MATEMÁTICA 2 Segundo Cuatrimestre — 2012

Práctica 5: Autovalores y diagonalización

1. *a*) Calcular el polinomio característico, los autovalores y autovectores de las siguientes matrices, considerando por separado el caso en que los coeficientes están en \mathbb{R} y en \mathbb{C} :

i)
$$\begin{pmatrix} 1 & 3 \\ -3 & -1 \end{pmatrix}$$
; $\begin{pmatrix} v \end{pmatrix} \begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & -2 \end{pmatrix}$; $\begin{pmatrix} viii \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$; ii) $\begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$; $\begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$; iv) $\begin{pmatrix} 0 & 2 & 1 \\ -2 & 0 & 3 \\ -1 & -3 & 0 \end{pmatrix}$; $vii) \begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ 0 & a & 1 \end{pmatrix}$; ix) $\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$.

En todos los casos, $a \in \mathbb{K}$.

- b) Interprete cada una de las matrices del ítem anterior como la matriz de una transformación lineal $f: \mathbb{K}^n \to \mathbb{K}^n$ (con $\mathbb{K} = \mathbb{R}$ y \mathbb{C} , respectivamente) con respecto a la base canónica \mathcal{E} de \mathbb{K}^n , y encuentre, cuando es posible, una base \mathcal{B} de manera tal que $[f]_{\mathcal{B}}$ es diagonal; en ese caso, encuentre la matriz de cambio de base $C(\mathcal{E}, \mathcal{B})$.
- **2.** *a*) Sean $A, D \in M_n(k)$ y $C \in GL_n(k)$ tales que $A = CDC^{-1}$. Mostrar que $A^k = CD^kC^{-1}$ cualquiera sea $k \in \mathbb{N}$.
 - b) Calcular

$$\begin{pmatrix} -1 & -2 & 2 \\ 0 & 1 & 0 \\ -1 & -3 & -4 \end{pmatrix}^n$$

para cada $n \in \mathbb{N}$.

c) El objetivo de esta parte es encontrar una formula cerrada para la sucesión $(a_n)_{n\geq 0}$ tal que $a_0=a_1=1$ y, si $n\geq 0$,

$$a_{n+2} = a_{n+1} + a_n$$
.

Considere el endomorfismo $f:\mathbb{C}^2\to\mathbb{C}^2$ tal que, en la base canónica, está representado por la matriz

$$[f] = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

Muestre que, para cada $n \ge 0$ es

$$f\begin{pmatrix} a_{n+1} \\ a_n \end{pmatrix} = \begin{pmatrix} a_{n+2} \\ a_{n+1} \end{pmatrix}.$$

Encuentre ahora una base que diagonalice a f y use la primera parte de este ejercicio y el hecho de que

$$f^n \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} a_{n+1} \\ a_n \end{pmatrix}$$

para obtener una fórmula cerrada para a_n en esos casos.

3. Resolver el siguiente sistema de ecuaciones diferenciales

$$\begin{cases} x'(t) = 6x(t) + 2y(t) \\ y'(t) = 2x(t) + 3y(t) \end{cases}$$

con condiciones iniciales x(0) = 3, y(0) = -1.

- **4.** Sea $D: \mathcal{C}^{\infty}(\mathbb{R}) \to \mathcal{C}^{\infty}(\mathbb{R})$, D(f) = f', la transformación lineal derivación. Mostrar que para todo $\lambda \in \mathbb{R}$, la función $f(x) = e^{\lambda x}$ es un autovector de D asociado al autovalor λ (en particular, D tiene infinitos autovalores).
- **5.** Determinar qué matrices de la forma $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ con $a,b,c \in k, k \in \{\mathbb{R},\mathbb{C}\}$, son diagonalizables.
- **6.** *a*) Sea $A \in M_2(\mathbb{C})$ tal que todos sus coeficientes son reales y tal que $\binom{1+i}{2-i}$ es un autovector correspondiente al autovalor 1+3i. Mostrar que A es diagonalizable, encontrar una base de autovectores, y determinar A.
 - *b*) Sea $A \in M_2(\mathbb{R})$ tal que $\binom{1}{-1}$ es un autovector de autovalor $\sqrt{2}$, y tal que $\chi_A \in \mathbb{Q}[t]$. Determinar si A es diagonalizable. ¿Cuántas matrices satisfacen estas condiciones?.
- **7.** Sea $A \in M_3(\mathbb{R})$ tal que $\chi_A(t) = (t-a)(t-z)(t-\overline{z})$, con $a \in \mathbb{R}$ y $z \in \mathbb{C} \setminus \mathbb{R}$. Sea $g_A : \mathbb{C}^3 \to \mathbb{C}^3$ la transformación lineal $g_A(x) = Ax^t$.
 - a) Probar que existe v_1 , autovector de g_A de autovalor a, con todas sus coordenadas reales.
 - b) Sea $w=v_2+iv_3$, con $v_2,v_3\in\mathbb{R}^3$, un autovector de g_A asociado al autovalor z. Probar que $\overline{w}=v_2-iv_3$ es un autovector de g_A de autovalor \overline{z} .
 - c) Se considera $f_A : \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal $f_A(x) = Ax^t$. Probar que $\langle v_2, v_3 \rangle \subset \mathbb{R}^3$ es un subespacio f_A -invariante de dimensión 2.
 - *d*) Sea $\mathcal{B} = \{v_1, v_2, v_3\}$. Verificar que \mathcal{B} es una base de \mathbb{R}^3 y hallar $[f_A]_{\mathcal{B}}$.
- 8. *a*) Sea $A \in M_3(\mathbb{R})$ tal que tr A = -4. Calcular los autovalores de A sabiendo que los de $A^2 + 2A$ son -1, 3 y 8.
 - *b*) Sea $A \in M_4(\mathbb{R})$ tal que det A = 6, tiene a 1 y a -2 como autovalores, y tal que A 3I tiene a -4 como autovalor. Determinar los restantes autovalores de A
- **9.** *a*) Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ la transformación lineal definida por f(x,y) = (x+3y,3x-2y). Hallar todos los subespacios de \mathbb{R}^2 que sean f-invariantes.
 - *b*) Sea $f_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ la rotación de ángulo θ :

$$[f_{\theta}]_E = \begin{pmatrix} cos(\theta) & -sen(\theta) \\ sen(\theta) & cos(\theta) \end{pmatrix}.$$

Probar que, para todo $\theta \neq k\pi$ ($k \in \mathbb{Z}$), f_{θ} no es diagonalizable. Hallar todos los subespacios de \mathbb{R}^2 que sean f_{θ} -invariantes.

- *c*) ¿Qué pasa si se cambia \mathbb{R} por \mathbb{C} en el item anterior?
- **10.** Sea $A \in M_n(k)$. Mostrar que A y A^t tienen los mismos autovalores. Mostrar con un ejemplo que no sucede lo mismo con los autovectores.
- 11. *a*) Sea $f \in \text{End}(V)$ un proyector de un espacio vectorial de dimensión finita V tal que dim im f = s. Determinar su polinomio característico, y mostrar que es diagonalizable.
 - *b*) Sea $f \in End(V)$ un endomorfismo nilpotente de índice de nilpotencia l. Determinar su polinomio característico. ¿Cuándo es diagonalizable?
 - c) Sea $f \in \text{End}(V)$ un endomorfismo de un espacio vectorial real tal que $f^2 + I = 0$. Mostrar que f es un automorfismo y que dim V es par.
- **12.** Un endomorfismo $f \in \text{End}(V)$ de rango 1 es diagonalizable sii ker $f \cap \text{im } f = 0$.
- **13.** Sea V un k-espacio vectorial de dimensión finita y sea $f:V\to V$ una transformación lineal. Sean S y T subespacios de V tales que $\dim(S)=s$, $\dim(T)=t$, y $S\oplus T=V$. Si S y T son f-invariantes, probar que existe una base $\mathcal B$ de V y matrices $A_1\in M_s(k)$ y $A_2\in M_t(k)$ tales que

$$[f]_{\mathcal{B}} = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}.$$

Probar que, en este caso, $\chi_f = \chi_{A_1} \chi_{A_2}$.

14. Sea

$$A = egin{pmatrix} -1 & 0 & 2 \ 5 & 4 & 2 \ -4 & -3 & -2 \end{pmatrix} \in M_3(\mathbb{R}),$$

y sea $f_A: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal definida por $f_A(x) = Ax^t$. Hallar subespacios propios S y T de \mathbb{R}^3 , f_A -invariantes, tales que $S \oplus T = \mathbb{R}^3$.

15. Sea $A \in M_n(k)$ diagonalizable y sean $\lambda_1, \ldots, \lambda_n$ las raices de su polinomio característico contadas con multiplicidad. Mostrar que tr $A = \sum \lambda_i$ y que det $A = \prod \lambda_i$.