ÁLGEBRA II Segundo Cuatrimestre — 2009

Práctica 9: Teoremas clásicos de estructura

1. Módulos y anillos semisimples

- **1.1.** Sea A un anillo y sea M un A-módulo simple. Entonces o bien M, considerado como grupo abeliano, es isomorfo a una suma directa de copias de \mathbb{Q} , o bien existe $p \in \mathbb{N}$ primo tal que M es, considerado como grupo abeliano, isomorfo a una suma directa de copias de \mathbb{Z}_p .
- **1.2.** (a) Si A es un anillo semisimple y $B \subset A$ es un subanillo, ¿es B necesariamente semisimple?
- (b) Si A es un anillo semisimple e $I \triangleleft A$ es un ideal bilátero, entonces A/I es semisimple.
- 1.3. Anillos de matrices.
- (a) Sean A y B anillos y n, $m \in \mathbb{N}$. Entonces $M_m(M_n(A)) \cong M_{mn}(A)$ y $M_n(A \times B) \cong M_n(A) \times M_n(B)$.
- (b) Si A es un anillo semisimple y $n \in \mathbb{N}$, entonces $M_n(A)$ es semisimple.
- (c) Sea A un anillo y sea $n \in \mathbb{N}$. Sea P el conjunto de vectores *fila* de n componentes en A y sea Q el conjunto de vectores *columna* de n componentes en A. Entonces P es un A- $\mathsf{M}_n(A)$ -bimódulo y Q es un $\mathsf{M}_n(A)$ -A-bimódulo con acciones de $\mathsf{M}_n(A)$ inducidas por el producto matricial.
- (*d*) Sea A un anillo. Si existe $n \in \mathbb{N}$ tal que $M_n(A)$ es semisimple, entonces el anillo A mismo es semisimple.
- **1.4.** Sea A un anillo, M un A-módulo finitamente generado. Si $B = \operatorname{End}_A(M)$ y A es semisimple, entonces B es semisimple. Notemos que esto tiene como caso particular a la segunda parte del ejercicio **1.3**, ya que si $M = A^n$, entonces $\operatorname{End}_n(M) \cong \operatorname{M}_n(A)$.
- **1.5.** (a) Un anillo artiniano a izquierda sin divisores de cero es un anillo de división.
- (*b*) Si *A* es un anillo sin divisores de cero tal que $M_n(A)$ es semisimple para algún $n \in \mathbb{N}$, entonces *A* es un anillo de división.

2. Álgebras de grupos cíclicos

Si $n \in \mathbb{N}$, sea G_n un grupo cíclico de orden n y sea $g_n \in G_n$ un generador.

- [1] **2.1.** Sea k un cuerpo de característica cero. Si $kG_n \cong \mathsf{M}_{n_1}(D_1) \times \cdots \times \mathsf{M}_{n_r}(D_r)$ es la factorización de kG_n como k-álgebra dada por el teorema de Wedderburn, de manera que es $r \in \mathbb{N}$, $n_1, \ldots, n_r \in \mathbb{N}$ y D_1, \ldots, D_r son k-álgebras de división, entonces $n_1 = n_2 = \cdots = n_r = 1$ y D_i es un cuerpo para cada $i \in \{1, \ldots, r\}$.
 - En particular, hay exactamente r isoclases de kG_n -módulos simples y si S_1, \ldots, S_n son representantes de estas clases, hay un isomorfismo de kG_n -módulos $kG_n \cong \bigoplus_{i=1}^r S_i$.
- 2.2. Sea k un cuerpo de característica cero. Sea M un kG_n -módulo simple y sea $a: m \in M \mapsto g_n m \in M$ la multiplicación por g_n . Entonces $a \in \operatorname{End}_{kG_n}(M)$ porque kG_n es un anillo conmutativo. Sea $\mu \in k[X]$ el polinomio minimal de a sobre k. Muestre que μ es irreducible en k[X]. Además, si $k = \mathbb{Q}$, entonces μ tiene coeficientes enteros.
 - **2.3.** álgebras de grupos cíclicos sobre \mathbb{C} . Sea $\Omega_n \subset \mathbb{C}^\times$ el subgrupo multiplicativo de \mathbb{C}^\times de las raíces n-ésimas de la unidad.

- (a) La aplicación $\phi: \chi \in \mathsf{hom}_{\mathsf{Grp}}(G_n, \Omega_n) \mapsto \chi(g_1) \in \Omega_n$ es un isomorfismo de grupos abelianos. [1] Esto implica que el conjunto $\hat{G}_n = \text{hom}_{Grp}(G_n, \Omega_n)$ tiene exactamente n elementos; llamemoslos
- (*b*) Muestre que si χ , $\rho \in \hat{G}_n$, entonces [1]

$$\sum_{g \in G_n} \chi(g) \rho(g^{-1}) = \delta_{\chi, \rho}.$$

Sugerencia. Multiplique el miembro izquierdo de esta igualdad por $(1 - \chi(g_1)\rho(g_1^{-1}))$.

[1] (c) Si
$$\chi \in \hat{G}_n$$
, sea $e_{\chi} = \frac{1}{n} \sum_{g \in G_n} \chi(g^{-1})g \in \mathbb{C}G_n$. Entonces si $\chi, \rho \in \hat{G}_n$,

$$e_{\chi}^2 = e_{\chi},$$
 $e_{\chi}e_{\rho} = 1,$ cuando $\chi \neq \rho,$

 $\sum_{\chi \in \hat{G}_{\tau}} e_{\chi} = 1.$

- (*d*) Consideremos el anillo $A = \mathbb{C} \times \cdots \times \mathbb{C}$ con *n* factores y sean $x_1, \ldots, x_n \in A$ los elementos de [1] la base canónica. Hay un isomorfismo de anillos $\phi: \mathbb{C}G_n \to A$ tal que $\phi(e_{\chi_i}) = x_i$ si $1 \leq i \leq n$. Describa representantes para cada isoclase de $\mathbb{C}G_n$ -módulos simples.
 - **2.4.** álgebras de grupos cíclicos sobre Q.
- (a) Sea p un número primo. Si $0 \le k < l$, sea $\phi_{k,l} : \mathbb{Q}G_{p^l} \to \mathbb{Q}G_{p^k}$ el único morfismo de anillos tal que [1] $\phi_{k,l}(g_{p^l}) = g_{p^k}$. Entonces $\ker \phi_{k,l} = \langle g_{p^l}^{p^k} - 1 \rangle$. Además, si $0 \le r < k < l$, es $\phi_{r,l} = \phi_{r,k} \circ \phi_{k,l}$.
- (b) Sea p un número primo y pongamos $\Phi_p = \sum_{i=0}^{p-1} X^i \in \mathbb{Z}[X]$. Entonces [1]

$$X^{p^l} - 1 = (X - 1) \prod_{i=0}^{l-1} \Phi_p(X^{p^i})$$

y cada uno de los factores $\Phi_p(X^{p^i})$ con $0 \le i < l$ es irreducible en $\mathbb{Q}[X]$.

- (c) Sea p un número primo impar. Sea $l \ge 1$ y sea M un $\mathbb{Q}G_{pl}$ -módulo simple. Si dim $\mathbb{Q}M < p^l p^{l-1}$, [3] entonces existe k < l y un $\mathbb{Q}G_{p^k}$ -módulo simple N tal que $M \cong \phi_{k,l}^*(N)$.
- Sea p un número primo impar. Notemos M_0 al único $\mathbb{Q}G_1$ -módulo simple. Entonces, para todo [3] $l \geq 1$ existe, a menos de isomorfismo, un único $\mathbb{Q}G_{v^l}$ -módulo simple M_l tal que dim $\mathbb{Q}M_l \geq$ $p^l-p^{l-1}.$ Además, se tiene que ullet dim $_{\mathbb{Q}}M_l=p^l-p^{l-1};$ y

 - $\mathbb{Q}G_{p^l} \cong \bigoplus_{l=0}^{l-1} \phi_{i,l}^*(M_i) \oplus M_l$.

Sugerencia. Haga inducción con respecto a l.

- (e) Enuncie y pruebe enunciados análogos a los dos últimos para p = 2. [3]
- (f) Sea $p \in \mathbb{N}$ primo, $l \ge 1$ y sea M_l un $\mathbb{Q}G_{p^l}$ -módulo simple de dimensión $p^l p^{l-1}$. Entonces M_l [1] posee una base con respecto a la cual la matriz de la aplicación $a:m\in M\mapsto g_{p^l}m\in M$ es la matriz compañera del polinomio $\Phi_p(X^{p^l})$.
- (g) Sea $f \in \mathbb{Q}[X]$ un polinomio múnico irreducible y sea $a \in M_n(\mathbb{Q})$ su matriz compañera. Entonces, [2+] si $C(a) \subset M_n(\mathbb{Q})$ es el centralizador de a en $M_n(\mathbb{Q})$, hay un isomorfismo $C(a) \cong \mathbb{Q}[X]/(f)$.
- Sea $p \in \mathbb{N}$ primo. Para cada $l \in \mathbb{N}$, sea $\zeta_l \in \mathbb{C}$ una raíz primitiva p^l -ésima de la unidad y sea $\mathbb{Q}(\zeta_l)$ [1+] el menor subcuerpo de $\mathbb C$ que la contiene. Entonces hay un isomorfismo de álgebras

$$\mathbb{Q}G_{p^l}\cong \mathbb{Q}\times \mathbb{Q}(\zeta_1)\times \cdots \times \mathbb{Q}(\zeta_l).$$

3. álgebras de grupo

- **3.1.** Muestre que si $k \in \{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$, entonces $kS_3 \cong k \times k \times M_2(k)$.
- **3.2.** Encuentre la descomposición de Wedderburn para kD_4 con $k \in \{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$ si $D_4 = \langle s, t : s^2 = t^4 = 1, sts = t^{-1} \rangle$.
- **3.3.** Sea $Q = \{\pm 1, \pm i, \pm j, \pm k\}$ el grupo de los cuaterniones unitarios. Muestre que

$$\begin{split} \mathbb{Q}Q &\cong \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{H}_{\mathbb{Q}}, \\ \mathbb{R}Q &\cong \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{H}_{\mathbb{R}}, \end{split}$$
y
$$\mathbb{C}Q &\cong \mathbb{C} \times \mathbb{C} \times \mathbb{C} \times \mathbb{C} \times \mathsf{M}_{2}(\mathbb{C}).$$

Aquí $\mathbb{H}_{\mathbb{R}}$ es el anillo de los cuaterniones reales y $\mathbb{H}_{\mathbb{Q}}$ es el análogo definido sobre \mathbb{Q} .

4. Dominios de ideales principales

- **4.1.** Mostrar que $\mathbb{Z}[\sqrt{10}]$ y $\mathbb{Z}[\sqrt{-10}]$ no son dominios de factorización única. Encontrar ideales no principales en estos anillos.
- **4.2.** (a) Mostrar que $\mathbb{Z}[\sqrt{d}]$ es euclideano si $d \in \{-2, 2, 3\}$.
- (b) Factorizar a $16 + 11\sqrt{2}$ como producto de elementos irreducibles del anillo $\mathbb{Z}[\sqrt{2}]$.
- (c) Un número primo $p \in \mathbb{Z}$ es irreducible en $\mathbb{Z}[\sqrt{-2}]$ sii -2 es un cuadrado en \mathbb{Z}_p . Dé ejemplos de factorizaciones en $\mathbb{Z}[\sqrt{-2}]$ de números primos de \mathbb{Z} .
- **4.3.** Sea $p \in \mathbb{N}$ un número primo, $\mathfrak{p}=(p)$ el ideal primo correspondiente y sea $\mathbb{Z}_{\mathfrak{p}}$ la localización de \mathbb{Z} en \mathfrak{p} . Describir todos sus ideales. Mostrar que $\mathbb{Z}_{\mathfrak{p}}$ es un dominio de ideales principales con un único ideal maximal y encontrar un conjunto completo de elementos primos no asociados dos a dos.
- **4.4.** Sea A un dominio de ideales principales y sea M un A-módulo finitamente generado. Mostrar que
- (a) M es de torsión sii $hom_A(M, A) = 0$; y
- (b) M es indescomponible sii o bien $M\cong A$ o bien existe $p\in A$ irreducible y $n\in \mathbb{N}$ tal es que $M\cong A/(p^n)$.

¿Qué puede decir cuando M no es finitamente generado?

- **4.5.** Sea $p \in \mathbb{N}$ un número primo. Encuentre todos los grupos abelianos de orden p^2 , p^3 , p^4 y p^5 .
- **4.6.** Sea G un grupo abeliano finito y sea $p \in \mathbb{N}$ un número primo tal que $p \mid |G|$. Entonces el número de elementos de orden p de G es coprimo con p.
- 4.7. (a) Para los siguientes grupos abelianos, dar la factorización del teorema de estructura:
 - i) $\mathbb{Z}_4 + \mathbb{Z}_6 + \mathbb{Z}_9$;
 - ii) $\mathbb{Z}_2 + \mathbb{Z}_2 + \mathbb{Z}_8 + \mathbb{Z}_{14}$;
 - iii) $\mathbb{Z}_2 + \mathbb{Z} + \mathbb{Z}_{49} + \mathbb{Z}$;
 - iv) $\mathbb{Z}_{12} + \mathbb{Z}_{21} + \mathbb{Z} + \mathbb{Z} + \mathbb{Z}_{20} + \mathbb{Z}_9 + \mathbb{Z}_7$.
- (*b*) Determinar la factorización canónica de un grupo abeliano *G* de orden 36 que tiene exactamente 2 elementos de orden 3 y que no tiene elementos de orden 4.
- (c) Determinar la factorización canónica de un grupo abeliano G de orden 225 que tiene por lo menos 40 elementos de orden 15 y tal que todo subgrupo de orden 9 es isomorfo a $\mathbb{Z}_3 \oplus \mathbb{Z}_3$.

- **4.8.** Sea $G \subset \mathbb{Z}^n$ un subgrupo.
- (a) $[\mathbb{Z}^n : G]$ es finito sii G tiene rango n.
- (b) Si G tiene rango n y $\{g_1, \ldots, d_n\}$ es una base de G, sea $M \in M_n(\mathbb{Z})$ la matriz que tiene a los g_i como columnas. Mostrar que $[\mathbb{Z}^n : G] = |\det M|$.