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Abstract. We find a generalization of the restricted PBW ba-
sis for pointed Hopf algebras over abelian groups constructed by
Kharchenko. We obtain a factorization of the Hilbert series for a
wide class of graded Hopf algebras. These factors are parametrized
by Lyndon words, and they are the Hilbert series of certain graded
Hopf algebras.
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1. Introduction

Hopf algebras [Swe69] are far from being classified. Up to now there
are two main directions of study: semisimple and pointed Hopf alge-
bras. This paper is mainly a contribution to the latter, although all
considerations are performed in a more general context. Specifically,
we work with Hopf algebras H generated by a Hopf subalgebra H0 and
a vector space V satisfying properties (4.2) and (4.3) below. This in-
cludes in particular pointed Hopf algebras generated by group-like and
skew-primitive elements. In Theorem 4.12 we prove a factorization re-
sult about the Hilbert series of gr H. Moreover, with Theorem 4.19 we
show that to each factor one can associate in a natural way a graded
Hopf algebra which projects onto a Nichols algebra. These are the main
results of the present paper.

Kharchenko [Kha99] proved that when H0 is the group algebra of
an abelian group and it acts on V by characters, H admits a re-
stricted PBW basis. The PBW generators in this basis are labelled
by Lyndon words on an alphabet given by a set of skew-primitive ele-
ments. Examples, where H0 is the group algebra of a nonabelian group
[MS00] [Gra00b] [AG03], indicate that in general one can not expect
Kharchenko’s result to hold in its strong form. Nevertheless, by extend-
ing his ideas we were able to construct a basis of gr H using ordered
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products of subquotients of it. In the particular case of Kharchenko’s
setting one recovers the PBW basis. This is possible because graded
braided Hopf algebras generated by one primitive element are easy to
classify. The difficulty in the more general setting arises from the fact
that the structure of graded braided Hopf algebras generated by an
irreducible Yetter–Drinfel’d module over H0 is not known.

A generalization of Kharchenko’s PBW theorem in a different direc-
tion was done by Ufer [Ufe04]. Instead of character Hopf algebras (i.e.,
Hopf algebras of diagonal type) he considers braided Hopf algebras with
“triangular” braidings. On the one hand Ufer is able to give a restricted
PBW basis. On the other hand some information about the relations
of the Hopf algebra is lost. Although we believe that it is possible to
obtain a generalization of Ufer’s approach to our context, we stick to
a simpler setting for two reasons. First, valuable additional informa-
tion can be obtained in our starting context. Second, the proofs in the
triangular case would be even more technical, obscuring the essential
arguments.

The proof of the main results of the present paper was possible due
to taking advantage both from the lexicographic and the inverse lexico-
graphic order on the set of monotonic super-words built from an alpha-
bet of Lyndon words. This leads in a natural way to the construction of
subquotients of a graded Hopf algebra. In this way Kharchenko’s PBW
theorem becomes more transparent. Note that Ufer’s more technical
proof stems from the fact that in his setting the inverse lexicographic
order on the set of monotonic super-words can not be used.

Kharchenko’s PBW theorem turned out to be essential in the con-
struction of the Weyl groupoid [Hec06] corresponding to a Nichols al-
gebra of diagonal type. This groupoid played the crucial role in the
classification of such Nichols algebras [Hec04]. In turn, the knowledge
of these Nichols algebras is important for example for the lifting method
of Andruskiewitsch and Schneider [AS98] to classify pointed Hopf al-
gebras. We consider the factorization theorem in this paper to be an
important step towards the generalization of the Weyl groupoid to a
wider class of Nichols algebras.

In this paper k is an arbitrary field, and all algebras have k as their
base field. The symbol ⊗ refers to tensor product over k. We will write
m, ∆, ε and S for the product, coproduct, counit, and the antipode of
a Hopf algebra.

The authors thank the referee for his helpful comments, especially
those regarding Proposition 2.3.
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2. Preliminaries

In this section we prove two general results about (braided) bialge-
bras, for which we did not find references in the literature.

Proposition 2.1. Let A = (A, m, ∆) be a bialgebra, B ⊆ A a subalge-
bra and I ⊆ B ∩ ker(ε) an ideal of B. Suppose furthermore that

(2.2) ∆(B) ⊆ B ⊗B + I ⊗ A, ∆(I) ⊆ B ⊗ I + I ⊗ A.

Then the bialgebra structure on A induces a bialgebra structure on B/I.

Proof. Notice first that B/I is an algebra. Let us take ∆̄ : B →
A/I ⊗ A/I as ∆̄ = (π ⊗ π)∆i, for π : A → A/I the projection and
i : B → A the inclusion. By using the first formula in (2.2), one gets
that ∆̄(B) ⊆ B/I ⊗ B/I. By using the second formula in (2.2), one
gets that ∆̄(I) = 0. Then ∆̄ induces a map ∆̃ : B/I → B/I ⊗ B/I.
Also, ε induces a map ε̃ : B/I → k. It is clear that ∆̃ is coassociative
and ε̃ is a counit for ∆̃, whence B/I is a coalgebra. It is immediate
that ε̃ is an algebra map. We must prove then that ∆̃ is an algebra
map. For a, b ∈ B we compute

∆̃(π(a)π(b)) = ∆̃(π(ab)) = (π ⊗ π)∆(ab) = (π ⊗ π)(a(1)b(1) ⊗ a(2)b(2))

= π(a(1)b(1))⊗ π(a(2)b(2)) = π(a(1))π(b(1))⊗ π(a(2)b(2))

= π(a(1))π(b(1))⊗ π(a(2))π(b(2)).

In the first equality above we used that π|B : B → B/I is an algebra
map, and the fifth one is obtained from a(1)b(1)⊗ a(2)b(2) ∈ B⊗A. The
last equality holds by π(a(1))π(b(1))⊗ a(2)b(2) ∈ B/I ⊗B. �

For the notion of braided Hopf algebras one may consult for example
[Tak00].

Proposition 2.3. Let π : R → T be a surjective map of braided N0-
graded Hopf algebras (either in the sense of Takeuchi or in a Yetter–
Drinfel’d category) which is an isomorphism in degree 0, and assume
that R, T are finite dimensional in each degree. Further, suppose that
ker π is a categorical braided subspace of R, that is c(ker π ⊗ R) ⊂
R⊗ ker π, c(R⊗ ker π) ⊂ ker π ⊗R. Then the quotient η(R, t)/η(T, t)
of Hilbert series is again a series with nonnegative integer coefficients.

Proof. Let Rn and Tn, where n ∈ N0, denote the homogeneous sub-
spaces of R and T , respectively, of degree n. Since π is a graded map
and an isomorphism in degree 0, the ideal ker π is homogeneous and
is contained in ⊕∞

n=1 Rn. Moreover, π is an algebra map, and hence
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(ker π)2 ⊂ ker π. Thus (ker π)n+1 ⊂ ker πn for all n ∈ N0, where
(ker π)0 := R. Set

R′(i) :=(ker π)i/(ker π)i+1,

R′
n(i) :=((ker π)i ∩Rn)/((ker π)i+1 ∩Rn), where i, n ∈ N0.

Since (ker π)n ⊂ ⊕∞
i=n Ri, one obtains that R and

R′ :=
∞
⊕
i=0

R′(i), where R′(0) = (ker π)0/(ker π)1 = R/(ker π) ' T,

(2.4)

are isomorphic as graded vector spaces. Here the grading of R′ is
induced by the one of R, that is

R′
n =

n
⊕
i=0

R′
n(i).

The algebra structure of R induces two algebra gradings on R′:

R′
mR′

n ⊂ R′
m+n, R′(m)R′(n) ⊂ R′(m + n) for all m, n ∈ N0.

Next we prove that R induces a braided Hopf algebra structure on R′.
Let (cR, ∆R, SR) and (cT , ∆T , ST ) denote the triples consisting of the
braiding, the coproduct, and the antipode of R and T , respectively. Let
ρn : R → R/(ker π)n+1, where n ∈ N0, be the canonical projections.
Define ∆R′,n : R → ⊕n

i=0 ρi(R)⊗ ρn−i(R) by setting

∆R′,n :=
n
⊕
i=0

(ρi ⊗ ρn−i)∆R.

Since ker π is a coideal of R, that is ∆R(ker π) ⊂ R⊗ker π +ker π⊗R,
one gets

∆R′,n((ker π)n+1) = 0,

∆R′,n((ker π)n) ⊂
n
⊕
i=0

R′(i)⊗R′(n− i).

Thus the family of maps ∆R′,n induces a coproduct ∆R′ on R′ (the
coassociativity and compatibility with the counit being obvious) via
the definition ∆R′|R′(n) := ∆R′,n. We will show that ∆R′ is an algebra
homomorphism, but to do so we have to consider first the braiding on
R′.

Recall that ker π is a coideal, and by assumption a categorical braided
subspace of R. Hence by induction on m and n one gets

cR((ker π)m ⊗ (ker π)n) ⊂ (ker π)n ⊗ (ker π)m, m, n ∈ N0.

Having this, one shows, with the technique used in the construction of
∆R′ , that cR induces a braiding cR′ on R′ with the property

cR′(R′(m)⊗R′(n)) ⊂ R′(n)⊗R′(m), m, n ∈ N0.
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Now we conclude that ∆R′ is an algebra map. Indeed, for x ∈ (ker π)m,
y ∈ (ker π)n one gets

∆R′(ρm(x)ρn(y)) = ∆R′,m+n(xy) =

=
m+n∑
i=0

(ρi ⊗ ρm+n−i)(m⊗m)(id⊗cR ⊗ id)(x(1) ⊗ x(2) ⊗ y(1) ⊗ y(2)) =

=
m∑

i=0

n∑
j=0

(m⊗m)(id⊗cR′ ⊗ id)

(ρi(x(1))⊗ ρm−i(x(2))⊗ ρj(y(1))⊗ ρn−j(y(2))) =

=
m∑

i=0

n∑
j=0

(ρi(x(1))⊗ ρm−i(x(2))) (ρj(y(1))⊗ ρn−j(y(2))) =

= ∆R′(ρm(x))∆R′(ρn(y)).

Analogously, SR induces an antipode SR′ of R′. This proves that R′ is
a graded braided Hopf algebra.

The fundamental theorem for Hopf modules [Mon93, 1.9.4] implies
that a Hopf algebra which admits a projection onto a Hopf subalgebra
is isomorphic (via the multiplication map) to the tensor product of the
right coinvariants and the Hopf subalgebra. The braided version of this
statement holds in our setting: m : R′co T ⊗ T → R′ is an isomorphism
of graded vector spaces (even as right T -module comodules), where
T has its own grading and R′ has the grading induced by the one of
R. Indeed, let π0 denote the projection of R′ to T = R′(0) which
maps R′(m) to 0 for all m ≥ 1. Then the map (id⊗π0)∆R′ is a right
coaction of T on R′, and the map x 7→ m(id⊗SR′ ◦ π0)∆R′(x) is a
surjective map from R′ to R′co T (because its restriction to R′co T is the
identity). Further, R′ ' R′co T ⊗ T as graded vector spaces, which
implies the statement. �

Remark 2.5. Suppose that π : R → T in the preceding proposition
is a surjective map of braided N0-graded Hopf algebras in a Yetter–
Drinfel’d category H0

H0
YD, where H0 is a Hopf algebra with bijective

antipode, and both R and T are equipped with the canonical braiding
(or both with the inverse of the canonical braiding). Then ker π is an
object in the Yetter–Drinfel’d category, too, and the inclusion is a map
in the category. Hence, ker π is automatically a categorical braided
subspace of R.

Remark 2.6. The subspace R′co T is a subalgebra of R′. Indeed, this
follows from the right coaction of T on R′ being an algebra map, which,
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in turn, follows from ker π being categorical:

(id⊗π0)∆R′(xy) =(id⊗π0)(∆R′(x)∆R′(y))

=(id⊗π0)∆R′(x) · (id⊗π0)∆R′(y)

for all x, y ∈ R′.

Remark 2.7. Assume that R and T are graded braided Hopf algebras
in a Yetter–Drinfel’d category H0

H0
YD, where H0 is a Hopf algebra with

bijective antipode and the assumptions of Proposition 2.3 are fulfilled.
Then the algebras R′, defined in Equation (2.4), and R are isomorphic
as graded vector spaces, but not necessarily as braided vector spaces,
at least if R is not a semisimple Yetter–Drinfel’d module over H0.

The assumption that ker π is a categorical subspace of R is necessary
for the definition of the braided Hopf algebra structure on R′. We want
to thank the referee to pointing out this fact. For illustration we give
an example.

Example 2.8. Assume that V = k{x0, x1, x2} is the braided vector
space with braiding c, where

c(xi ⊗ xj) =− x2i−j mod 3 ⊗ xi, i, j = 0, 1, 2.

Let R be the associated Nichols algebra B(V ) [MS00, Example 6.4].
This is a braided Hopf algebra with primitive generators x0, x1, x2, and
as an algebra one has

R ∼= k〈x0, x1, x2〉/(x2
0, x

2
1, x

2
2,

x0x1 + x1x2 + x2x0, x1x0 + x2x1 + x0x2).

Let T = k[x]/(x2) be the braided Hopf algebra with primitive generator
x and braiding c, where c(x⊗x) = −x⊗x. Then there exists a unique
algebra map π : R → T such that

π(x0) = x, π(x1) = 0, π(x2) = 0.

Moreover, π is a surjective map of braided N0-graded Hopf algebras.
Then ker π is the ideal (x1, x2), but it is not categorical because of the
relations

c(R⊗ ker π) 3 c(x1 ⊗ x2) = −x0 ⊗ x1 /∈ ker π ⊗R.

In this case c does not induce a braiding on the algebra R′ defined
via Equation (2.4), and R′ does not become a braided Hopf algebra.
Nevertheless for this particular example the quotient η(R, t)/η(T, t) of
Hilbert series is still a series with nonnegative integer coefficients, see
for example [Gra00a, Thm. 3.8], [MS00, Cor. 3.3]. The proofs of the
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latter statements use a (noncategorical) section of the map R → T
instead of requiring that ker π is categorical.

Following the suggestions of the referee we add two remarks.

Remark 2.9. Suppose that R and T are graded connected cocom-
mutative Hopf algebras over a field of characteristic zero. By the
Cartier-Kostant-Milnor-Moore theorem one knows that R = U(LR)
and T = U(LT ) are (isomorphic to) the universal enveloping algebras
of the (graded) Lie algebras LR and LT of primitive elements in R and
T , respectively. The PBW theorem implies that

ker π = L0U(LR) = U(LR)L0,

where L0 = LR ∩ ker π is an ideal of the Lie algebra LR. In this
case one has by definition R′(n) ' (Ln

0/L
n+1
0 )U(LR/L0), where Ln

0

has to be interpreted as a subspace of U(L0) ⊂ U(LR). Note that
∩n∈N0L

n
0 ⊂ ∩n∈N0 ker π = {0}, and hence the freeness of R′ over R′(0)

is equivalent to the isomorphism U(LR) ' U(L0)⊗ U(LR/L0).

Remark 2.10. There are two natural universal graded braided Hopf
algebras associated to a Hopf algebra H0 with bijective antipode and
a Yetter–Drinfel’d module V ∈ H0

H0
YD. These are the tensor Hopf

algebra TV and the cotensor Hopf algebra T cV [Nic78]. On the one
hand, B(V ) is a quotient of TV containing V , and hence generally R′ is
not isomorphic to TV as a graded algebra, because R′ is not generated
by V . On the other hand, B(V ) is a braided Hopf subalgebra of both R′

and T cV . However R′ is not isomorphic to T cV as a graded coalgebra.
Indeed, R′ may contain non-zero primitive elements of degree at least
2, while T cV does not contain such elements. Therefore the method
given in Proposition 2.3 gives a construction of graded (braided) Hopf
algebras which are neither tensor nor cotensor Hopf algebras.

3. Lyndon words

Let A = {1,2, . . . ,d} be a totally ordered set by 1 < 2 < · · · < d.
We think of A as an alphabet and 1, · · · ,d as the letters of A. Let A
be the set of non-empty words in this alphabet, and let ∅ denote the
empty word. For a word u = a1a2 · · · ar with ai ∈ A, 1 ≤ i ≤ r, we
say that r is the length of u and we write r = |u|. We consider on
A the lexicographic order <. This means that u < v if and only if
v = uu′ for some u′ ∈ A or u = wiu′ and v = wjv′, where i < j and
w, u′, v′ ∈ {∅} ∪ A.

A word u ∈ A is called a Lyndon word if u = u1u2 with u1, u2 ∈ A
implies that u < u2. For example: letters are Lyndon words, ij is a
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Lyndon word for i < j, 12122 is a Lyndon word, and 1212 is not a
Lyndon word. We write L = {u ∈ A | u is a Lyndon word}.
Proposition 3.1. [Lot83, Prop. 5.1.3] A word u is a Lyndon word if
and only if u ∈ A or u = vw with v, w ∈ L and v < w. More precisely,
if w is the proper right factor of maximal length of u = vw ∈ L that
belongs to L, then also v ∈ L and v < vw < w. �

If u ∈ L, |u| ≥ 2, then the decomposition u = vw in Prop. 3.1 with w
of maximal length is called the Shirshov decomposition of u. We write
X(u) = (v, w).

Lemma 3.2. Let u, v ∈ L, u < v, |u| ≥ 2, and let X(u) = (u1, u2).
Then exactly one of the following possibilities occurs:

(1) X(uv) = (u, v) and u2 ≥ v.
(2) X(uv) = (u′1, u

′′
1u2v) for some words u′1, u

′′
1 such that u1 = u′1u

′′
1

and u2 < v (here u′′1 may be empty).

Proof. This is equivalent to [Lot83, Prop. 5.1.4] �

Lemma 3.3. [Kha99, Lemma 4] Let u, v ∈ L, u = u1u2 for u1, u2 ∈ A
and suppose that u2 < v. Then uv < u1v. �

We take on L the lexicographic order. Thus, L is a new alphabet
containing the original alphabet A, and following Kharchenko [Kha99]
we say that the elements of L are super-letters. Words in super-letters
are called super-words. The length |w| of a super-word w is the sum
of the lengths of its super-letters. A monotonic super-word is a non-
increasing word on the set of super-letters, i.e., a (possibly empty) word
v1 . . . vn such that vi ∈ L and v1 ≥ v2 ≥ · · · ≥ vn. Let M denote the set
of monotonic super-words. In what follows the notation v1 · · · vn ∈ M
will mean that v1, . . . , vn ∈ L and v1 ≥ · · · ≥ vn. Sometimes we
also write vm1

1 · · · vmn
n ∈ M , in which case we mean that v1, . . . , vn ∈

L, v1 > · · · > vn, and m1, . . . ,mn ≥ 1. Monotonic super-words are
lexicographically ordered on the alphabet of super-letters. Notice that
the empty super-word is the smallest super-word. For a super-letter u,
we shall write

L>u = {v ∈ L | v > u}, L≥u = {v ∈ L | v ≥ u},
M>u = {v1 · · · vr ∈ M | r ≥ 1, v1 ≥ · · · ≥ vr > u},
M≥u = {v1 · · · vr ∈ M | r ≥ 1, v1 ≥ · · · ≥ vr ≥ u}.

(3.4)

Theorem 3.5. (Lyndon, see [Lot83, Thm. 5.1.5 and Prop. 5.1.6]) A
word in A can be written in a unique way as a monotonic super-word.
Moreover, if u = v1 . . . vn ∈ M then vn is the smallest right factor of u
(smallest with respect to lexicographic order in A). �
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As an example, the word 1231233122123 is decomposed as a mono-
tonic super-word as

1231233122123 = (1231233)(122123),

and in turn, X(1231233) = (123,1233).

Lemma 3.6. Let w = w1 · · ·wn be a super-word with wi ∈ L for
1 ≤ i ≤ n. Then the decomposition of w as a monotonic super-word,
w = v1 · · · vm, satisfies the relation v1 · · · vm ≥ w1 · · ·wn with respect to
the lexicographic order on super-words.

Proof. We proceed by induction on the number of super-letters of w. If
w is a super-letter then we are done. Otherwise w = w1 · · ·wn, where
n ≥ 2 and wi ∈ L ∀i. Again, if w1 ≥ w2 ≥ . . . ≥ wn then we are done.
On the other hand, if wi < wi+1 for some i, then w′

i := wiwi+1 ∈ L by
Proposition 3.1, and one has w = w1 · · ·wi−1w

′
iwi+2 · · ·wn with w′

i >
wi. Hence the claim follows from the induction hypothesis. �

Lemma 3.7. [Kha99, Lemma 5] Let w = w1 · · ·wm and v = v1 · · · vn be
monotonic super-words. Then w < v (with respect to the lexicographic
order on M) if and only if w1 · · ·wm < v1 · · · vn with respect to the
lexicographic order on A. �

The following technical lemma will be needed in the proof of Theo-
rem 4.12.

Lemma 3.8. Let w = w1 · · ·wm and v = v1 · · · vn be nonempty mono-
tonic super-words with w ≥ v and assume that v1 = · · · = vr > vr+1,
where r ≤ n. For all i ≤ m let (w′

i, w
′′
i ) ∈ M × M such that either

w′
i ≥ wi or w′

i = ∅, w′′
i = wi. Then the pair (w′

1 · · ·w′
m, w′′

1 · · ·w′′
m)

satisfies one of the following relations.

(1) w′
1 · · ·w′

m > vr+1 · · · vn,
(2) w′′

1 · · ·w′′
m > vr

1,
(3) w = v and (w′

1 · · ·w′
m, w′′

1 · · ·w′′
m) = (vr+1 · · · vn, v

r
1).

Proof. Assume first that w1 > v1. Then either w′
1 > v1 > vr+1 · · · vn or

w′
1 = ∅, w′′

1 = w1 > v1. In the first case we have relation (1) and in
the second one relation (2) is fulfilled. On the other hand, if w1 ≤ v1

then because of w ≥ v and w is monotonic, one has m ≥ r and wi = v1

for all i ≤ r. Suppose first that there exists i ≤ r such that w′
i 6= ∅

and w′
j = ∅ for all j < i. In this case w′

i ≥ v1 > vr+1 · · · vn and hence
(1) holds. It remains to consider the case w′

i = ∅ for all i ≤ r. Then
one has w′′

1 · · ·w′′
r = vr

1. Therefore, if w′′
i 6= ∅ for some i > r then again

relation (2) holds. Otherwise w′
i ≥ wi for all i > r. Then one has

either w′
1 · · ·w′

m = w′
r+1 · · ·w′

m > vr+1 · · · vn, in which case (1) holds,
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or m = n, w = v, and w′
i = wi for all i > r. The latter relations imply

(3). �

Let H0 be a Hopf algebra with bijective antipode and let V = ⊕d
i=1Vi

be a direct sum of Yetter–Drinfel’d modules over H0. Let TV be the
tensor algebra of V . For simplicity, we will omit the ⊗ symbol in
roducts of elements of TV . Let . and δ denote the left action and the
left coaction of H0 on TV , respectively. We will use Sweedler notation
δ(x) = x(−1) ⊗ x(0) for x ∈ TV . The algebra TV has a braiding
c : TV ⊗ TV → TV ⊗ TV . Note that one has

c(x⊗ y) =x(−1).y ⊗ x(0), c−1(x⊗ y) =y(0) ⊗ S−1(y(−1)).x

for all x, y ∈ TV . In particular, equations

c(Vi ⊗ Vj) = Vj ⊗ Vi, i, j ∈ {1, . . . ,d}

hold. We define

[x, y] = xy −mc−1(x⊗ y), Jx, yK = xy −mc(x⊗ y).

where m is the multiplication in TV .

Definition 3.9. Let a1, . . . , am ∈ A and u = a1 . . . am ∈ A. We
write V u = Va1Va2 · · ·Vam ' Va1 ⊗ Va2 ⊗ . . . ⊗ Vam . The elements in
V u will be called u-vectors. If xu ∈ V u and u = vw, then we write
xu = xv ⊗ xw ∈ V v ⊗ V w (which is in general a sum of tensors) using
the canonical isomorphism V u ' V v ⊗ V w.

We shall inductively define bracket operations [ ] : ⊕n≥0V
⊗n → TV

and J K : ⊕n≥0V
⊗n → TV as follows. Let xu be a u-vector.

(1) If u has length 0 or 1, then [xu] = JxuK = xu.
(2) If the word u is a Lyndon word and X(u) = (v, w), then [xu] =

[[xv] , [xw]] and JxuK = JJxvK , JxwKK (see Def. 3.9).
(3) If the word u is decomposed as a monotonic super-word by

u = v1 · · · vr, then [x] = [xv1 ] · [xv2 ] · · · [xvr ] and JxK = Jxv1K ·
Jxv2K · · · JxvrK.

Remark 3.10. Recall that the braided antipode STV of the braided
Hopf algebra TV satisfies STV (x) = x(−1)S(x(0)), where S is the an-
tipode of TV #H0. Moreover, STV (xy) = mc(STV (x) ⊗ STV (y)) =
(x(−1).STV (y))STV (x(0)). With these formulas it is easy to see that

for any u ∈ L and any u-vector x one has STV ([x]) = (−1)|u|−1JxK.
Therefore most of the following considerations can be performed with-
out difficulties with J K’s instead of [ ]’s. Even if J K’s seem to be more
natural, we will follow the tradition of Kharchenko [Kha99] with [ ]’s.
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Definition 3.11. If u is a Lyndon word and x is a u-vector, then [x]
will be called a u-[ ]-letter. If u is a monotonic super-word and x is a
u-vector then [x] will be called a u-[ ]-word. Let V [u] = [V u] denote the
space of u-[ ]-words. A [ ]-letter ([ ]-word) is a u-[ ]-letter (u-[ ]-word) for
some super-letter (monotonic super-word) u.

Lemma 3.12. Let u be a monotonic super-word. For x, y ∈ TV , let
c−1(x⊗ y) =:

∑
xy ⊗ xy. Then

(1) if x is a u-vector and h ∈ H0 then one has [h.x] = h.[x] and
[x](−1) ⊗ [x](0) = x(−1) ⊗ [x(0)];

(2) if x is a u-vector and y is a v-vector for a monotonic super-word
v, then [x]y ⊗ [x]y = xy ⊗ [xy] and x[y]⊗ x[y] = [xy]⊗ xy;

(3) for all x, y, z ∈ TV ,

[x, yz] = [x, y] z +
∑

xy [xy, z];

(4) for all x, y, z ∈ TV ,

[[x, y], z]− [x, [y, z]] =
∑

[x, yz]yz −
∑

xy[xy, z].

Proof. (1) follows from the fact that the brading is a map of Yetter–
Drinfel’d modules. (2) follows from (1) and the braid relation. (3) and
(4) are straightforward calculations using the definition of [ ] and the
braid relation for c−1. �

We prove now a variant of [Kha99, Lemma 6].

Lemma 3.14. Let X, Y be a u-[ ]-letter and a v-[ ]-letter respectively,
where u, v ∈ L and u < v. Then [X, Y ] is a homogeneous linear
combination of products of [ ]-letters corresponding to super-letters in
L≥uv.

Proof. Let z = uv. If X(z) = (u, v), then [X, Y ] is a z-[ ]-letter and we
are done. We proceed by induction on |uv|, since we already know the
lemma for the case |u| = |v| = 1.

Let m = |uv| and suppose that the lemma holds for u′, v′ ∈ L,
u′ < v′, X ∈ V [u′], Y ∈ V [v′], where either |u′v′| < m or |u′v′| = m,
u′ < u (notice that there are only finitely many Lyndon words of a
given length). As noted above, we may suppose that X(uv) 6= (u, v).
Then, if X(u) = (u1, u2), we must have u2 < v because of Lemma 3.2.
Let X = [x] for x ∈ V u, Y = [y] for y ∈ V v, and let x = xu = xu1⊗xu2 ,
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Xu1 ⊗Xu2 = [xu1 ]⊗ [xu2 ]. Thanks to Lemma 3.12(4),(2), we have

[X, Y ] =[[Xu1 , Xu2 ], Y ]

=[Xu1 , [Xu2 , Y ]]

+
∑

[Xu1 ,
Xu2Y ](Xu2)

Y −
∑

Xu1Xu2 [X
Xu2
u1 , Y ]

=[Xu1 , [Xu2 , Y ]]

+
∑

[Xu1 , [
xu2y]] · [xy

u2
]−

∑
[xu1xu2 ] · [[x

xu2
u1 ], Y ].

(3.15)

We start by considering the first summand on the right hand side. By
the induction hypothesis, [Xu2 , Y ] is a homogeneous linear combination
of products of [ ]-letters corresponding to super-letters in L≥u2v, and
the degree of these products is |u2v|. By Lemma 3.12(3), and since
u1 < u2 < u2v, the element [Xu1 , [Xu2 , Y ]] is a combination of products
of [ ]-letters corresponding to super-letters in L≥u2v ⊂ L>uv on one
hand, and a bracket [h.Xu1 , X

′] on the other hand, where h ∈ H0 and
X ′ is a w-[ ]-letter with w ≥ u2v. By induction hypothesis again, the
latter is a linear combination of products of [ ]-letters corresponding to
super-letters in L≥u1u2v = L≥uv.

We continue with the second and third summands in (3.15). Con-
cerning the u2-[ ]-letters appearing there, notice that u2 > uv. Indeed,
u2 > u1u2 and, since u1u2 is not the beginning of u2, then we still have
u2 > u1u2v = uv. On the other factors, which are brackets between u1-
[ ]-letters and v-[ ]-letters, we can apply the induction hypothesis since
|u1v| < |uv| and u1 < u1u2 < u2 < v. These factors are then linear
combinations of products of [ ]-letters corresponding to super-letters in
L≥u1v, and u1v > uv by Lemma 3.3. �

Lemma 3.16. Let u ∈ L. Any product of [ ]-letters corresponding to
super-letters in L≥u is a linear combination of (monotonic) [ ]-words
corresponding to super-words in M≥u.

Proof. Let t = v1 · v2 · · · vn be a super-word, where vi ∈ L≥u ∀i. Let
x = xt = xv1 · · ·xvn be a t-vector, where here t is considered as a word
on A. We call x[t] := [xv1 ] · · · [xvn ] a t-[ ]-vector (notice that the term “t-
[ ]-word” is reserved for when t is monotonic). We proceed by induction.
We take on the set of super-words the lexicographic order ≺ given by
the order < on L. Suppose that the result is true for w-[ ]-vectors
when |w| < |t| or when |w| = |t| and w � t. If v1 ≥ v2 ≥ · · · ≥ vn,
there is nothing to prove. Otherwise, let i be such that 1 ≤ i < n
and vi < vi+1. Let t′ = v1 . . . vi+1vi . . . vn and t′′ = v1 . . . (vivi+1) . . . vn,
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where the factor (vivi+1) stands for the Lyndon word vivi+1. Let

x[t′] := [xv1 ]⊗ . . .⊗ c−1([xvi
]⊗ [xvi+1

])⊗ . . .⊗ [xvn ],

x[t′′] := [xv1 ]⊗ . . .⊗ [[xvi
], [xvi+1

]]⊗ . . .⊗ [xvn ].

Notice that x[t′] is a t′-[ ]-vector where t′ is a super-word in the same
super-letters as t, and t′ � t. Also, by Lemma 3.14, and since vivi+1 >
vi, x[t′′] is a linear combination of w-[ ]-vectors, where w runs on super-
words � t having only super-letters in L≥u. The last thing to notice is
that x[t] = x[t′] + x[t′′]. Therefore, the induction hypothesis implies the
claim. �

Definition 3.17. Let x ∈ TV \{0}, x =
∑

n xn, where xn ∈ V ⊗n. The
greatest n such that xn 6= 0 will be called the degree of x. Let m be
the degree of x and let xm =

∑
u∈Am

xu, where Am is the set of words
of length m and xu is a u-vector for all u. Let v be the least u (with
respect to the order in Am) such that xu 6= 0. Then xv will be called
the leading vector of x.

Lemma 3.18. Let x ∈ TV be a nonzero u-vector for a monotonic
super-word u. Then x is the leading vector of [x].

Proof. We prove first the lemma for Lyndon words u by induction on
|u|. If |u| is 0 or 1, the result is clear. If X(u) = (v, w), then [x] =
[[xv], [xw]] = (m − mc−1)([xv] ⊗ [xw]). By the induction hypothesis,
[xv][xw] is a sum of products of v′-vectors and w′-vectors, where v′ runs
on words ≥ v and w′ runs on words ≥ w. For such v′, w′ we have
u = vw ≤ v′w′, whence [xv][xw] is a sum of u′-vectors with u′ ≥ u.
Furthermore, the equality holds if and only if v′ = v and w′ = w.
Thus, by using induction hypothesis, the leading vector of [xv][xw] is
xvxw. For the term mc−1([xv] ⊗ [xw]) we reason similarly: as u is a
Lyndon word, u = vw < w < wv, from where mc−1([xv] ⊗ [xw]) is a
sum of u′-vectors where u′ runs on words ≥ wv > u. Therefore, such
u′-vectors do not contribute to the leading vector of [xvxw].

If u is not a super-letter, then by Theorem 3.5 we have u = v1 · · · vn ∈
M . By definition [x] = [xv1 ] · · · [xvn ], which, by the previous step, is
a sum of v′1 · · · v′n-vectors with v′i ≥ vi ∀i, and its leading vector is
xv1 · · ·xvn = x. �

Recall that M is the set of monotonic super-words.

Corollary 3.19. One has TV =
⊕

u∈M V [u].

Proof. Since letters in A are also super-letters, the spaces V [u] generate
TV thanks to Lemma 3.16. The linear independence of these spaces
follows immediately from Lemma 3.18. �
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Corollary 3.20. Let u ∈ A and x be a u-vector. Then x − [x] is a
linear combination of w-[ ]-words with w > u.

Proof. This assertion can be proven with the help of bases of ⊕|v|=|u|V
v

and ⊕|v|=|u|V
[v] which are obtained from each other using triangular

matrices. Alternatively, Lemmas 3.7 and 3.18 imply that x − [x] is a
linear combination of w-vectors with w > u, and proceed by induction.

�

Corollary 3.20 allows us to give a description of products of [ ]-letters,
which is different from the one in Lemma 3.16.

Corollary 3.21. Let n ∈ N, v1, . . . , vn ∈ L and let Xi be a vi-[ ]-letter
for all i ∈ {1, . . . , n}. Then X1 · · ·Xn is a linear combination of w-
[ ]-words, where w runs over monotonic super-words ≥ v′1 · · · v′n′, and
v′1 · · · v′n′ is the decomposition of v1 · · · vn as a monotonic super-word.

�

Definition 3.22. Let K be a totally ordered set and let there be vector
spaces Wk for each k ∈ K. We define ⊗>

k∈KWk to be the direct sum of
vector spaces Wk1 ⊗ . . .⊗Wkr where k1 > k2 > · · · > kr.

For a vector space W , we write T+W = ⊕n≥1W
⊗n. Notice that for

each u ∈ L, T+V [u] is a non-unital subalgebra of T+V in the category
H0
H0
YD. Further, the Z-grading of TV induces a Z-grading on its sub-

algebras TV [u]. In particular, the Hilbert series η(TV [u], t) of TV [u] is
a series in the variable t|u|.

Theorem 3.23. One has

T+V ' ⊗>
u∈LT+V [u].

More precisely, the map µ : ⊗>
u∈LT+V [u] → T+V , which is the multipli-

cation map in each summand, is an isomorphism in the category H0
H0
YD.

In particular, the Hilbert series of TV is η(TV, t) =
∏

u∈L η(TV [u], t).

Proof. This is a reformulation of Corollary 3.19. �

4. Hopf algebras generated by a Hopf subalgebra and a
vector space

Our aim is now to apply the results of the previous section to arbi-
trary Hopf algebras. In many (though not all) cases we will be able to
provide some new structure results.

Let H be a Hopf algebra with bijective antipode and a filtration

0 = F−1 ⊂ F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊆ H.

The filtration is a Hopf algebra filtration if
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(1) It is a filtration: H =
⋃

n∈NFn,
(2) it is an algebra filtration: FnFm ⊆ Fn+m,
(3) it is a coalgebra filtration: ∆(Fn) ⊆

∑
i+j=nFi ⊗Fj, and

(4) it behaves well with the antipode: S(Fn) ⊆ Fn.

Notice that in this case F0 is a Hopf subalgebra of H. We will con-
sider Hopf algebras with a Hopf algebra filtration satisfying a stronger
version of condition (2):

Assumption 4.1. FnFm = Fn+m.

A Hopf algebra with a Hopf algebra filtration satisfying Assump-
tion 4.1 can be presented in the following way.

Suppose that the Hopf algebra H is generated (as an algebra) by a
Hopf subalgebra H0 and a vector space V , such that

∆V ⊆ V ⊗H0 + H0 ⊗ V + H0 ⊗H0, and(4.2)

S(V ) ⊆ KV K.(4.3)

We define F0 = H0, F1 = H0 + H0V H0, and Fn = (F1)
n. Then F∗ is

a Hopf algebra filtration which satisfies Assumption 4.1.
As an important example, assume that H is generated by group-

likes and skew-primitive elements and take H0 to be the subalgebra
generated by the grouplikes and V to be the subspace generated by
skew-primitives.

For n ≥ 0 let Hn = Fn/Fn−1. Let then

grF H = ⊕
n≥0

Fn/Fn−1 = ⊕
n≥0

Hn

be the associated graded Hopf algebra. Then we can consider the
projection π : grF H → H0 and the inclusion ι : H0 → grF H, and this
allows to write grF H = R#H0 as the smash product of H0 and the
right coinvariants R = {x ∈ grF H | (id⊗π)∆(x) = x ⊗ 1}. This is
now a standard procedure: the last part is due to Radford [Rad85] and
Majid [Maj94], while the first part is a modification of the one due to
Andruskiewitsch and Schneider [AS98].

Also, R is a braided Hopf algebra in H0
H0
YD, and R = ⊕n≥0Rn, R0 is

the base field and R1 is a Yetter–Drinfel’d module which generates R
because of Assumption 4.1. We let V := R1 and we make the following
assumption:

Assumption 4.4. V = ⊕d
i=1Vi is a direct sum of Yetter–Drinfel’d

modules over H0.

Remark 4.5. If V is irreducible, the methods in this paper do not yield
any information on R. Otherwise, V has a nontrivial maximal flag
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V = V1 ⊃ V2 ⊃ · · · ⊃ Vd of Yetter–Drinfel’d submodules over H0

(which is not necessarily a full flag of vector subspaces). Consider on
the vector space Rn the Z-filtration Rn = Rn,n ⊃ Rn,n+1 ⊃ · · · , where
Rn,m =

∑
i1+···+in≥m Vi1Vi2 · · ·Vin . Then

R′ :=
∞
⊕

n=0
R′

n, where R′
n = ⊕

m≥n
Rn,m/Rn,m+1,

is a graded braided Hopf algebra in the category H0
H0
YD, and all of the

following considerations may be applied to R′ instead of R.

Consider the projection TV → R. We want to study the images
under this projection of the components T+V [u] appearing in Theo-
rem 3.23. We begin by considering the comultiplication in TV #H0.

We write the left H0-coaction on r ∈ R by δ(r) = r(−1)⊗ r(0). Recall
that the coproduct in the smash product R#H0 is given by ∆(r#h) =
(r(1)#r(2)

(−1)h(1)) ⊗ (r(2)
(0)#h(2)), where ∆R(r) =: r(1) ⊗ r(2) is the

coproduct of the braided Hopf algebra R. This notation applies in
particular for R = TV .

Proposition 4.6. Let X ∈ TV ⊆ TV #H0 be a u-[ ]-letter. Then the
coproduct ∆ of TV #H0 satisfies

∆(X) = X ⊗ 1 + X(−1) ⊗X(0) +
∑

i

(X ′
ihi)⊗X ′′

i ,

where X ′
i, X

′′
i ∈ T+V , hi ∈ H0, and each X ′

i is a wi-[ ]-word with
wi ∈ M>u.

Proof. We proceed by induction on |u|. If u ∈ A, we get X ∈ V and
then ∆(X) = X ⊗ 1 + X(−1) ⊗X(0), whence we are done. Assume now
that |u| ≥ 2, X(u) = (v, w) and x is a u-vector. Then x = xvxw, and
we write X = [x], Y = [xv], Z = [xw]. By standard computations,

∆(X) = ∆([Y, Z]) = ∆(Y Z − Z(0)(S
−1(Z(−1)).Y ))

= (Y (1)Y (2)
(−1) ⊗ Y (2)

(0)) · (Z(1)Z(2)
(−1) ⊗ Z(2)

(0))

− (Z(0)
(1)Z(0)

(2)
(−1)

⊗ Z(0)
(2)

(0)
)

·
(
(S−1(Z(−1)).Y

(1))S−1(Z(−2))Y
(2)

(−1)Z(−4)

⊗ S−1(Z(−3)).Y
(2)

(0)

)
.

(4.7)

Note that Y is a v-[ ]-letter and Z is a w-[ ]-letter. According to the
induction hypothesis and Lemma 3.12(1), for any h ∈ H0, h.Y (1) can be
taken to be either ε(h)1, h.Y or a v′-[ ]-word with v′ ∈ M>v. Similarly,
h.Z(1) can be taken to be either ε(h)1, h.Z or a w′-[ ]-word with w′ ∈
M>w, and Z(0)

(1) to be either 1, Z(0) or a w′-[ ]-word with w′ ∈ M>w.
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We begin by considering the summand

(Y (1)Y (2)
(−1) ⊗ Y (2)

(0)) · (Z(1)Z(2)
(−1) ⊗ Z(2)

(0))

= Y (1)Y (2)
(−1)Z

(1)Z(2)
(−1) ⊗ Y (2)

(0)Z
(2)

(0)

= Y (1)(Y (2)
(−2).Z

(1))Y (2)
(−1)Z

(2)
(−1) ⊗ Y (2)

(0)Z
(2)

(0).

We consider the summands in which Y (1) is a v′-[ ]-word with v′ ∈ M>v.
Notice that since these v′ are shorter than v, they belong to M>vw.
Therefore, since Z(1) is either 1 or a t-[ ]-word with t ∈ M>vw, by
Lemma 3.16 these summands satisfy the claim of the Proposition. The
summands in which Y (1) = 1 and Z(1) 6= 1 also satisfy the claim,
because w > u. We are thus left with

(4.8) Y(−1)Z(−1) ⊗ Y(0)Z(0) + Y Z(1)Z(2)
(−1) ⊗ Z(2)

(0).

We consider now the other summand of ∆(X). By similar reasons,
we are left with

− Y(−1)Z(−2) ⊗ Z(0)

(
S−1(Z(−1)).Y(0)

)
− Z(0)

(1)Z(0)
(2)

(−1)

(
S−1(Z(−1)).Y

)
S−1(Z(−2))Z(−4)

⊗ Z(0)
(2)

(0)

(
S−1(Z(−3)).1

)
= −Y(−1)Z(−2) ⊗ Z(0)

(
S−1(Z(−1)).Y(0)

)
− Z(0)

(1)Z(0)
(2)

(−1)

(
S−1(Z(−1)).Y

)
⊗ Z(0)

(2)
(0)

= −Y(−1)Z(−2) ⊗ Z(0)

(
S−1(Z(−1)).Y(0)

)
− Z(1)

(0)

((
Z(2)

(−2)S
−1(Z(2)

(−3))S
−1(Z(1)

(−1))
)
.Y

)
Z(2)

(−1) ⊗ Z(2)
(0)

= −Y(−1)Z(−1) ⊗mc−1(Y(0) ⊗ Z(0))

−mc−1(Y ⊗ Z(1))Z(2)
(−1) ⊗ Z(2)

(0).

(4.9)

Adding (4.8) and (4.9) we get

Y(−1)Z(−1) ⊗ [Y(0), Z(0)] + [Y, Z(1)]Z(2)
(−1) ⊗ Z(2)

(0).

Notice that Y(−1)Z(−1) ⊗ [Y(0), Z(0)] = X(−1) ⊗X(0). Also, when in the

second summand we put Z(1) = Z, we get X ⊗ 1. Finally, when Z(1) is
a w′-[ ]-word with w′ ∈ M>w, by using Lemmas 3.12(3), 3.14 and 3.16
we obtain terms which satisfy the claim. �

Corollary 4.10. Let u ∈ L and v ∈ M≥u. Let X ∈ TV ⊆ TV #H0 be
a v-[ ]-word. Then the coproduct ∆ of TV #H0 satisfies

∆(X) = X ⊗ 1 + X(−1) ⊗X(0) +
∑

i

(X ′
ihi)⊗X ′′

i ,
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where X ′
i, X

′′
i ∈ T+V , hi ∈ H0, and each X ′

i is a wi-[ ]-word with
wi ∈ M≥u.

Proof. This follows at once from the Proposition and Lemma 3.16. �

We study the structure of R now. For that, we will use the following
notation.

Definition 4.11. For u ∈ L, let V [≥u] be the subalgebra of TV gen-
erated by (

∑
v∈L,v≥u V [v]). Let I [≥u] be the ideal of V [≥u] generated

by (
∑

v∈L,v>u V [v]). We define also V[u] = π(V [u]), V[≥u] = π(V [≥u]),

V+
[≥u] = π(V [≥u])∩ ker ε, and I[≥u] = π(I [≥u]), where π : TV → R is the

canonical projection.

The grading on R induces a grading on all of the algebras and ideals
defined above. Take u ∈ L. Notice that the graded algebras V [≥u]/I [≥u]

and V[≥u]/I[≥u] have only elements in degrees m|u| where m ∈ N0.

Moreover, Lemma 3.16 and Corollary 3.21 imply that V [≥u] is the sub-
space of TV generated by w-[ ]-words with w ∈ M≥u and I [≥u] is the
subspace of V [≥u] generated by w-[ ]-words with w = w1 · · ·wn ∈ M≥u

with w1 > u.
Notice that the leading vector of any X ∈ V [≥u] \ I [≥u] of degree

m|u| is a um-vector. Thus, we can choose for any u ∈ L a graded
linear map ιu : V+

[≥u]/I[≥u] → T+V [u] = ⊕m∈NV [um] ⊂ V [≥u] such that

πu ◦ π|T+V [u] ◦ ιu = id, where π : TV → R and πu : V[≥u] → V[≥u]/I[≥u]

are the canonical maps.
Recall Def. 3.22 for the definition of ⊗>.

Theorem 4.12. The map φ : ⊗>
u∈LV

+
[≥u]/I[≥u] → R+ defined by

(4.14) φ(Xu1 ⊗ · · · ⊗Xun) = π(ιu1(Xu1) · · · ιun(Xun)),

where u1, . . . , un ∈ L, u1 > · · · > un, and Xui
∈ V+

[≥ui]
/I[≥ui] for all i,

is an isomorphism of graded vector spaces.

To prove the theorem we will use the following lemma.

Lemma 4.15. Let u = un1
1 · · ·unr

r ∈ M , and let Xi ∈ V [u
ni
i ] for all i.

Take Yi = πui
(π(Xi)) ∈ V+

[≥ui]
/I[≥ui]. Then

X1 · · ·Xr − ιu1(Y1) · · · ιur(Yr) ∈ ker π +
∑
w>u
w∈M

V [w].
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Proof. Since πui
π(Xi−ιui

(Yi)) = 0, we have Xi−ιui
(Yi) ∈ ker π+I [≥ui].

We then consider

Z = X1 · · ·Xr − ιu1(Y1) · · · ιur(Yr)

=
r∑

j=1

X1 · · ·Xj−1(Xj − ιuj
(Yj))ιuj+1

(Yj+1) · · · ιur(Yr)

∈
r∑

j=1

V [u
n1
1 ] · · ·V [u

nj−1
j−1 ]I [≥uj ]V [u

nj+1
j+1 ] · · ·V [unr

r ] + ker π.

As mentioned above the theorem, I [≥uj ] consists of sums of w-[ ]-words
where w runs on monotonic super-words > u

nj

j . Thus, by Corollary 3.21
and Lemma 3.6, Z is a sum of w-[ ]-words, where w runs on super-words
> u. �

Proof of the Theorem. Since the set of words of a given length is finite,
the surjectivity of φ follows easily from the previous lemma.

We now prove injectivity of φ. To do so define φ′ : ⊗>
u∈LV

+
[≥u]/I[≥u] →

T+V by

φ′(Xu1 ⊗ · · · ⊗Xun) = ιu1(Xu1) · · · ιun(Xun),

where u1, . . . , un ∈ L, u1 > · · · > un, and Xui
∈ V+

[≥ui]
/I[≥ui] for all

i. Assume then that there exists a smallest integer m such that φ is
not injective in degree m. For all u ∈ L let Bu = {bu,i | i ∈ Iu} be a
homogeneous basis of V+

[≥u]/I[≥u], where Iu is an appropriate index set,

and let Xu,i := ιu(bu,i) for all u ∈ L, i ∈ Iu.
Suppose that there exists a nonempty finite subset M ′ of M with

|w| = m for w ∈ M ′, and for each w = wn1
1 · · ·wnr

r ∈ M ′ there exist
nonzero elements bw ∈ V+

[≥w1]/I[≥w1] ⊗ · · · ⊗ V+
[≥wr]/I[≥wr] such that

φ′(
∑

w∈M ′ bw) ∈ ker π. Let u = um1
1 · · ·ums

s , where u1 > · · · > us, be the
minimal element of M ′, and write bu :=

∑
i1,...,is

λi1,...,isbu1,i1⊗· · ·⊗bus,is

with λi1,...,is ∈ k. We consider TV as a subalgebra of TV #H0, and then
we have

∆(φ′(
∑

w∈M ′

bw)) =:
∑

i

Z ′
i ⊗ Z ′′

i

∈ (ker π#H0)⊗ TV + (TV #H0)⊗ ker π.

Therefore,

(4.16)
∑

i

S−1(Z ′′
i (−1))Z

′
i ⊗ Z ′′

i (0) ∈ ker π ⊗ TV + TV ⊗ ker π.
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We apply Prop. 4.6 to each [ ]-letter in φ′(
∑

w∈M ′ bw), and we use
Lemma 3.8 to obtain a description of the tensor factors of (4.16). Af-
terwards, we apply Corollary 3.21 and Lemma 3.6 to rearrange the
tensor factors as sums of [ ]-words. This gives∑

i

S−1(Z ′′
i (−1))Z

′
i ⊗ Z ′′

i (0)

∈
∑

i1,...,is

λi1,...,isS
−1(Xu1,i1 (−1))Xu1,i1 (−2)Xu2,i2 · · ·Xus,is ⊗Xu1,i1 (0)

+
∑

w′,w′′∈M
w′>u

m2
2 ···ums

s or w′′>u
m1
1

V [w′] ⊗ V [w′′].

By repeatedly using Lemma 4.15 and since φ′(
∑

w∈M ′ bw) ∈ ker π, we
get ∑

i

S−1(Z ′′
i (−1))Z

′
i ⊗ Z ′′

i (0)

∈
∑

i1,...,is

λi1,...,isφ
′(bu2,i2) · · ·φ′(bus,is)⊗ φ′(bu1,i1)

+
∑

w′,w′′∈M, |w′|,|w′′|<|u|,
w′>u

m2
2 ···ums

s or w′′>u
m1
1

(Im φ′ ∩ V [w′])⊗ (Im φ′ ∩ V [w′′])

+ ker π ⊗ TV + TV ⊗ ker π.

Therefore, (4.16) shows that∑
i1,...,is

λi1,...,isφ
′(bu2,i2 · · · bus,is)⊗ φ′(bu1,i1)

∈
∑

w′,w′′∈M, |w′|,|w′′|<|u|,
w′>u

m2
2 ···ums

s or w′′>u
m1
1

(Im φ′ ∩ V [w′])⊗ (Im φ′ ∩ V [w′′])

+ ker π ⊗ TV + TV ⊗ ker π.

(4.17)

By the assumption on m, π ◦ φ′ = φ is injective in degrees < m and
hence the sums

(ker π ∩ V ⊗n) +
( ⊕

w′∈M, |w′|=n,

w′>u
m2
2 ···ums

s

Im φ′ ∩ V [w′]
)

+ (Im φ′ ∩ V [u
m2
2 ···ums

s ])

(ker π ∩ V ⊗n) +
( ⊕

w′′∈M, |w′′|=n,

w′′>u
m1
1

Im φ′ ∩ V [w′′]
)

+ (Im φ′ ∩ V [u
m1
1 ])
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are direct in TV whenever 1 ≤ n < m. Thus (4.17) implies that
λi1,...,is = 0 for all i1, . . . , is, which contradicts to the choice of bu. �

Corollary 4.18. The Hilbert series of R factors as

η(R, t) =
∏
u∈L

η(V[≥u]/I[≥u], t)

�

The importance of Corollary 4.18 becomes clearer with the following
theorem.

Theorem 4.19. For each u ∈ L, the algebra V[≥u]/I[≥u]#H0 is a |u|Z-
graded Hopf algebra, where the grading is induced by that of R#H0.
Equivalently, V[≥u]/I[≥u] is a |u|Z-graded braided Hopf algebra in H0

H0
YD.

Moreover, V[≥u]/I[≥u] is generated by V[u]/(I[≥u] ∩ V[u]) and it projects
onto the Nichols algebra B(V[u]/(I[≥u] ∩ V[u])). The quotient

η
(
V[≥u]/I[≥u], t

)
/ η

(
B(V[u]/(I[≥u] ∩ V[u])), t

|u|
)

is a power series with nonnegative integer coefficients.

Proof. Since V[≥u]/I[≥u] is graded and its degree 0 part is k, in order
to show the first statement it is sufficient to prove that V[≥u]/I[≥u]#H0

is a bialgebra (see [Tak71]). This follows from Proposition 2.1, by
taking A = R#H0, B = V[≥u], and I = I[≥u]. It remains to show
that Equations (2.2) hold in this case. Indeed, it suffices to prove
this for generators of B and I, and [ ]-letters satisfy (2.2) thanks to
Proposition 4.6.

By the definition of V[≥u] and I[≥u], V[≥u]/I[≥u] is generated as an
algebra by the space V[u]/(I[≥u] ∩ V[u]). Further, V[≥u]/I[≥u] can be
considered as the quotient of T (V[u]/(I[≥u]∩V[u])) by a graded Hopf ideal
consisting of elements of degree ≥ 2. Since B(V[u]/(I[≥u] ∩ V[u])) is the
quotient of T (V[u]/(I[≥u]∩V[u])) by the maximal Hopf ideal consisting of
elements of degree ≥ 2, there exists a natural projection V[≥u]/I[≥u] →
B(V[u]/(I[≥u] ∩ V[u])). The last statement follows from Proposition 2.3
(see also Remark 2.5). �

Remark 4.20. In Theorem 4.19 it is necessary to put t|u| as the variable
of the Hilbert series of the Nichols algebra, since in B(V[u]/(I[≥u]∩V[u]))
the elements of V[u]/(I[≥u] ∩ V[u]) are considered to be in degree 1.

Open Problems 4.21.

(1) Assume that R is a Nichols algebra. Are the graded Hopf alge-
bras V[≥u]/I[≥u] appearing in Theorem 4.19 again Nichols alge-
bras? This is true in the case where chark = 0, H0 is the group
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algebra of an abelian group, and R is finite dimensional, by
Kharchenko’s PBW theorem. More generally, if R has a finite
number of PBW generators, the statement follows by using the
Weyl groupoid.

(2) Generalize Theorems 4.12 and 4.19 to a more general setting
which covers also Ufer’s PBW basis.

(3) Is it possible to generalize results of this paper to arbitrary (say
finite dimensional) non-semisimple Hopf algebras?
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