MATEMÁTICA II

Segundo Cuatrimestre — 2009

Práctica 1: Espacios vectoriales, generación, independencia lineal

Espacios vectoriales

- **1.** Sea *V* un espacio vectorial sobre *k*. Mostrar las siguientes afirmaciones:
- (a) $0 \cdot v = 0$, $\forall v \in V$;

(d) -(-v) = v, $\forall v \in V$;

(b) $\lambda \cdot 0 = 0$, $\forall \lambda \in k$;

(e) $\lambda \cdot v = 0 \Rightarrow \lambda = 0 \lor v = 0$;

(c) $(-1) \cdot v = -v$, $\forall v \in V$;

(*f*) -0 = 0.

2. (a) Sea X un conjunto no vacó. Sea $k^X = \{f : X \to k\}$ el conjunto de todas las funciones de X a k. Mostrar que las operaciones

$$(f+g)(x) = f(x) + g(x)$$
$$(\lambda \cdot f)(x) = \lambda f(x)$$

hacen de k^X un espacio vectorial sobre k.

- (b) ¿Bajo que condiciones es k^X de dimensión finita? Cuando se cumplen, encuentre una base.
- 3. Sea $X \subset \mathbb{R}$ un abierto no vacó. Muestre que los siguientes conjuntos son subespacios vectoriales de \mathbb{R}^X sobre \mathbb{R} .
- (a) $C^{\infty}(X) = \{f : X \to \mathbb{R} : f \text{ es infinitamente diferenciable}\};$
- (h) \mathbb{R}^X .
- (c) $C^0(X) = \{f : X \to \mathbb{R} : f \text{ es continua}\};$
- (*d*) $L = \{ f \in C^1(X) : \forall x \in X, f'(x) = f(x) \};$
- (e) $C^0(X) = \{ f : X \to \mathbb{R} : f \text{ es derivable} \};$
- (f) $V(x_0) = \{ f \in C^1(X) : \forall x \in X, f(x_0) = 3f'(x_0) \} \text{ para } x_0 \in X.$

Determine todas las inclusiones entre estos espacios.

- **4.** Sea X un conjunto no vacío, V un espacio vectorial sobre k y consideremos el conjunto $V^X = \{f : X \to V\}$ de todas las funciones de X en V.
- (a) Mostrar que es posible definir sobre V^X , imitando lo hecho en el ejercicio \mathbf{z} , operaciones de suma y de producto por elementos de k de forma natural, de manera de que V^X resulte, con respecto a esas operaciones, un espacio vectorial sobre k.
- (b) Si $Y \subset X$ es un subconjunto no vacío, ¿puede verse a V^Y como subespacio de V^X ?
- (c) Si $W \subset V$ es un subespacio vectorial, ; puede verse a W^X como subespacio de V^X ?
- **5.** Sea $A \in M_{n,m}(k)$ una matrix $n \times m$ con coeficientes en k y sea

$$S = \{x \in k^m : Ax = 0\}$$

el conjunto de soluciones del sistema lineal homogéneo asociado a A. Muestre que S es un subespacio vectorial de k^m .

- **6.** Sean *S* y *T* subespacios de un *k*-espacio vectorial *V*.
- (a) $S \cap T$ es un subespacio de V.
- † (*b*) Si *S* ∪ *T* es un subespacio de *V* entonces *S* ⊂ *T* ó *T* ⊂ *S*.
- 7. Decidir cuales de los siguientes subconjuntos S son sub-k-espacios de V
- (a) $S = \{v \in \mathbb{R}^3 : v = a \cdot (1,0,0) + b \cdot (1,1,1), \text{ con } a, b \in \mathbb{R}\}, V = \mathbb{R}^3, k = \mathbb{R};$
- (b) $S = \{ai : a \in \mathbb{R}\}, V = \mathbb{C}, k = \mathbb{R};$
- (c) $S = \{ai : a \in \mathbb{R}\}, V = \mathbb{C}, k = \mathbb{C};$
- (d) $S = \{ f \in k[X] : f = 0 \lor \deg f \ge 2 \}, V = k[X];$
- (e) $S = \{ f \in k[X] : f = 0 \lor \deg f \le 5 \}, V = k[X];$
- (f) $S = \{M \in M_{4,4}(k) : M^t = M\}, V = M_{4,4}(k);$
- (g) $S = \{M \in M_{4,4}(k) : \text{tr } M = 0\}, V = M_{4,4}(k);$
- (h) $S = \{ f \in C^{\infty}(\mathbb{R}) : f''(1) = f(2) \}, V = \mathbb{R}^{\mathbb{R}}, k = \mathbb{R}.$
- 8. Mostrar que los siguientes conjuntos no son sub- \mathbb{R} -espacios vectoriales de \mathbb{R}^3 :
- (a) $\{(x,y,z) \in \mathbb{R}^3 : x+y+z=1\}.$
- (b) $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}.$
- (c) $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 z^2 < 0\}.$
- (*d*) $\{(x,y,z) \in \mathbb{R}^3 : xyz = 0\}.$
- 9. Sea $V = \mathbb{R}^+$, y consideremos la operación + definida sobre V por

$$+: (u,v) \in V \times V \mapsto uv \in V$$
,

donde uv es el producto usual calculado en \mathbb{R}^+ , y la acción de \mathbb{R} sobre V dada por

$$\cdot: (\lambda, v) \in \mathbb{R} \times V \mapsto v^{\lambda} \in V.$$

Muestre que $(V, +, \cdot)$ es un \mathbb{R} -espacio vectorial.

Conjuntos generadores

10. (a) Encontrar al menos tres sistemas de generadores del subespacio

$$S = \langle (1, -1, 2, 1), (3, 1, 0, -1), (1, 1, -1, -1) \rangle \subset \mathbb{R}^4.$$

- (b) $\chi(2,1,3,5)$ está en S?
- (c) $Es S \subset \{x \in \mathbb{R}^4 : x_1 x_2 x_3 = 0\}$?
- (d) ¿Es $\{x \in \mathbb{R}^4 : x_1 x_2 x_3 = 0\} \subset S$?
- 11. Determine dos sistemas de generadores para cada uno de los siguientes espacios vectoriales:
- (a) k^n sobre k;
- (b) $k[X]_n = \{ f \in k[X] : f = 0 \lor \deg f \le n \}$ sobre k;
- (c) k[X] sobre k;
- (*d*) \mathbb{C}^n , con $k = \mathbb{R}$;
- (e) $\{(x,y,z) \in \mathbb{R}^3 : x+y-z=0, x-y=0\}, \text{ con } k=\mathbb{R};$
- (f) $\{(x,y,z) \in \mathbb{R}^3 : x+y-z=0, x-y=0\}$, con k arbitrario;
- (g) $\{f \in k[X]_4 : f(1) = 0, f(2) = f(3)\}, \text{ con } k = \mathbb{Q};$

- (h) $\{f \in C^{\infty}(\mathbb{R}) : f''' = 0\}$, con $k = \mathbb{R}$.
- **12.** Sea *X* un conjunto no vacío.
- (a) Si X es finito, determine un sistema de generadores para k^X .
- (b) Sea

$$k_0^X = \{ f \in k^X : \text{existe } Y \subset X \text{ finito tal que } f|_{X \setminus Y} \text{ es constante} \},$$

- el conjunto de las funciones sobre X que son constantes fuera de un conjunto finito. Encuentre un sistema de generadores para k_0^X .
- $^{\dagger}(c)$ Si X es finito, y V es un k-espacio vectorial, determine un sistema de generadores para $V^{\rm X}$.
- [†](*d*) ¿Puede encontrar un sistema de generadores para $k^{\mathbb{N}}$?

Dependencia lineal y bases

- 13. En este ejercicio todos los espacios vectoriales son reales. Decidir si los siguientes conjuntos son linealmente independientes o no. En caso no serlo, determine que elementos pueden eliminarse de manera que el conjunto residual sea linealmente independientes y genere el mismo subespacio que el conjunto original. Finalmente, complete cada conjunto a una base del espacio ambiente.
- (a) $\{(1,2,3),(1,2,4),(1,2,5)\}$ en \mathbb{R}^3 .
- (b) $\{(1,0,-1),(1,1,2),(0,1,1)\}$ en \mathbb{C}^3 .
- (c) $\{(1,1,2),(1,4,3),(3,3,3),(e,\pi,\sqrt{2})\}$ en \mathbb{R}^3 .
- (*d*) $\{(1,1,1),(1,\alpha,\alpha^2),(1,\beta,\beta^2)\}$ en \mathbb{R}^3 con $\alpha,\beta\in\mathbb{R}$.
- (e) $\{(1,1,1,1), (1,\alpha,\alpha^2,\alpha^3), (1,\beta,\beta^2,\beta^3)\}$ en \mathbb{R}^4 con $\alpha,\beta,\gamma \in \mathbb{R}$.
- (f) $\{(\frac{1}{2}(X-1)(X-2),(X-1)(X-3),(X-2)(X-3)\}\$ en $\mathbb{R}[X]_2$.
- (g) $\{\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & i \\ 1 & i \end{pmatrix}, \begin{pmatrix} 0 & i \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\}$ en $M_4(\mathbb{C})$.
- 14. Determinar todos los $\lambda \in k$ de manera que los siguientes conjuntos resulten linealmente independientes:
- (a) $\{(1,2,\lambda),(1,1,1),(0,1,1-\lambda)\}$ en \mathbb{R}^3 .
- (b) $\{\lambda X^2 + X, -X^2 + \lambda, \lambda^2 X\}$ en $\mathbb{R}[X]_4$.
- (c) $\{\begin{pmatrix} 1 & \lambda \\ -1 & 2 \end{pmatrix}, \begin{pmatrix} \lambda & 1 \\ 0 & 2\lambda \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}\}$ en $M_4(\mathbb{C})$.
- 15. Encuentre bases para los siguientes espacios vectoriales
- (a) $V = \{A \in M_{n \times n}(\mathbb{R}) : A = A^t\}$ sobre \mathbb{R} .
- (b) $V = \{A \in M_{n \times n}(\mathbb{C}) : A = \bar{A}^t\}$ sobre \mathbb{R} .
- (c) $V = \{A \in M_{n \times n}(\mathbb{C}) : \operatorname{tr} A = 0\}$ sobre \mathbb{R} .
- (*d*) $V = \{(a_n)_{n \in \mathbb{N}_0} \in \mathbb{R}^{\mathbb{N}_0} : \forall n \in \mathbb{N}_0, a_{n+1} = 2a_n\} \text{ sobre } \mathbb{R}.$
- (e) $V = \{(a_n)_{n \in \mathbb{N}_0} \in \mathbb{R}^{\mathbb{N}_0} : \forall n \in \mathbb{N}_0, a_{n+2} = a_{n+1} + a_n\} \text{ sobre } \mathbb{R}.$
- (*f*) $V = \{ p \in \mathbb{R}[X]_n : p(0) = p(1) = 0 \}$ sobre \mathbb{R} .
- (*g*) $V = \{ p \in \mathbb{R}[X]_n : p(0) = p'(1) = 0 \}$ sobre \mathbb{R} .
- [†]**16.** Sea $v_i = (a_{i1}, \dots, a_{in}) \in \mathbb{R}^n$ si $1 \le i \le n$, y supongamos que $a_{ij} \le 0$ si $i \ne j$, y que $\sum_{j=1}^n a_{ij} > 0$. Mostrar que $\{v_i\}_{1 \le i \le n}$ es una base de \mathbb{R}^n .
- **17.** Sea $F = \{f_i\}_{i \in \mathbb{N}_0} \subset \mathbb{R}[X]$ tal que deg $f_i = i$ si $i \in \mathbb{N}_0$. Mostrar que F es una base de $\mathbb{R}[X]$.

18. Sea $\alpha_i \in k$ para $1 \le i \le n$, y sea

$$v_i = (1, \alpha_i, \alpha_i^2, \dots, \alpha_i^{n-1}) \in k^n.$$

Determinar cuando $\{v_1, \ldots, v_n\}$ es linealmente independiente en k^n .

- **19.** Sea V un espacio vectorial sobre k.
- (a) $\{v_1, \ldots, v_i, \ldots, v_j, \ldots, v_n\} \subset V$ es linealmente independiente sii el conjunto $\{v_1, \ldots, v_j, \ldots, v_i, \ldots, v_n\}$ es linealmente independiente.
- (b) Si $\lambda \in k \setminus \{0\}$, $\{v_1, \dots, v_i, \dots, v_n\} \subset V$ es linealmente sii el conjunto $\{v_1, \dots, \lambda v_i, \dots, v_n\}$ es linealmente independiente.
- (c) Si $\lambda \in k$, $\{v_1, \ldots, v_i, \ldots, v_j, \ldots, v_n\} \subset V$ es linealmente independiente sii el conjunto $\{v_1, \ldots, v_i + \lambda v_j, \ldots, v_j, \ldots, v_n\}$