POLINOMIOS Y FACTORIZACIÓN

Primer Cuatrimestre 2007

Primer hoja de ejercicios: a ser entregada resuelta el Miércoles 2 de Mayo.

- Acotar inferiormente $\binom{2n}{n}$, e investigar cómo se puede aproximar $\binom{2n}{n}$. Probar que no existe ningún polinomio f(n,k) tal que $\binom{n}{k} \leq f(n,k), \ \forall \ n,k \in \mathbb{N}$.
- (2) Probar que \mathbb{R} no es isomorfo (como cuerpo) a ningún \mathbb{Q}_p y que los \mathbb{Q}_p tampoco son isomorfos entre sí. (Para ello probablemente tenga que investigar sobre números que son cuadrados módulo p y no módulo q)
- **(3)** • Probar que el único endomorfismo de cuerpo de \mathbb{R} es la identidad.
 - Probar que el único endomorfismo de cuerpo de \mathbb{Q}_p es la identidad. Sugerencia: se puede probar que todo endomorfismo σ es continuo, i.e si $x_n \to x$ entonces $\sigma(x_n) \to \sigma(x)$ probando primero que σ manda unidades de \mathbb{Z}_p a unidades de \mathbb{Z}_p (¿ quiénes son las unidades de \mathbb{Z}_p ?) a través del resultado siguiente (que hay que probar): Sea $u \in \mathbb{Q}_p$. Entonces

u es unidad de $Z_p \iff \forall m$ coprimo con $p(p-1), x^m = u$ tiene solución en \mathbb{Q}_p .

- (4) Sea $f \in \mathbb{Z}[x]$ tal que su coeficiente principal cp (f) = a > 1.
 - Probar que existen $g, h \in \mathbb{Z}[x]$ tales que f = gh si y sólo si existen $\tilde{g}, \tilde{h} \in \mathbb{Z}[x]$ tales que $af = \tilde{g}\,\tilde{h}\,\,\mathrm{y}\,\,\mathrm{cp}\,(\tilde{g}) = \mathrm{cp}\,(\tilde{h}) = a.$ En ambas direcciones con $\mathrm{gr}\,(g) = \mathrm{gr}\,(\tilde{g}),\,\mathrm{gr}\,(h) = \mathrm{gr}\,(h).$
 - Adaptar el lema de Hensel en su versión general a esta situación.
- (5) Para los que ya vieron Teoría de Cuerpos: Ejemplo (Swinnerton-Dyer)

Sea $n \in \mathbb{N}$ y sean p_1, \ldots, p_n primes distintes. Se define

$$f(x) := \prod_{\varepsilon_i \in \{1,-1\}} \left(x - \sum_{i=1}^n \varepsilon_i \sqrt{p_i} \right).$$

- Probar que $f \in \mathbb{Z}[x]$.
- Probar que f es irreducible en $\mathbb{Q}[x]$.
- Probar que cualquiera sea el número primo p, el polinomio $f \mod p$ se factoriza en $\mathbb{F}_p[x]$ como un producto de polinomios irreducibles de grado a lo sumo 2.