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Abstract. We present implementations in the computer systems Macaulay2 (cf. [GS]) for comput-

ing determinant of free complexes and resultant matrices.

1. Introduction

The aim of this paper is to give an overview of the content of the Macaulay2 package “Resul-
tants.m2” for elimination theory, emphasizing universal formulas, in particular, resultant computa-
tions.

The package contains an implementation for computing determinant of free graded complexes,
called detComplex, with several derived methods: listDetComplex, mapsComplex and minorsComplex.
This provides a method for producing universal formulas for any family of schemes, just by combin-
ing the resolution M2 method with detComplex. In Section 2 determinants of free resolutions are
treated, as well as a few examples. We recommend to see [Dem84, Jou95, GKZ94, Bus06] for more
details on determinants of complexes in elimination theory.

The package also provides methods for computing matrices and formulas for different resultants
applicable on different families of polynomials, such as the Macaulay resultant (eliminationMatrix
with the strategy Macaulay, or the function macaulayFormula) for generic homogeneous polynomials;
residual resultant (eliminationMatrix with the strategy ciResidual or CM2Residual) for generic
polynomials having a non empty base locus scheme; determinantal resultant (eliminationMatrix
with the strategy determinantal) for generic polynomial matrices of a given generic rank. Those
resultants and their implementation are reviewed in Section 3, and for the theory behind the reader
can refer to [Jou91, Cha93, GKZ94, Jou95, Jou97, CLO98, BEM01, Bus01b, Bus06, Bus04].

The goal of this package is to provide universal formulas for elimination. The main advantage of
this approach consists in the fact that we can provide formulas for any family of polynomials just
by taking determinant to a free resolution. A direct consequence of a universal formula is that it is
preserved by base change, this is, in particular, it commutes with specialization. A deep study of
universal formulas for the image of a map of schemes can be seen in [EH00, Chapter V].

2. Determinant of a complex

Here we recall what the determinant of a complex is and how it provides a constructive method to
produce elimination formulas. Assume A is an integer domain (which in general is a polynomial ring
over Z or a field), let F• be a finite complex of length n ≥ 1 of free A-modules,

F• : 0 −→ Fn
ϕn−→ Fn−1

ϕn−1−→ · · · −→ F1
ϕ1−→ F0 −→ 0,

such that χ(F•) =
∑
i(−1)iri = 0, where Fi ∼= Ari .

Since χ(F•) = 0, the free complex can be split in the following way:

For all i = 0, . . . , n, Fi splits as Fi = F
(0)
i ⊕ F (1)

i , with F
(0)
i and F

(1)
i both free A-modules of rank∑n−i−1

j=0 (−1)jri+1+j and
∑n−i
j=0(−1)jri+j respectively, in such a way that the map ϕi : F

(0)
i ⊕ F (1)

i →
F

(0)
i−1 ⊕ F

(1)
i−1 can be written as

ϕi =

(
ai ci
bi di

)
,

1
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with det(ci) 6= 0.

Definition 2.1. The determinant of the complex F• is defined as

det(F•) :=

n∏
i=0

det(ci)
(−1)i−1

.

Theorem 2.2. Let F• be a complex of finitely generated free A-modules, admitting a decomposition

as before, where ci : F
(1)
i → F

(0)
i−1 is injective. Then, Hi(F•) is A-torsion for all i, and∑

i

(−1)i div(Hi(F•)) = [det(F•)].

For the proof of Theorem 2.2 refer to [Cha93] or to [Dem84].

Corollary 2.3. If F• is a free complex of an A-torsion module such that codimA(Hi(F•)) > 1 for
i ≥ 1), then

div(H0(F•)) = div(coker(ϕ1))) = [det(F•)].

With this tool, (universal) elimination formulas are obtained as follows: starting from a polynomial
system and some knowledge of its geometry (for instance the existence or the absence of a base locus),
one determines a complex which is generically (in terms of the parameters of the system, that is
to say in terms of the indeterminates of the system that will not be eliminated) acyclic. Next, one
takes a graded part of this complex with respect to the variables to be eliminated and beyond a
certain threshold (usually expressed as a certain regularity index); the determinant of this complex
then produces an elimination formula. In the following section, we provide particular examples of this
approach that are well-known: resultant matrices.

3. Resultants

3.1. The Macaulay resultant. Introduced by F.S. Macaulay in [Mac02], corresponds to the direct
generalization of the well-known Sylvester resultant of two bivariate homogeneous polynomials. For
all i = 0, . . . , n suppose given a homogeneous polynomial of degree di ≥ 1 in the variables x =
(x0, . . . , xn),

fi(x) =
∑
|α|=di

ci,αxα,

where α is a n-uple of non negative integers (α0, . . . , αn), xα denotes the monomial xα0
0 . . . xαn

n and ci,α
denotes the coefficients which are in a field K. Considering all the coefficients ci,α as indeterminates,
there exists an irreducible homogeneous polynomial in the ring A := K[ci,α : |α| = di, i = 0, . . . , n]

which is homogeneous for all i = 0, . . . , n in the set of variables {ci,α, |α| = di} of degree d0d1...dn
di

.

This polynomial is the so-called Macaulay resultant and we denote it by Res(f0, . . . , fn) and satisfies
that

(1) if A′ is a ring, φ : A→ A′ is a map ring and also by φ the induced map A[x]→ A′[x], then

φRes(f0, . . . , fn) = Res(φf0, . . . , φfn);

(2) for any given polynomials f0, . . . , fn with coefficients ci,α in K,

Res(f0, . . . , fn) = 0⇔ ∃x ∈ Pn : f0(x) = · · · = fn(x) = 0.

Example 3.1. Consider the polynomials f1 = a*x^2+b*x*y+c*y^2 and f2 = 2*a*x+b*y in the ring
R=QQ[a,b,c,x,y]. Denoting M = matrix{{f1,f2}}, the Macaulay resultant Resx,y(f1, f2) can be
computed as

>det(eliminationMatrix({x,y},M,Strategy=>Macaulay))

(notice that the strategy is not necessary in this case). One can verify that the matrix

>eliminationMatrix({x,y},M)

coincides with the Sylvester matrix
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>Syl=matrix{{a, 2*a, 0},{b, b, 2*a},{c, 0, b}}

Now, since f1 and f2 form a regular sequence in R=QQ[a,b,c,x,y], and M = matrix{{f1,f2}},
the Koszul complex koszul M is a free resolution of R/(f1, f2).

Thus, we get that

>eliminationMatrix({x,y},M)

coincides with the right-most map of the Koszul complex koszul M in degree 2 on the variables {x,y}.
The list of maps of koszul M in degree 2 on the variables {x,y} can be computed as

>mapsComplex(2,{x,y}, koszul M)

and right-most means 0-th position in the list, that is to say :

>mapsComplex(2,{x,y},koszul M)_0

3.2. Residual resultants. The residual resultant is an extension of the classical resultant theory
[BEM00, BEM01, Bus01a, Bus01b]. Consider a polynomial system depending on parameters. In
many situations coming from practical problems, polynomial systems depending on parameters have
common zeros which do not depend on these parameters, and which we are not interested in. We
are going to present here how to compute a resultant in such a situation, which is called a residual
resultant, under suitable assumptions.

Let g1, . . . , gm be m homogeneous polynomials of degree k1 ≥ . . . ≥ km ≥ 1 in S = K[x0, . . . , xn].
Being given n+ 1 integers d0 ≥ . . . ≥ dn ≥ k1 such that dm ≥ km + 1, there exists a resultant (called
a residual resultant) associated to systems of the form:

(1) fc :=


f0(x) =

∑m
i=1 hi,0(x) gi(x)

...
fn(x) =

∑m
i=1 hi,n(x) gi(x)

where hi,j(x) =
∑
|α|=dj−ki c

i,j
α xα is a homogeneous polynomial of degree dj − ki. It is an irreducible

homogeneous polynomial in the ring of coefficients K[ci,jα ]. Being given some specialized polynomials
f0, . . . , fn, we have the property

∃x /∈ V (g1, . . . , gm) : f0(x) = · · · = fn(x) = 0⇒ Res(f0, . . . , fn) = 0.

Notice that the polynomials g1, . . . , gm describe exactly the variety of base points we are not interested
in. Notice also that this last property can be stated as an equivalence on what are called blow-up
varieties, but we are not going to describe them here, we refer to [BEM01, Bus01b] for more details.

We now show how it is possible to compute these residual resultants.

3.2.1. General residual resultants. Whatever the base points are, that is to say whatever the poly-
nomials g1, . . . , gm are, it is always possible to compute a non zero multiple of the residual resultant
using Bezoutian matrices (see [BEM00, Bus01b]).

The Bezoutian Θf0,...,fn of f0, . . . , fn ∈ S is the element of S ⊗K S defined by

Θf0,...,fn(t, z):=

∣∣∣∣∣∣∣
f0(t) θ1(f0)(t, z) · · · θn(f0)(t, z)

...
...

...
fn(t) θ1(fn)(t, z) · · · θn(fn)(t, z)

∣∣∣∣∣∣∣,
where

θi(fj)(t, z) :=
fj(z1, . . . , zi−1, ti, . . . , tn)− fj(z1, . . . , zi, ti+1, . . . , tn)

ti − zi
.

Let Θf0,...,fn(t, z) =
∑
θαβ tαzβ , θα,β ∈ K. The Bezoutian matrix of f0, . . . , fn is defined as the matrix

Bf0,...,fn = (θαβ)α,β . And we have:

Theorem 3.2. Any maximal minor of the Bezoutian matrix Bf0,...,fn is divisible by the resultant
Res(f0, . . . , fn).
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Notice that we do not need to know the polynomials g1, . . . , gm to perform the computation of the
Bezoutian matrix. In fact the only thing we have to check is that the polynomials f0, . . . , fm separate
points and tangent vectors on an open subset of Pn (see [BEM00] for more details on this point).
Example. Consider the three following polynomials ([BEM00], example 1.5): f0 = c0,0 + c0,1t1 + c0,2t2 + c0,3(t1

2 + t2
2)

f1 = c1,0 + c1,1t1 + c1,2t2 + c1,3(t1
2 + t2

2) + c1,4(t1
2 + t2

2)2

f2 = c2,0 + c2,1t1 + c2,2t2 + c2,3(t1
2 + t2

2) + c2,4(t1
2 + t2

2)2.

Using the method bezoutianMatrix we can compute the Bezoutian matrix, which is of size 12 × 12
and of rank 10. The determinant of a maximal minor yields a huge polynomial in (ci,j) containing
207805 monomials. It can be factorized as q1q2(q3)2ρ, with

q1 = −c0,2c1,3c2,4 + c0,2c1,4c2,3 + c1,2c0,3c2,4 − c2,2c0,3c1,4
q2 = c0,1c1,3c2,4 − c0,1c1,4c2,3 − c1,1c0,3c2,4 + c2,1c0,3c1,4
q3 = c0,3

2c1,1
2c2,4

2 − 2c0,3
2c1,1c2,1c2,4c1,4 + c0,3

2c2,4
2c1,2

2 + · · ·
ρ = c2,0

4c1,4
4c0,2

4 + c2,0
4c1,4

4c0,1
4 + c1,0

4c2,4
4c0,2

4 + c1,0
4c2,4

4c0,1
4 + · · ·

The polynomials q3 and ρ contain respectively 20 and 2495 monomials. As for generic equations
f0, f1, f2, the number of points in the varieties Z(f0, f1), Z(f0, f2), Z(f1, f2) is 4 (see for instance
[Mou96]), Res(f0, f1, f2) is homogeneous of degree 4 in the coefficients of each fi. Thus, it corresponds
to the last factor ρ.

3.2.2. Residual resultants of a complete intersection. We suppose here that the ideal G = (g1, . . . , gm)
is a complete intersection, that is defines a variety of codimension m in Pn. In this particular case
we know how to compute exactly the residual resultant and also its degree. Indeed, its degree in the
coefficients (ci,jα ) of each fj is given by

Nj =
Pmj

P1
(k1, . . . , km)

where, mj(T ) = σn(d)+
∑n
l=m σn−l(d)T l, with the notations d = (d0, . . . , dj−1, dj+1, . . . , dn), σ0(d) =

(−1)n, σ1(d) = (−1)n−1
∑
l 6=j dl, σ2(d) = (−1)n−2

∑
j1 6=j,j2 6=j,j1<j2 dj1dj2 , . . . , σn(d) =

∏
l 6=j dl, and

Pmj (y1, . . . , ym) = det


mj(y1) · · · mj(ym)
y1 · · · ym
...

...
ym−1

1 · · · ym−1
m

 .

Example 3.3. As an example we suppose that n = 3 and m = 2. Then we can obtain the critical
degree and the multi-degree of the residual resultant :

>R=ZZ[d_0..d_4,k_1,k_2]:

>ciResDeg({d_0,d_1,d_2,d_3},{k_1,k_2})

We denote by H the matrix (hi,j)1≤i≤m,0≤j≤n and by ∆i1...im the m×m minors of H corresponding
to the columns i1, . . . , im. We also define the homogeneous ideal F = (f0, . . . , fn) ⊂ S.

Theorem 3.4. For any ν ≥
∑n
i=0 di − n− (n−m+ 2)km, the morphism

∂ν :

( ⊕
0≤i1<...<im≤n

Sν−di1−···−dim+
∑m

i=1 ki
ei1 ∧ · · · ∧ eim

)⊕(i=n⊕
i=0

Sν−die
′

i

)
−→ Sν

ei1 ∧ · · · ∧ eim −→ ∆i1...im

e
′

i −→ fi

is surjective if and only if V (F : G) = ∅ (or F sat = Gsat). In this case, all nonzero maximal minors of
size dimK(Sν) of the matrix ∂ν is a multiple of the residual resultant, and the gcd of all these maximal
minors is exactly the residual resultant.
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Example 3.5. We consider the following example f0 = a0z + a1x+ a2y + a3(x2 + y2)
f1 = b0z + b1x+ b2y + b3(x2 + y2)
f2 = c0z + c1x+ c2y + c3(x2 + y2),

of three circles in the plane. We would like to know when they intersect outside the two trivial points
given by V (z, x2 + y2). We use Macaulay2 to compute the associated residual resultant matrix:

>R=QQ[a_0,a_1,a_2,a_3,a_4,b_0,b_1,b_2,b_3,b_4,c_0,c_1,c_2,c_3,c_4,x,y,z];

>G=matrix{{z,x^2+y^2}};

>H=matrix{{a_0*z+a_1*x+a_2*y,b_0*z+b_1*x+b_2*y,c_0*z+c_1*x+c_2*y},

{a_3,b_3,c_3}};

>F=G*H;

>L=eliminationMatrix({x,y,z},G,H)

>(maxCol(L,Strategy=>Numeric))_0

(the Numeric strategy in maxCol can also be chosen to be Exact which is the default if not strategy
is given) which returns:

a3 b3 c3 −a3b1 + a1b3 0 −a3c1 + a1c3
0 0 0 −a3b2 + a2b3 −a3b1 + a1b3 −a3c2 + a2c3
a1 b1 c1 −a3b0 + a0b3 0 −a3c0 + a0c3
a3 b3 c3 0 −a3b2 + a2b3 0
a2 b2 c2 0 −a3b0 + a0b3 0
a0 b0 c0 0 0 0


whose determinant is the desired condition multiplied by a3(−a2b3 + a3b2).

Next example show how the right-most map of a free resolution does not coincide with the matrix we
compute by applying directly the CiRes method, but they does coincide by reordering their columns
and changing their signs.

Example 3.6. (Follows from Example 3.5) Take F := G*H. The matrix L can not be computed as
the right most map of any free resolution of I := ideal F:ideal G in degree nu := ciResDegGH

({x,y,z},G,H), but, in this case, both matrices coincides by alternating their columns and chang-
ing their signs. This is, the matrix ((mapsComplex (nu,{x,y,z},res I)) 0 has exactly the same
columns as L, hence, in this example the Complete Intersection Residual Resultant can be computed
by means of any of these two matrices by taking gcd of maximal minors, or as the determinant of the
complex res I with respect to the variables {x,y,z} in degree 2.

Notice that this equality is not general. For instance, try the following example:

Example 3.7.

>R = QQ[X,Y,Z,W,x,y,z];

>F = matrix{{x*y^2,y^3,x*z^2,y^3+z^3}}

>G = matrix{{y^2,z^2}};

>M = matrix{{W,0,0},{0,W,0},{0,0,W},{-X,-Y,-Z}};

>H = (F//G)*M

>l = {x,y,z};

>CmR1 = (eliminationMatrix (l,G,H, Strategy => CM2Residual))

>CmR2 = (eliminationMatrix (l,G,H, Strategy => byResolution))

3.2.3. Residual resultants of a local complete intersection ACM of codimension 2. We have just seen
that if the ideal G = (g1, . . . , gm) is a complete intersection we know how to compute the correspond-
ing residual resultant. There is another case where we have similar results, the case where G is a
local complete intersection of codimension 2 arithmetically Cohen-Macaulay (abbreviated ACM) ideal
[Bus01b]. For simplicity we restrict ourselves to the case of three homogeneous variables [Bus01a], i.e.
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n = 2, since in this case G has only to be an ideal of P2 defining isolated points. We refer to [Bus01b]
chapter 3 for the general situation.

First we compute the syzygies of G, i.e. the matrix ψ which is such that:

(2) 0→
m−1⊕
i=1

S[−li]
ψ−→

m⊕
i=1

S[−ki]
γ=(g1,...,gm)−−−−−−−−→ G→ 0,

with
∑m−1
i=1 li =

∑m
i=1 ki. At this point we can compute the degree of the residual resultant: it is

homogeneous in the coefficient of each fi, i = 0, 1, 2, of degree

d0d1d2

di
−
∑m−1
j=1 l2j −

∑m
j=1 k

2
j

2
.

Now we construct the m× (m+ 2) glued matrix

m−1⊕
i=1

S[−li]
2⊕
i=0

S[−di]
ψ⊕φ−−−→

m⊕
i=1

S[−ki],

where φ is the matrix (hi,j)1≤i≤m,0≤j≤2. And we have:

Theorem 3.8. We denote by ∆i1,...,im the determinant of the submatrix of the map φ ⊕ ψ corre-
sponding to columns i1, . . . , im, and by αi1,...,im its degree. Then, for any ν ≥

∑n
i=0 di − n(km + 1),

the morphism

∂ν :
⊕

0≤i1<...<im≤n

Sν−αi1,...,im
ei1 ∧ · · · ∧ eim −→ Sν

ei1 ∧ · · · ∧ eim 7→ ∆i1...im

is surjective if and only if V (F : G) = ∅ (or F sat = Gsat). In this case, all non-zero maximal minors
of size dimK(Sν) of the matrix ∂ν is a multiple of the residual resultant, and the gcd of all these
maximal minors is exactly the residual resultant.

Example 3.9. As a simple example we consider the residual resultant of three cubics in P2 passing
through the same three points. Here is the code:

>R=ZZ/32003[a_0..a_8,b_0..b_8,c_0..c_8,x_0,x_1,x_2];

>G=matrix{{x_0*x_1,x_0*x_2,x_1*x_2}};

>l0=for i from 0 to 2 list a_(0+3*i)*x_0+a_(1+3*i)*x_1+a_(2+3*i)*x_2;

>l1=for i from 0 to 2 list b_(0+3*i)*x_0+b_(1+3*i)*x_1+b_(2+3*i)*x_2;

>l2=for i from 0 to 2 list c_(0+3*i)*x_0+c_(1+3*i)*x_1+c_(2+3*i)*x_2;

>H=matrix{l0,l1,l2};

>eliminationMatrix({x_0,x_1,x_2},G,H,Strategy=>CM2Residual)

We obtain a 10× 10 matrix which is too big to be printed here.

Example 3.10. What is the condition so that four cubics in P3 containing the twisted cubic have a
common point outside this twisted cubic? We consider the following polynomials, i = 0, 1, 2, 3,

fi = h1,i(x)(x2
1 − x0x2) + h2,i(x)(x1x2 − x0x3) + h3,i(x)(x2

2 − x1x3),

where hi,j(x) = c0i,jx0 + c1i,jx1 + c2i,jx2 + c3i,jx3 are linear forms. We just have to compute the
residual resultant of this system, taking for the ideal G the ideal of the twisted cubic, that is to say
G = (−x2

1 + x0x2,−x1x2 + x0x3,−x2
2 + x1x3). Its syzygies are given by the matrices

ψ =

 −x2 x3

x1 −x2

−x0 x1

 , γ = (x2
1 − x0x2, x1x2 − x0x3, x

2
2 − x1x3).

From here, we can use eliminationMatrix with the strategy CM2Residual to compute the residual
resultant matrix.
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3.3. Determinantal resultants. Determinantal resultants have been introduced in [Bus01b] and
further studied in [Bus04] and [BG05]. They correspond to a generalization of the classical resultants.
We here restrict ourselves to the case of homogeneous polynomials and refer to the cited papers for
more general situations.

Let m,n and r be three integers such that m ≥ n > r ≥ 0. Given two sequences of integers
{d1, . . . , dm} and {k1, . . . , kn} (not necessary positives) satisfying di > kj for all i, j, we consider
matrices of size n×m of homogeneous polynomials in variables x = (x1, . . . , x(m−r)(n−r))

H =


h1,1(x) h1,2(x) · · · h1,m(x)
h2,1(x) h2,2(x) · · · h2,m(x)

...
...

...
hn,1(x) hn,2(x) · · · hn,m(x)

 ,

where hi,j(x) =
∑
|α|=dj−ki c

i,j
α xα is of degree dj −ki and have coefficients ci,jα with value in a field K.

The determinantal resultant of H, denotes hereafter Res(H) is a polynomial in the coefficients ci,jα ’s
such that for any specialization of all these coefficients in K we have

Res(H) = 0⇔ ∃x ∈ P(m−r)(n−r) : rank(H(x)) ≤ r.
In other words determinantal resultants give a necessary and sufficient condition so that a polynomial
matrix depending on parameters is not of generic rank (with respect to its coefficients). We know
how to compute them, as well as their multi-degree. They are multi-homogeneous in the coefficients
of each column i (that is in the coefficients of the polynomials h1,i, h2,i, . . . , hn,i), i = 1, . . . ,m; their
partial degree is the coefficient of αi of the multivariate polynomial (in variables α1, . . . , αm)

(−1)(m−r)(n−r)∆m−r,n−r

(∏m
i=1(1− (di + αi)t)∏n

i=1(1− kit)

)
,

where for all formal series s(t) =
∑+∞
k=−∞ ck(s)tk, we set

∆p,q(s) = det

 cp(s) · · · cp+q−1(s)
...

...
cp−q+1(s) · · · cp(s)

 .

Example 3.11. The computation of the multi-degree of the determinantal resultant corresponding
to m = 3, n = 2, r = 1 can be done as follows:

>R=ZZ[d1,d2,d3,k1,k2]

>detResDeg(1,{d1,d2,d3},{k1,k2},R)

It returns {d1 + d2 + d3 − k1 − 2k2 − 1, {d2 + d3 − k1 − k2,d1 + d3 − k1 − k2,d1 + d2 − k1 − k2}}
that gives the critical degree (see below) and the multi-degree of the determinantal resultant.

We now describe how to compute explicitly determinantal resultants. Consider the map⊕
i1<...<ir+1, j1<...<jr+1

R[d−
∑r+1

t=1 dit+
∑r+1

t=1 kit ]ei1,...,ir+1,j1,...,jr+1

σd−→ R[d]

which associates to each ei1,...,ir+1,j1,...,jr+1 the polynomial ∆i1,...,ir+1, j1,...,jr+1 denoting the determi-
nant of the minor 

hj1,i1(x) hj1,i2(x) · · · hj1,ir+1(x)
hj2,i1(x) hj2,i2(x) · · · hj2,ir+1

(x)
...

...
...

hjr+1,i1(x) hjr+1,i2(x) · · · hjr+1,ir+1
(x)

 ,

R denoting the polynomial ring K[x1, . . . , x(m−r)(n−r)] and R[t] being the vector space of homogeneous
polynomials of fixed degree t. We define the critical degree to be the integer

νd,k = (n− r)(
m∑
i=1

di −
n∑
i=1

ki)− (m− n)(kr+1 + · · ·+ kn)− (m− r)(n− r) + 1.
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Proposition 3.12. Choose an integer d ≥ νd,k. All nonzero maximal minor (of size ]R[d]) of the
map σd is a multiple of the determinantal resultant Res(H). Moreover the greatest common divisor of
all the determinants of these maximal minors is exactly Res(H).

This proposition gives us an algorithm to compute explicitly the determinantal resultant, completely
similar to the one giving the expression of the Macaulay resultant. Notice that it is also possible to give
the equivalent (in a less explicit form) of the so-called Macaulay matrices (of the Macaulay resultant)
for the principal (i.e. r = n− 1) determinantal resultant [Bus01b, Bus04].

In [Bus04] §5.3 determinantal resultant with m = n+ 1 and r = n− 1 are used to compute Chow
forms of rational normal scrolls.
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[Bus06] Laurent Busé, Elimination theory in codimension one and applications, 1–47 (2006).

[Cha93] Marc Chardin, The resultant via a Koszul complex, Computational algebraic geometry (Nice, 1992), Progr.
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