THE NEAREST MULTIVARIATE SYSTEM WITH GIVEN ROOT STRUCTURE

Agnes Szanto ${ }^{a}$
${ }^{a}$ North Carolina State University, USA

Let f_{1}, \ldots, f_{s} be polynomials in the variables x_{1}, \ldots, x_{n} with finitely many common roots. Assume that either
(a) f_{1}, \ldots, f_{s} is an over-constrained system (more equation than variables) which has k common roots,
or
(b) f_{1}, \ldots, f_{s} has roots with multiplicities, which can be described by the vanishing of certain derivatives of f_{1}, \ldots, f_{s} in the roots

However, even small perturbation of the coefficients can destroy completely the above root structures. This is the reason that in numerical computations handling the above systems is a major challenge: convergence to the solution is slow and the output is unreliable, or no output is returned.

In this talk we propose iterative methods, which for a given (perturbed) system F_{1}, \ldots, F_{s} and given root structure, computes the nearest system f_{1}, \ldots, f_{s} which has roots with the given structure. The method also computes the common roots of f_{1}, \ldots, f_{s} simultaneously.

This is a joint work with Scott Pope (NCSU), Olivier Ruatta (Université Limoges) and Mark Sciabica (NCSU).

