Matemática II

Segundo Cuatrimestre — 2009

Práctica 5: Autovalores y diagonalización

1. *a*) Calcular el polinomio característico, los autovalores y autovectores de las siguientes matrices, considerando por separado el caso en que los coeficientes están en \mathbb{R} y en \mathbb{C} :

En todos los casos, $a \in \mathbb{K}$.

- b) Interprete cada una de las matrices del ítem anterior como la matriz de una transformación lineal $f: \mathbb{K}^n \to \mathbb{K}^n$ (con $\mathbb{K} = \mathbb{R}$ y \mathbb{C} , respectivamente) con respecto a la base canónica \mathcal{E} de \mathbb{K}^n , y encuentre, cuando es posible, una base \mathcal{B} de manera tal que $[f]_{\mathcal{B}}$ es diagonal; en ese caso, encuentre la matriz de cambio de base $C(\mathcal{E}, \mathcal{B})$.
- **2.** *a*) Sean $A, D \in M_n(k)$ y $C \in GL_n(k)$ tales que $A = CDC^{-1}$. Mostrar que $A^k = CD^kC^{-1}$ cualquiera sea $k \in \mathbb{N}$.
 - b) Calcular

$$\begin{pmatrix} -1 & -2 & 2 \\ 0 & 1 & 0 \\ -1 & -3 & -4 \end{pmatrix}^n$$

para cada $n \in \mathbb{N}$.

c) El objetivo de esta parte es encontrar una formula cerrada para la sucesión $(a_n)_{n\geq 0}$ tal que $a_0=a_1=1$ y, si $n\geq 0$,

$$a_{n+2} = a_{n+1} + a_n$$
.

Considere el endomorfismo $f:\mathbb{C}^2\to\mathbb{C}^2$ tal que, en la base canónica, está representado por la matriz

$$[f] = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

Muestre que, para cada $n \ge 0$ es

$$f\begin{pmatrix} a_{n+1} \\ a_n \end{pmatrix} = \begin{pmatrix} a_{n+2} \\ a_{n+1} \end{pmatrix}.$$

Encuentre ahora una base que diagonalice a f y use la primera parte de este ejercicio y el hecho de que

$$f^n \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} a_{n+1} \\ a_n \end{pmatrix}$$

para obtener una fórmula cerrada para a_n en esos casos.

- 3. *a*) Determinar que matrices de la forma $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ con $a, b, c \in k, k \in \{\mathbb{R}, \mathbb{C}\}$, son diagonalizables.
- [†]b) Mostrar que toda matrix $A \in M_2(\mathbb{C})$ es o bien diagonalizable o bien similar a una matrix de la forma $\begin{pmatrix} a & 0 \\ 1 & a \end{pmatrix}$ para algún $a \in \mathbb{C}$.
- **4.** *a*) Sea $A \in M_2(\mathbb{C})$ tal que todos sus coeficientes son reales y tal que $\binom{1+i}{2-i}$ es un autovector correspondiente al autovalor 1+3i. Mostrar que A es diagonalizable, encontrar una base de autovectores, y determinar A.
 - b) Sea $A \in M_2(\mathbb{R})$ tal que $\binom{1}{-1}$ es un autovector de autovalor $\sqrt{2}$, y tal que $\chi_A \in \mathbb{Q}[t]$. Determinar si A es diagonalizable. ¿Cuántas matrices satisfacen estas condiciones?.
- 5. *a*) Sea $A \in M_3(\mathbb{R})$ tal que tr A = -4. Calcular los autovalores de A sabiendo que los de $A^2 + 2A$ son -1, 3 y 8.
 - *b*) Sea $A \in M_4(\mathbb{R})$ tal que det A = 6, tiene a 1 y a -2 como autovalores, y tal que A 3 tiene a -4 como autovalor. Determinar los restantes autovalores de A
- **6.** Sea $A \in M_n(k)$. Mostrar que A y A^t tienen los mismos autovalores. Mostrar con un ejemplo que no sucede lo mismo con los autovectores.
- 7. Determinar los autovalores y autovectores de

$$D: f \in C^{\infty}(\mathbb{R}) \mapsto f' \in C^{\infty}(\mathbb{R}).$$

- 8. *a*) Sea $f \in \text{End}(V)$ un proyector de un espacio vectorial de dimensión finita V tal que dim im f = s. Determinar su polinomio característico, y mostrar que es diagonalizable.
 - b) Sea $f \in End(V)$ un endomorfismo nilpotente de índice de nilpotencia l. Determinar su polinomio característico. ¿Cuándo es diagonalizable?
 - c) Sea $f \in \text{End}(V)$ un endomorfismo de un espacio vectorial real tal que $f^2 + I = 0$. Mostrar que f es un automorfismo y que dim V es par.
- **9.** Un endomorfismo $f \in \text{End}(V)$ de rango 1 es diagonalizable sii ker $f \cap \text{im } f = 0$.
- **†10.** Sean $A ∈ M_{m,n}(k)$ y $B ∈ M_{n,m}(k)$. Mostrar que las matrices de bloques

$$\begin{pmatrix} AB & 0 \\ B & 0 \end{pmatrix} \qquad y \qquad \begin{pmatrix} 0 & 0 \\ B & BA \end{pmatrix}$$

de $M_{n+n}(k)$ son semejantes. Concluir que

$$\chi_{AB}(t) = \chi_{BA}(t)$$

11. Sea $A \in M_n(k)$ diagonalizable y sean $\lambda_1, \ldots, \lambda_n$ las raices de su polinomio característico contadas con multiplicidad. Mostrar que tr $A = \sum \lambda_i$ y que det $A = \prod \lambda_i$.