MATEMÁTICA 2 Segundo Cuatrimestre — 2012

Práctica o: Sistemas de ecuaciones lineales y matrices

A lo largo de esta práctica, *K* simbolizará el conjunto de los números reales o el conjunto de los números complejos, indistintamente.

1. Sistemas de ecuaciones lineales

1.1. Resolver los siguientes sistemas de ecuaciones lineales: $(K = \mathbb{R})$

a)
$$\begin{cases} x_1 + x_2 - 2x_3 + x_4 = 0 \\ 3x_1 - 2x_2 + x_3 + 5x_4 = 0 \\ x_1 - x_2 + x_3 + 2x_4 = 0 \end{cases}$$
d)
$$\begin{cases} x_1 + x_2 + x_3 - 2x_4 + x_5 = 1 \\ x_1 - 3x_2 + x_3 + x_4 + x_5 = 0 \\ 3x_1 - 5x_2 + 3x_3 + 3x_5 = 0 \end{cases}$$
e)
$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 - 3x_2 + x_3 = 0 \\ 3x_1 - 5x_2 + 3x_3 = 0 \\ 3x_1 - 5x_2 + 3x_3 = 0 \end{cases}$$
e)
$$\begin{cases} x_1 + x_2 + x_3 - 2x_4 + x_5 = 1 \\ x_1 - 3x_2 + x_3 + x_4 + x_5 = 0 \\ 3x_1 - 5x_2 + 3x_3 + 3x_5 = 0 \end{cases}$$
e)
$$\begin{cases} x_1 + x_2 + x_3 - 2x_4 + x_5 = 1 \\ x_1 - 3x_2 + x_3 + x_4 + x_5 = 0 \\ 3x_1 - 5x_2 + 3x_3 + 3x_5 = 0 \end{cases}$$
e)
$$\begin{cases} x_1 + x_2 + x_3 - 2x_4 + x_5 = 1 \\ x_1 - 3x_2 + x_3 + x_4 + x_5 = 0 \\ 3x_1 - 5x_2 + 3x_3 + 3x_5 = 0 \end{cases}$$
e)
$$\begin{cases} x_1 + x_2 + x_3 - 2x_4 + x_5 = 1 \\ x_1 - 3x_2 + x_3 + x_4 + x_5 = 0 \\ 3x_1 - 5x_2 + 3x_3 + 3x_5 = 0 \end{cases}$$
e)
$$\begin{cases} x_1 + x_2 + x_3 - 2x_4 + x_5 = 1 \\ x_1 - 3x_2 + x_3 + x_4 + x_5 = 0 \\ x_1 + x_2 + x_3 + x_4 = 2 \\ x_1 + 3x_2 + 2x_3 + 4x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 - 2x_4 + x_5 = 1 \\ x_1 - 3x_2 + x_3 + x_4 + x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0 \\ x_1 + x_2 + x_3 + x_4 = 2 \\ x_1 + 3x_2 + 2x_3 + 4x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 + x_4 + x_5 + x_4 + x_5 +$$

¿Cambia algo si $K = \mathbb{C}$?

1.2. Sea H un sistema lineal homogéneo de n ecuaciones con m incógnitas. Probar:

- (a) Si n < m, entonces H tiene alguna solución no nula.
- (b) Si m < n, entonces existe un sistema lineal homogéneo H' de m ecuaciones con m incógnitas cuyo conjunto de soluciones coincide con el conjunto de soluciones de H.

1.3. Para cada uno de los siguientes sistemas lineales homogéneos, determinar todos los $k \in \mathbb{R}$ para los cuales el sistema tiene alguna solución no trivial:

a)
$$\begin{cases} x_1 + kx_2 + x_3 = 0 \\ (k+1)x_2 + x_3 = 0 \\ (k^2 - 4)x_3 = 0 \end{cases}$$
 b)
$$\begin{cases} x_1 + kx_2 + x_3 = 0 \\ 2x_1 + x_3 = 0 \\ 2x_1 + kx_2 + kx_3 = 0 \end{cases}$$

1.4. Resolver los siguientes sistemas no homogéneos y los sistemas homogéneos asociados a cada uno de ellos:

$$a) \left\{ \begin{array}{l} x_1 - x_2 + x_3 = 2 \\ -x_1 + 2x_2 + x_3 = -1 \\ -x_1 + 4x_2 + 5x_3 = 1 \end{array} \right. \\ b) \left\{ \begin{array}{l} x_1 - x_2 - x_3 = 2 \\ 2x_1 + x_2 - 2x_3 = 1 \\ x_1 + 4x_2 + x_3 = 1 \end{array} \right. \\ -x_1 + 2x_2 + x_3 = 1 \\ -x_1 + 4x_2 + 5x_3 = 4 \end{array} \right. \\ d) \left\{ \begin{array}{l} x_1 - x_2 - x_3 = 2 \\ 2x_1 + x_2 - 2x_3 = 1 \\ x_1 + 4x_2 - x_3 = 1 \end{array} \right. \\ d) \left\{ \begin{array}{l} x_1 - x_2 - x_3 = 2 \\ 2x_1 + x_2 - 2x_3 = 1 \end{array} \right. \\ x_1 + 4x_2 - 2x_3 = \beta \quad \alpha, \beta, \gamma \in \mathbb{R} \right. \\ x_1 + 4x_2 + x_3 = \gamma \end{array} \right.$$

1.5. Sea H un sistema lineal no homogéneo y sea p una solución de H. Sea H_0 el sistema lineal homogéneo asociado a H. Probar que si S y S_0 son los conjuntos de soluciones de H y H_0 respectivamente, entonces $S = S_0 + p = \{s + p : s \in S_0\}$.

1.6. Dado el sistema

a)
$$\begin{cases} 2x_1 - x_2 + x_3 = \alpha_1 \\ 3x_1 + x_2 + 4x_3 = \alpha_2 \\ -x_1 + 3x_2 + 2x_3 = \alpha_3 \end{cases}$$

Determinar los valores de α_1 , α_2 , $\alpha_3 \in \mathbb{R}$ para los cuales el sistema admite solución.

1.7. Determinar para qué valores de a y b en \mathbb{R} cada uno de los siguientes sistemas tiene solución única, no tiene solución o tiene infinitas soluciones:

a)
$$\begin{cases} ax_1 + x_2 + x_3 = b \\ x_1 + ax_2 + x_3 = 1 \\ x_1 + x_2 + ax_3 = -1 \end{cases}$$

b)
$$\begin{cases} ax_1 + 2x_2 + ax_3 = 1\\ ax_1 + (a+4)x_2 + 3ax_3 = -2\\ -ax_1 - 2x_2 + x_3 = 1\\ (a+2)x_2 + (3a+1)x_3 = b \end{cases}$$

2. Matrices

- **2.8.** (*a*) Probar que, $\forall n \in \mathbb{N}$, $n \ge 2$, el producto de matrices en $K^{n \times n}$ no es conmutativo. (Sugerencia: probarlo para $K^{2 \times 2}$ y usar multiplicación por bloques.)
- (b) Caracterizar el conjunto $\{A \in K^{3\times3} / A.B = B.A \ \forall B \in K^{3\times3} \}.$
- **2.9.** (a) Exhibir una matriz $A \in \mathbb{R}^{2 \times 2}$ tal que $A^2 = -I$.
- (b) Sean A, B y $C \in K^{n \times n}$. Mostrar la falsedad de las siguientes afirmaciones $\forall n \geq 2$:

i)
$$(A.B)^2 = A^2B^2$$

ii)
$$A.B = 0 \Rightarrow A = 0$$
 ó $B = 0$

iii)
$$A.B = A.C$$
 y $A \neq 0 \Rightarrow B = C$

iv)
$$A.B = 0 \Rightarrow B.A = 0$$

$$v) A^j = 0 \Rightarrow A = 0$$

vi)
$$A^2 = A \Rightarrow A = 0$$
 ó $A = I_n$

(c) Dar condiciones necesarias y suficientes sobre A y $B \in K^{n \times n}$ para que:

i)
$$(A+B)^2 = A^2 + 2AB + B^2$$

ii)
$$A^2 - B^2 = (A - B).(A + B)$$

- **2.10.** Si A, $B \in K^{m \times n}$ y $A.x = B.x \ \forall x \in K^n$, probar que A = B.
- 2.11. Decidir si las siguientes matrices son inversibles y, en caso afirmativo, exhibir sus inversas:

$$a) \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$b) \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$c) \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 1 & -2 & 3 \\ 3 & 1 & -1 & 3 \end{pmatrix}$$

$$d) \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$e) \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

$$f) \begin{pmatrix} 2 & 1 & 3 & 1 & 2 \\ 0 & 5 & -1 & 8 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

2.12. Sea $A \in K^{n \times n}$ una matriz inversible y sean B , $C \in K^{n \times m}$. Probar:

a) i)
$$A.B = A.C \Rightarrow B = C$$

b) ii)
$$A.B = 0 \Rightarrow B = 0$$

2.13. Decidir si cada una de las siguientes afirmaciones es verdadera o falsa. Justificar:

- *a*) i) A, $B \in K^{n \times n}$ inversibles $\Rightarrow A + B$ es inversible.
- b) ii) Definición: Dada $A \in K^{n \times n}$, se llama **matriz transpuesta de** A a la matriz $A^t \in K^{n \times n}$ que cumple que $(A^t)_{ij} = (A)_{ji}, \forall 1 \leq i, j \leq n$. Entonces A inversible $\iff A^t$ inversible.
- *c*) iv) *A* nilpotente (es decir, $\exists j \in \mathbb{N} / A^j = 0$) \Rightarrow *A* no es inversible.
- **2.14.** Sea $A \in K^{n \times n}$ y sea $b \in K^n$. Probar que el sistema A.x = b tiene solución única \iff A es inversible.