, we bound N + ¢ using (9) and as follows.

10



15(€+ 1)e(€ = 1)|[h]lo

N+1< fe +1
1563kl
LT
12)
15]|f|led(d + 1)\ 2TV (1515 led(asn) e+ (
§15c;2;c6( ”f”f,( i )> G S R
Aatl) 1) fleddtn) |1
< o ()0 (st
with cg = 15c3c + 1.
Now we substitute Xo=1—-—X; —---— X, and Z =1 in and we obtain
FEA24YE41)° Y gilei—1%+ Y ba(V1,Ya, 1)(1- X1~ — X)X € R[X, Y1, V2.
1<i<s CX:(OZO,C_Y)GNSH_I
la|=N+¢
(13)

From we want to conclude that f € My, X’,Yl,Yg](gl ..., 9s) and to find the positive constant ¢ such
that the degree bound holds.

The first term on the right hand side of clearly belongs to Mp(x v, y,)(91 .-, 9s). Moreover, for
1 <1< s,

deg (Y + Y5 + 1)2gi(gi — 1)) =4 4+ (2k + 1) deg g;. (14)
Now we focus on the second term on the right hand side of , which is itself a sum. Take a fixed
o € NgT with o] = N +¢.
Since ba(Y1,Y2,1) is non-negative in R? and degy, y;) ba(Y1, Y2, 1) < 4, ba(Y1,Y2,1) € Y R[Y1, Yo,
Moreover, we can write by (Y1, Y2, 1) as a sum of squares with the degree of each square bounded by 4.
Also, take v(a) = (vo, v) € {0,1}"*! such that a; = v; (mod 2) for 0 < i < n. Denoting go = 1 € R[X],
since S C A;’Z, by Putinar’s classical Positivstellensatz we have representations

(1 - X1 - = n)voX@ = Z Oy()ibis

0<i<s

with o) € Y. R[X]? for 0 < i < s, and then

(I—X1— = Xp)™ X% = (1= X1 — = X)X 3" 00,0
0<i<s
belongs to M(gy, ..., gs) since (1 — X7 — -+ — X,,)0 7% X0 ¢ R[X]?.
We conclude that each term in the sum belongs to MR[X,YI,YQ](QD ..., 0s). In addition, for 0 < i <'s
we have
deg ba(}/i, Yo, 1)(1 - X1 - Xn)aO_UOXa_ﬁJv(a)igi <4+ N+L+c (15)

with cg = max{degay;g; | v € {0,1}"F1 0 <i < s}.
To finish the proof, we only need to bound simultaneously the right hand side of and .
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On the one hand, using ,

15]1f lad(d + 1))+
<
+(2k+1) max deggi <4+ (2 < 7o +1 max deg g

c1+1
o (1)

with c10 = (2¢4 + 5)3Ocl+1lmax deg g;, since d > 1.

On the other hand, using ,

15|/ flled(d + 1))4(01H) eC7(Ls\|f||;g<d+1))01+1 e

4+N+£+cQ§4+c8< -

2\ Aert)) o (iriga® )
e <||f|d> e (1)

fo

with ¢17 = (4 + ¢cs + 69)304(Cl+1) and c1o = ¢730°1! | again since d > 1.

Finally, we define ¢ as the positive constant obtained applying [5, Lemma 18] to the 6-uple (c19, c1 +1,
ci1,4(c1 + 1), c12,e1 + 1), O

We are ready now to prove Theorem The proof consists basically in a linear change of variables
and the application of Proposition |8} as in the proof of [5, Theorem 7].

Proof of Theorem[3: We consider the affine change of variables ¢ : R™ — R™ given by
X1 +1 X, + 1)

on 7777 2n

€(X1,...,Xn)_<

For 0 < i < s, we take §;(X) = ¢;(¢~1(X)) € R[X] and we define
S={zeR"|§(z)>0,...,5:(z) > 0}.
It is easy to see that N N
0#£S=1¢0S)CA,.
Moreover, since M(g1,...,gn) is archimedean, M(g1,...,Js) is also archimedean (see [5, Proof of

Theorem 7]).
Let f € R[X,Y1,Ys] be as in the statement of Theorem and let f(X,Y,Ys) = f(~Y(X),Y1,Ys) €

R[X,Y1,Ys]. It can be easily seen that f is positive on S x R?, degg f = degg f = d, deg(y, yp) f =
deg(y, vy) f =4, f satisfies condition (1) on S and

min{f:(‘i‘vylay%z) |‘/E € §7 (yl,yQ,Z) € CQ} = min{f(:i‘vylay%z) |:E € S7 (y17y272) € CZ} = f. > 0.

In addition, ||f|le < ||f]le(3n)% (again, see [5, Proof of Theorem 7]).

Take ¢ as the positive constant from Proposition [§ applied to §i, ..., gs. Therefore, f can be written
as

f=60+01G1+  +759s € My v)(G1,---,Js)
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with &g,d1,...,5s € Y. R[X, Y7, Y5]? and

(Hf\l-dQ.(Sn)d)c
deg(&O)a deg(&lgl)a v 7deg(68§s) < ce d

and the final representation for f is simply obtained by composing with £. O

The proof of Theorem [ is a straightforward adaptation of the proof of Theorem 3| (and Proposition
, and we omit it.

To prove Theorem [5, we need the following two auxilary lemmas, which are again slight variations of
[5, Lemma 16] and [I1, Lemma 11].

Lemma 9 Let f € R[X,Y1,Ys] such that degg f = d degy, f = m, and degy, f = 2. For every
€Ny, (y1,21) € C and (y2,22) € C",

(@91, 21, 02, 22)| < %IIfII-(er Dir+1)(r+2)(d +1).

Lemma 10 Let f € R[X,Y1,Ys] such that degx f = d degy, f = m, and degy, f = 2. For every
T1,%2 € Ay (y1,21) € C and (Y2, 22) € C7,

_ 1
|f(Z1, 91, 21, U2, 22) — [(Z2, 91, 21, U2, 22)| < Zx/ﬁHfHo(m +1)(r +1)(r +2)d(d+1)[|z1 — Z2f|.

Then, the proof of Theorem [5| is also a straightforward adaptation of the proof of Theorem [3| (and
Proposition , with the only caveat that the auxiliary polynomial h (at the beginning of the proof of
Proposition |8)) should be defined as

h=F-AY2+ZHE YR+ +YE+2Z3) D gi- (9 — 1) €R[X, Y1, 21,2, Zo)]

1<i<s

and then
hlle < 1f1le +As2% mass {(deggs + 1) (lgull + 1))+,

Acknowledgements: We are very grateful to Michel Coste for suggesting us these extensions of our
results from [5].
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