THE NEAREST MULTIVARIATE SYSTEM WITH GIVEN ROOT STRUCTURE

Agnes Szanto^a

^a North Carolina State University, USA

Let f_1, \ldots, f_s be polynomials in the variables x_1, \ldots, x_n with finitely many common roots. Assume that either

(a) f_1, \ldots, f_s is an over-constrained system (more equation than variables) which has k common roots,

or

(b) f_1, \ldots, f_s has roots with multiplicities, which can be described by the vanishing of certain derivatives of f_1, \ldots, f_s in the roots

However, even small perturbation of the coefficients can destroy completely the above root structures. This is the reason that in numerical computations handling the above systems is a major challenge: convergence to the solution is slow and the output is unreliable, or no output is returned.

In this talk we propose iterative methods, which for a given (perturbed) system F_1, \ldots, F_s and given root structure, computes the nearest system f_1, \ldots, f_s which has roots with the given structure. The method also computes the common roots of f_1, \ldots, f_s simultaneously.

This is a joint work with Scott Pope (NCSU), Olivier Ruatta (Université Limoges) and Mark Sciabica (NCSU).