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Abstract. We generalize Sylvester single sums to multisets (sets with
repeated elements), and show that these sums compute subresultants of
two univariate polyomials as a function of their roots independently of
their multiplicity structure. This is the first closed formula for subresul-
tants in terms of roots that works for arbitrary polynomials, previous
efforts only handled special cases. Our extension involves in some cases
confluent Schur polynomials, and is obtained by using a multivariate
symmetric interpolation via an Exchange Lemma.

1. Introduction

Let K be a field. Given two finite sets A,B ⊂ K of cardinalities m and
n respectively, and 0 ≤ p ≤ m and 0 ≤ q ≤ n, J.J. Sylvester introduced in
[Syl1853] the following double sum:

Sylp,q(A,B)(x) :=
∑

A′⊂A,B′⊂B
|A′|=p, |B′|=q

R(A′, B′)R(A\A′, B\B′) R(x,A′)R(x,B′)

R(A′, A\A′)R(B′, B\B′)
,

where R(X,Y ) :=
∏
x∈X
y∈Y

(x − y), with the convention that R(X,Y ) = 1 if

X = ∅ or Y = ∅.
For f := fmx

m + · · · + f0, g := gnx
n + · · · + g0 ∈ K[x], and 0 ≤ d ≤

min{m,n} when m 6= n or 0 ≤ d < m = n, Sylvester also introduced the
order d subresultant Sresd(f, g)(x) ∈ K[x] :

Sresd(f, g)(x) := det

m+n−2d
fm · · · · · · fd+1−(n−d−1) xn−d−1f

. . .
...

... n−d
fm . . . fd+1 f

gn · · · · · · gd+1−(m−d−1) xm−d−1g
. . .

...
... m−d

gn · · · gd+1 g

.

When

f =
∏
a∈A

(x− a) and g =
∏
b∈B

(x− b),
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that is, all roots of f and g are simple roots, the following quite mysterious
relation between double sums and subresultants was established by Sylvester
[Syl1853]: set d := p+ q. If d ≤ min{m,n} when m 6= n, or d < m = n,

Sylp,q(A,B)(x) = (−1)p(m−d)
(
d

p

)
Sresd(f, g)(x).(1)

There are now different proofs of this fact in a more modern language, in the
literature, though they are usually quite intricate. A. Lascoux and P. Pra-
gacsz proved it in [LaPr2001] by using the theory of multi-Schur functions
and divided differences. In [DHKS2007] the proof makes use of a slick ma-
nipulation of matrix multiplication and Vandermonde determinants, while
M.-F. Roy and A. Szpirglas show in [RoSz2011] that the two objects satisfy
the same recursion. The recent new proof in [KSV2016] is based on sym-
metric interpolation, which yields what is called an Exchange Lemma (see
Lemma 2.2 below) that shows that in fact Sylvester double sum is just a
rewriting of Sylvester single sum Syld,0(A,B)(x):

(2) Sylp,q(A,B)(x) = (−1)q(m−d)
(
d

p

)
Syld,0(A,B)(x),

where we note that

(3) Syld,0(A,B)(x) =
∑

A1∪A2=A
|A1|=d, |A2|=m−d

R(A2, B)R(x,A1)

R(A1, A2)
.

Relation (2) immediately implies Sylvester’s statement (1) between double
sums and subresultants, once it can be established that

Sresd(f, g)(x) = (−1)d(m−d)Syld,0(A,B)(x).(4)

The latter is in fact easier to show than (1), and one can find some more
different proofs of it in the literature, see for instance [Bor1860, ApJo2006,
Cha1990, Hon1999, DTGV2004].

Note that (4) can be considered as a “Poisson formula” for the subresul-
tant, as it describes it in terms of the values of g in the roots of f :

Syld,0(A,B)(x) = (−1)m−d
∑

A1∪A2=A
|A1|=d,|A2|=m−d

∏
a∈A2

g(a)R(x,A1)

R(A1, A2)
,

but this equality only holds in the case where the roots of f are all simple.
Even though there is a long history in the study of the connection between

subresultants and Sylvester sums in the simple root case, little is known
about extensions when the roots of f and g have multiplicities. As noted
above, the generalization is not straightforward, since some denominators in
the Sylvester sums turn zero in case of root multiplicities. In [DKS2013], it is
shown that the generalization of determinantal expressions for subresultants
extend straightforwardly to the multiple root case, but only the special cases
of d = 1 and d = min{m,n}−1 were treated to obtain a generalized Sylvester
sum formula for multiple roots. In the recent [DKSV2016], we considered the
extremal case when f = (x−a)m and g = (x−b)n, and gave a generalization
of Sylvester double sum formulae for the subresultants. The present paper
is the first one to give expressions for subresultants of arbitrary polynomials



CLOSED FORMULA FOR UNIVARIATE SUBRESULTANTS IN MULTIPLE ROOTS 3

f and g and arbitrary values of 0 ≤ d ≤ min{m,n} that are generalization
of the classical Sylvester sums.

To do so, we first define a generalization SylMd,0(A,B)(x) of the notion
of Sylvester single sum Syld,0(A,B)(x), for multisets A and B and d big
enough, which coincides with the usual notion of single sum when A and B
are sets, and we show that our definition also satisfies -as desired- (4).

Given a multiset X ⊂ K (a set where repeating elements is allowed), we
denote with |X| its length (the number of elements counted with multiplic-
ities).

Definition 1.1. Let A, B ⊂ K be multisets with |A| = m, |B| = n and let
A ⊂ A and B ⊂ B be the sets of distinct elements in A and B respectively,
with |A| = m, |B| = n. Set m′ := m −m and n′ := n − n. For any d such
that m′ + n′ ≤ d ≤ min{m,n} if m 6= n or m′ + n′ ≤ d < m = n, we define

SylMd,0(A,B)(x) :=

(−1)m
′(m−d)

∑
A′⊂A

|A′|=d−m′

∑
B′⊂B
|B′|=m′

R(A\A,B\B′)R(A\A′, B\B′)R(x,A′)R(x,B′)

R(A′, A\A′)R(B′, B\B′)
.

The previous definition only makes sense when A and B have few repeated
elements and d is in the aforementioned range. For those values of d we have:

Theorem 1.2. Let f, g ∈ K[x] be monic polynomials of degrees m and n,
with multisets of roots A and B and sets of distinct roots A and B respec-
tively, and set m′, n′ as in Definition 1.1. For any d such that m′ + n′ ≤
d ≤ min{m,n} if m 6= n, or m′ + n′ ≤ d < m = n, we have

Sresd(f, g)(x) = (−1)d(m−d)SylMd,0(A,B)(x).

One can wonder whether the lower bound stated for d in Theorem 1.2 is
sharp since the definition of SylMd,0(A,B) makes sense for m′ ≤ min{d, n}.
The next example illustrates that the result holds for d in the right range
and shows that the constraint on d is necessary.

Example 1.3. Take f = (x − α1)(x − α2)
2 and g = (x − β1)

2, so A =
(α1, α2, α2) with A = {α1, α2} and B = (β1, β1) with B = {β1}. For d = 2,
since (3− 2) + (2− 1) ≤ 2 ≤ min{3, 2}, one has Sres2(f, g)(x) = g(x) while
SylM2,0(A,B)(x) equals

−
((α2 − β1)(x− α1)(x− β1)

α1 − α2
+

(α1 − β1)(x− α2)(x− β1)
α2 − α1

)
=

(
(α2 − β1)(x− α1)− (α1 − β1)(x− α2)

)
(x− β1)

α2 − α1

= (x− β1)(x− β1) = g(x),

so Theorem 1.2 holds in this case.
Now take f = (x − α1)(x − α2)

2 and g = (x − β1)3. For this case, A =
(α1, α2, α2) with A = {α1, α2} and B = (β1, β1, β1) with B = {β1}. For d =
2 < (3−2)+(3−1) we have Sres2(f, g)(x) = g(x)−f(x) and SylM2,0(A,B)(x)
can still be defined according to Definition 1.1 since m′ = 1 ≤ min{d, n}, but
it is a multiple of x− β1, so the two expressions obviously do not coincide.
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We need to extend the definition of SylMd,0(A,B)(x) for any d. We suc-

ceed doing it at the cost of introducing confluent Schur polynomials S
(R)
k (X),

which are defined in (9) for a multiset X of length r, by removing a subset
R of r − k rows in the confluent Vandermonde matrix of X of size k × r.

Definition 1.4. Let A, B ⊂ K be multisets with |A| = m, |B| = n and let
A ⊂ A and B ⊂ B be the sets of distinct elements in A and B respectively,
with |A| = m, |B| = n. Set m′ := m −m and n′ := n − n. and m′, n′ as
in Definition 1.1. For 0 ≤ d ≤ min{m,n} if m 6= n or 0 ≤ d < m = n, we
define

SylMd,0(A,B)(x) :=∑
(−1)σR

R(A\A,B\B′)R(A\A′, B\B′)R(x,A′)R(x,B′)

R(A′, A\A′)R(B′, B\B′)
·

· S(R̃1)
d+1 (A′ ∪B′ ∪ x)S

(R2)
m+n−d((A\A

′) ∪B)S
(R3)
m+n−d(A ∪ (B\B′)),

where the sum is indexed by

• all partitions R := R1 t R2 t R3 of the set {1, . . . ,m′ + n′ − d}
with R1 ⊂ {m + n − 2d, . . . ,m′ + n′ − d}, |R1| ≤ d − (m + n) + 1,
m′ − d ≤ |R2| ≤ m− d and n′ − d ≤ |R3| ≤ n− d,
• all subsets A′ ⊂ A, |A′| = |R2|+ d−m′,
• all subsets B′ ⊂ B, |B′| = |R3|+ min{m′, d− n′},

σR is specified in (10), and R̃1 := {i− (m+ n− 2d− 1) : i ∈ R1}.

It is easy to verify that this notion generalizes Definition 1.1, as when
m′ + n′ ≤ d, m′ + n′ − d ≤ 0 so the the sets R1, R2 and R3 in the sum
above are empty, and |B′| = m′. In this way, one recovers the previous
multiple sum straightforwardly. The main result of our paper is the following
generalization of Theorem 1.2, which shows that SylMd,0(A,B)(x) computes
the subresultant in all the cases.

Theorem 1.5. Let f, g ∈ K[x] be monic polynomials of degrees m and n,
with multisets of roots A and B, respectively, and 0 ≤ d ≤ min{m,n} if
m 6= n or 0 ≤ d < m = n. Then,

Sresd(f, g)(x) = (−1)d(m−d)SylMd,0(A,B)(x).

We consider again Example 1.3 to illustrate how now, under Defini-
tion 1.4, Theorem 1.5 indeed holds.

Example 1.6. Take f = (x − α1)(x − α2)
2 and g = (x − β1)3 associated

to the multisets A = (α1, α2, α2) with A = {α1, α2}, B = (β1, β1, β1) with
B = {β1} and d = 2. We have Sres2(f, g)(x) = g(x) − f(x) while in this
case SylM2,0(A,B)(x) equals

(α2 − β1)(x− α1)(x− α2)−
(α1 − β1)(α1 − β1)(x− α2)(x− β1)

α2 − α1
−

− (α2 − β1)(α2 − β1)(x− α1)(x− β1)
α1 − α2

.

It is easy to check that the two expressions coincide.
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The paper is organized as follows: in Section 2 we describe the main in-
gredient in our proofs, Proposition 2.1, which is a generalization of a result
by F. Apéry and J.-P. Jouanolou. In Section 3, we apply this tool to justify
the definition of SylMd,0(A,B)(x) and show its connection with the subre-
sultant. For the sake of clarity, we first present our results for the case d
big enough and then in the following subsection, we recall the definition of
confluent Schur polynomial and extend our definition and result to arbitrary
values of d.

2. A generalization of a result by Apéry & Jouanolou

The main result of this section is the following generalization of a result
by Apéry and Jouanolou that appears in [ApJo2006, Prop.91]. No multisets
are involved in this paragraph.

Proposition 2.1. Let A,B ⊂ K be finite sets with |A| = m, |B| = n. Set
0 ≤ d ≤ m. Let X be a set of variables and E ⊂ K be any finite set satisfying

|E| ≥ max{|X|+ d,m+ n− d,m}.

Then ∑
A1tA2=A

|A1|=d, |A2|=m−d

R(A2, B)R(X,A1)

R(A1, A2)
=

=
∑

E1tE2tE3=E
|E1|=d,|E2|=m−d,|E3|=|E|−m

R(A,E3)R(E2, B)R(X,E1)

R(E1, E2)R(E1, E3)R(E2, E3)
.

The original result in [ApJo2006, Prop.91] states that for |E| = m+n−d
and d ≤ min{m,n} for m 6= n or d < m = n, one has

Sresd(f, g)(x) =
∑

E1tE2tE3=E
|E1|=d,|E2|=m−d,|E3|=n−d

R(E3, A)R(E2, B)R(x,E1)

R(E2, E1)R(E3, E1)R(E3, E2)
.

This is a particular case of our result by (4) and the definition of the single
sum (3).

The rest of this section is devoted to the proof of Proposition 2.1, which
will follow from a suitable extension of the next Exchange Lemma that
appears in [KSV2016, Lem.3.1 & Cor.3.2].

Lemma 2.2. Set d ≥ 0. Let A, B ⊂ K be finite sets with |A|, |B| ≥ d, and
X a set of variables with |X| ≤ |A| − d. Then

∑
A′⊂A
|A′|=d

R(A\A′, B)
R(X,A′)

R(A\A′, A′)
=
∑
B′⊆B
|B′|=d

R(A,B\B′) R(X,B′)

R(B′, B\B′)
.

Lemma 2.2 turns out to be a consequence of the symmetric interpolation
developed in [ChLo1996] (see also [KSV2016]) that we state here as we will
need it for the proof of Lemma 2.4.
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Proposition 2.3. Let E ⊂ K be a finite set of size |E| = e. Set 0 ≤ d < e,
and let X be a set of variables with |X| = e− d. Then,

B :=
{
R(X,E′) ; E′ ⊆ E, |E′| = d

}
is a basis of the K-vector space S(e−d,d) of symmetric polynomials h in X =
{x1, . . . , xe−d} over K such that degxi(h) ≤ d for all 1 ≤ i ≤ e− d.
Moreover, any polynomial h(X) ∈ S(e−d,d) can be uniquely written as

h(X) =
∑

E′⊆E,|E′|=d

h(E\E′) R(X,E′)

R(E\E′, E′)

where h(E\E′) := h(e1, . . . , ee−d) for E\E′ = {e1, . . . , ee−d}.

Our following extension of Lemma 2.2 relaxes slightly the condition on
the size of X. Item (2) is presented for sake of completeness, we do not use
it in the sequel.

Lemma 2.4. Set d ≥ 0. Let A,B ⊂ K be finite sets with |A| ≥ d, and X be
a set of variables with |X| ≤ |A|+ |B| − 2d. Then

(1) If |B| ≥ d, then∑
A1tA2=A

|A1|=d,|A2|=|A|−d

R(A2, B)R(X,A1)

R(A1, A2)
=

= (−1)d(|A|−d)
∑

B1tB2=B
|B1|=d, |B2|=|B|−d

R(A,B2)R(X,B1)

R(B1, B2)
.

(2) If |B| < d, then∑
A1tA2=A

|A1|=d, |A2|=|A|−d

R(A2, B)R(X,A1)

R(A1, A2)
= 0.

Proof. (1) When |B| ≥ d, if |X| ≤ |A| − d holds, we are in the conditions of
Lemma 2.2 and the statement holds by simply correcting the sign.

Now assume |B| ≥ d and r := |X| > |A| − d. Write X = Y ∪ Z, with
Y = {x1, · · · , x|A|−d} and Z = {x|A|−d+1, · · · , xr}. We define

h(Y,Z) =
∑

A1tA2=A
|A1|=d,|A2|=|A|−d

R(A2, B)R(Y,A1)R(Z,A1)

R(A1, A2)
,

and

g(Y,Z) =
∑

B1tB2=B
|B1|=d, |B2|=|B|−d

R(A,B2)R(Y,B1)R(Z,B1)

R(B1, B2)
,

and show that h = (−1)d(|A|−d)g. For this purpose, we consider g, h ∈
K(Z)[Y ], i.e. with coefficients in the field K(Z). Both polynomials are
symmetric in Y and have multidegree in Y bounded by d. So h, g ∈
Sn−d,d(K(Z)). Using Proposition 2.3, it is enough to verify that h(A2, Z) =

(−1)d(|A|−d)g(A2, Z), for all A2 ⊆ A with |A2| = |A| − d. Clearly, for given
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A2, h(A2, Z) = (−1)d(|A|−d)R(A2, B)R(Z,A1) where A1 := A\A2. Let us
compute g(A2, Z):

g(A2, Z) =
∑

B1tB2=B
|B1|=d, |B2|=|B|−d

R(A,B2)R(A2, B1)R(Z,B1)

R(B1, B2)

= R(A2, B)
∑

B1tB2=B
|B1|=d, |B2|=|B|−d

R(A1, B2)R(Z,B1)

R(B1, B2)
.

Thus it suffices to show that

(5)
∑

B1tB2=B
|B1|=d, |B2|=|B|−d

R(A1, B2)R(Z,B1)

R(B1, B2)
= R(Z,A1).

But this holds again by Lemma 2.2 for B instead of A, A1 instead of B and
Z instead of X, since |Z| = |X| − (|A| − d) ≤ |B| − d by hypothesis (in this
case the only subset of A1 of size d is A1 itself).

(2) When |B| < d, we enlarge B by adding variables Y so that |B∪Y | = d,
say Y = {y1, · · · , ys}, with s = d− |B|. So we get, by applying the previous
item, that

∑
A1tA2=A

|A1|=d,|A2|=|A|−d

R(A2, B)R(X,A1)

R(A1, A2)
=

= (−1)(|A|−d)|Y | coeff
y
|A|−d
1 ···y|A|−d

s

( ∑
A1tA2=A

|A1|=d,|A2|=|A|−d

R(A2, B ∪ Y )R(X,A1)

R(A1, A2)

)
= (−1)(|A|−d)|Y | coeff

y
|A|−d
1 ···y|A|−d

s
R(X,B ∪ Y ) = 0,

since in this case the hypothesis |X| ≤ |A|+ |B| − 2d together with |B| < d
implies that |X| < |A|−d, and therefore there is no coefficient in yi of degree
|A| − d. �

Note that for X = {x}, setting m = |A| and n = |B|, Lemma 2.4 boils
down to

Syld,0(A,B)(x) = (−1)d(|A|−d)Syl0,d(A,B)(x),

for d ≤ min{m,n} when m 6= n or d < m = n, which is (4) for the two
single sums, and Syld,0(A,B)(x) = 0 for n < d ≤ m.
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Proof of Proposition 2.1. Set e := |E|, m := |A| and n := |B|. The right-
hand side of the equality we want to show can be rewritten as∑

E1tE′=E
|E1|=d, |E′|=e−d

∑
E2tE3=E

′

|E2|=m−d, |E3|=e−m

R(A,E3)R(E2, B)R(X,E1)

R(E1, E′)R(E2, E3)

=
∑

E1tE′=E
|E1|=d, |E′|=e−d

R(X,E1)

R(E1, E′)

∑
E2tE3=E

′

|E2|=m−d, |E3|=e−m

R(A,E3)R(E2, B)

R(E2, E3)

= (−1)m(e−m)+n(m−d)
∑

E1tE′=E
|E1|=d, |E′|=e−d

R(X,E1)

R(E1, E′)

∑
E2tE3=E

′

|E2|=m−d, |E3|=e−m

R(E3, A)R(B,E2)

R(E2, E3)

= (−1)d(e−m)+n(m−d)
∑

E1tE′=E
|E1|=d, |E′|=e−d

R(X,E1)

R(E1, E′)

∑
A2tA1=A

|A2|=m−d, |A1|=d

R(E′, A′)R(B,A2)

R(A2, A1)

(6)

= (−1)d(e−m)
∑

A2tA1=A
|A2|=m−d, |A1|=d

R(A2, B)

R(A2, A1)

∑
E1tE′=E

|E1|=d, |E′|=e−d

R(E′, A1)R(X,E1)

R(E1, E′)

= (−1)d(m−d)
∑

A2tA1=A
|A2|=m−d, |A1|=d

R(A2, B)

R(A2, A1)
R(X,A1)

(7)

=
∑

A1tA2=A
|A1|=d, |A2|=m−d

R(A2, B)R(X,A1)

R(A1, A2)
,

where (6) is Lemma 2.4(1) applied to E′ instead of A, A instead of B and B
instead of X since |B| ≤ |E′|+|A|−2(m−d), i.e. n ≤ e−m+d by hypothesis,
and (7) is the same corollary applied to E instead of A, A1 instead of B and
X since |X| ≤ |E|+ |A1| − 2d, i.e. |X| ≤ e− d by hypothesis (note that in
this case the only subset of A1 of size d is A1 itself and therefore the second
sum in Lemma 2.4 simply equals R(X,A1)). �

3. Application to subresultants

This section is devoted to motivate Definitions 1.1 and 1.4 and prove The-
orems 1.2 and 1.5 of the introduction. This is done by proving Theorems 3.1
and 3.3 below, where A and B are assumed to be sets instead of multisets,
and A, B are arbitrary subsets of A, B respectively. Proposition 2.1, which
can be interpreted as a multivariate version of Syld,0(A,B)(x) by means of
an arbitrary auxiliary set E (where only the size of E matters), allows us
to specialize E on sets in such a way that the denominators only depend
on these A and B. Then, in the proofs of Theorems 1.2 and 1.5, we let the
elements of A or B collide, and our formulas remain well defined as long as
we assume that the elements of A and B are all distinct.

We start with the easier case of multisets with few repeated elements and
d big enough to be in the range of Definition 1.1.
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3.1. The case of d sufficiently large.

Theorem 3.1. Let A,B ⊂ K be sets with |A| = m and |B| = n. Let
A ⊆ A and B ⊆ B be any non-empty subsets of A and B respectively, with
|A| = m and |B| = n and set m′ := m − m and n′ := n − n. Assume
d satisfies m′ + n′ ≤ d ≤ min{m,n} and let X be a set of variables with
|X| ≤ m+ n− 2d. Then∑

A1tA2=A
|A1|=d, |A2|=m−d

R(A2, B)R(X,A1)

R(A1, A2)
= (−1)m

′(m−d) ·

·
∑
A′⊂A

|A′|=d−m′

∑
B′⊂B
|B′|=m′

R(A\A,B\B′)R(A\A′, B\B′)R(X,A′)R(X,B′)

R(A′, A\A′)R(B′, B\B′)
.

Proof. We first assume that A ∩ B = ∅. By Corollary 2.1 applied to E :=
A ∪B, with |E| = m+ n ≥ m+ n− d by assumption, we have∑
A1tA2=A
|A1|=d,
|A2|=m−d

R(A2, B)R(X,A1)

R(A1, A2)
=

∑
E1tE2tE3=A∪B
|E1|=d,|E2|=m−d
|E3|=m+n−m

R(A,E3)R(E2, B)R(X,E1)

R(E1, E2)R(E1, E3)R(E2, E3)
.

Now, R(A,E3) = ∅ when A ∩ E3 6= ∅ and R(E2, B) = ∅ when E2 ∩ B 6= ∅.
Therefore E3 ⊂ B and E2 ⊂ A. Setting A′ = A\E2 and B′ = B\E3, we
get that E3 = B\B′, E2 = A\A′ and E1 = A′ ∪ B′, and therefore we can
rewrite the sum as∑

A′⊂A
|A′|=d−m′

∑
B′⊂B
|B′|=m′

R(A,B\B′)R(A\A′, B)R(X,A′)R(X,B′)

R(A′ ∪B′, A\A′)R(A′ ∪B′, B\B′)R(A\A′, B\B′)

=
∑
A′⊂A

|A′|=d−m′

∑
B′⊂B
|B′|=m′

R(A,B\B′)R(A\A′, B)R(X,A′)R(X,B′)

R(A′, A\A′)R(B′, A\A′)R(A,B\B′)R(B′, B\B′)

= (−1)|B
′|·|A\A′|

∑
A′⊂A

|A′|=d−m′

∑
B′⊂B
|B′|=m′

R(A\A,B\B′)R(A\A′, B\B′)R(X,A′)R(X,B′)

R(A′, A\A′)R(B′, B\B′)

as desired, since |B′| · |A\A′| = m′(m− d).
The general statement follows from the fact that the two expressions

generically coincide. �

We note that if in Theorem 3.1 we take A = A, the right-hand side of the
statement equals its left-hand side and we obtain nothing new. However the
right-hand side of the statement makes sense even when A,B are multisets
instead of sets, for one only needs A, B to be sets. For X = {x} we can then
define the notion of single Sylvester sum for multisets A and B and d within
the bounds of Theorem 3.1, which extends the usual notion of Sylvester
single sums for sets, as stated in Definition 1.1.
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Proof of Theorem 1.2. Assume A = (a1, . . . , a1︸ ︷︷ ︸
j1

, . . . , am, . . . , am︸ ︷︷ ︸
jm

) with m =

j1+· · ·+jm and B = (b1, . . . , b1︸ ︷︷ ︸
`1

, . . . , bn, . . . , bn︸ ︷︷ ︸
`n

) with n = `1+· · ·+`n, so that

f =
∏
a∈A(x− a) and g =

∏
b∈B(x− b). Define sets of indeterminates Y =

{y1,1, . . . , y1,j1 , . . . , ym,1, . . . , ym,jm} and Z = {z1,1, . . . , z1,`1 , . . . , zn,1, . . . , zn,`n},
and set fy := (x − y1,1) · · · (x − ym,jm) and gz := (x − z1,1) · · · (x − zn,s`n).

Then, if we set Y = {y1,1, . . . , ym,1} and Z = {z1,1, . . . , zn,1} and m′ + n′ ≤
d ≤ min{m,n} if m 6= n or m′+ n′ ≤ d < m = n, according to Theorem 3.1
we have

Syld,0(Y, Z)(x) =

(−1)m
′(m−d)

∑
Y ′⊂Y

|Y ′|=d−m′

∑
Z′⊂Z
|Z′|=m′

R(Y \Y ,Z\Z ′)R(Y \Y ′, Z\Z ′)R(x, Y ′)R(x, Z ′)

R(Y ′, Y \Y ′)R(Z ′, Z\Z ′)
.

On the other hand, by (4), Sresd(f
y, gz)(x) = (−1)d(m−d)Syld,0(Y, Z)(x).

Therefore, for d within the stated bounds,

Sresd(f
y, gz)(x) =

(−1)(d−m
′)(m−d)

∑
Y ′⊂Y

|Y ′|=d−m′

∑
Z′⊂Z
|Z′|=m′

R(Y \Y , Z\Z ′)R(Y \Y ′, Z\Z ′)R(x, Y ′)R(x, Z ′)

R(Y ′, Y \Y ′)R(Z ′, Z\Z ′)
.

We end the proof by making y1,i → a1, . . . , ym,i → am, z1,i → b1, . . . , zn,i →
bn and note that both sides of the equality are well-defined. �

3.2. The general case.

In order to deal with the case when 0 ≤ d < m′+n′ we need to recall the
definition of Schur polynomials. Given a partition

λ = (λ1, λ2, . . . , λr), λi ∈ Z≥0 for 1 ≤ i ≤ r, with λ1 ≥ λ2 ≥ · · · ≥ λr,

the Schur polynomial sλ(X) for a set X = {x1, . . . , xr} is defined as the
ratio

sλ(X) =

det


xλ1+r−11 xλ1+r−12 · · · xλ1+r−1r

xλ2+r−21 xλ2+r−22 · · · xλ2+r−2r
...

...
. . .

...

xλr1 xλr2 · · · xλrr


det

 xr−11 . . . xr−1r
...

...
1 . . . 1


.

That is, Schur polynomials are ratios of determinants of Vandermonde
matrices, where in the numerator some rows of a regular Vandermonde ma-
trix are skipped, while in the denominator a regular Vandermonde matrix
occurs. Note that Schur polynomials are symmetric in x1, . . . , xr, and thus
it makes sense to write sλ(X) for a set X. For convenience here, we will
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not follow this usual notation for Schur polynomials given by partitions but
introduce a notation with a set of exponents as follows: let

Vk(X) =

 xk−11 . . . xk−1r
...

...
1 . . . 1


be a regular rectangular Vandermonde matrix of size k×r with k ≥ r. When
k = r we write V (X) for simplicity. Let R = {i1, . . . , ik−r} ⊂ {1, . . . , k} be

a subset of the row indexes, then we will denote by V
(R)
k (X) the square

submatrix of Vk(X) obtained by removing from it the rows in R, that is,
the rows corresponding to the indexes in R, and we define

(8) S
(R)
k (X) :=

det(V
(R)
k (X))

det(V (X))
,

that is S
(R)
k (X) is the Schur polynomial associated to the set of indexes

which are in {1, . . . , k} \R.
In a more general setting, if X = (x1, . . . , x1︸ ︷︷ ︸

j1

, . . . , xr, . . . , xr︸ ︷︷ ︸
jr

) is a multiset

with r = j1 + · · · + jr, one defines a generalized or confluent Vandermonde
matrix instead of the regular Vandermonde matrix of size k × r as (c.f.
[Kal1984])

Vk(X) =
(
Vk(x1, j1) . . . Vk(xr, jr)

)
where for any j, Vk(xi, j) of size k × j is defined by

Vk(xi, j) :=


xk−1i (k − 1)xk−2i (k − 1)(k − 2)xk−3i . . . (k−1)!

(k−j)!x
k−j
i

...
...

...
...

x2i 2xi 2 . . . 0
xi 1 0 . . . 0
1 0 0 . . . 0

 ,

where when k = r one writes again V (X) for simplicity. It is known that
V (X) is invertible when xi 6= xj for i 6= j.

Then one can define confluent Schur polynomials in the same way as
before: let R = {i1, . . . , ik−r} ⊂ {1, . . . , k} be a subset of the row indexes,

then we will denote by V
(R)
k (X) the square submatrix of Vk(X) obtained by

removing from it the rows indexed by R, and define

(9) S
(R)
k (X) :=

det(V
(R)
k (X))

det(V (X))
.

Note that in principle S
(R)
k (X) is a rational function. The next result

shows that it is actually a polynomial.

Lemma 3.2. S
(R)
k (X) is a polynomial in the X-variables with coefficients

in K.

Proof. When X is a set instead of being a multiset, the Schur function
defined in (9) coincides with the Schur polynomial defined in (8), so the claim
obviously holds in this situation. To prove the statement in the general case,
consider a set X = {x1,1, . . . , x1,j1 , . . . , xr,1, . . . , xr,ir} which will “converge”
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to a multiset Y by setting x1,i → y1 for 1 ≤ i ≤ j1, . . . , xr,i → yr for
1 ≤ i ≤ jr. Then

S
(R)
k (X)→ S

(R)
k (Y )

as it can be seen for instance by computing the limits for x1,2 → x1,1 by
L’Hopital rule, for xi,3 → xi,1 if necessary, and repeating the same for the

other terms xk,2 → xk,1, etc. This shows that S
(R)
k (Y ) is actually a polyno-

mial. �

For a given (increasingly ordered) set R ⊂ {1, . . . , r}, we set sgr(R) :=
(−1)σ, where σ is a number of transpositions needed to move this set to the
first positions in {1, . . . , r}, i.e. if R = {i1, . . . is} with 1 ≤ i1 < · · · < is ≤ r,
then σ is the parity of the number of transpositions needed to bring (1, . . . , r)
to (i1, . . . is, . . . ), without changing the relative order of the other elements.

Also, for a given partition R := R1tR2t . . .tR` of {1, . . . , r}, we denote
sg(R) = sg(R1, . . . , R`) := (−1)σ, where σ is the parity of the number of
transpositions needed to bring the ordered set (R1, . . . , R`) (we assume that
each of them is also increasingly ordered) to {1, . . . , r}.

Theorem 3.3. Let A,B ⊂ K be sets with |A| = m and |B| = n. Let
A ⊆ A and B ⊆ B be any non-empty subsets of A and B respectively, with
|A| = m and |B| = n and set m′ := m − m and n′ := n − n. Assume
that 0 ≤ d ≤ min{m,n} if m 6= n or 0 ≤ d < m = n satisfies in addition
d < m′ + n′. Then:

(1) If 0 ≤ d < m+ n then

∑
A1tA2=A
|A1|=d,
|A2|=m−d

R(A2, B)R(x,A1)

R(A1, A2)
=

∑
R2tR3={1,...,m′+n′−d}
|R2|=r2,m′−d≤r2≤m−d
|R3|=r3, n′−d≤r3≤n−d

(−1)σR ·

∑
A′⊂A

|A′|=r2−(m′−d)

∑
B′⊂B

|B′|=r3−(n′−d)

R(A\A,B\B′)R(A\A′, B\B′)R(x,A′)R(x,B′)

R(A′, A\A′)R(B′, B\B′)
·

· S(R2)
m+n−d((A\A

′) ∪B)S
(R3)
m+n−d(A ∪ (B\B′)),

where for the partition R := R2 tR3 of {1, . . . ,m′ + n′ − d},

(−1)σR = (−1)m
′(m−d)+r2(m−1)+r3(m′+n′−d−1)+r2r3sg(R).

(2) If m+ n ≤ d < m′ + n′,∑
A1tA2=A
|A1|=d,
|A2|=m−d

R(A2, B)R(x,A1)

R(A1, A2)
=

∑
R1tR2tR3={1,...,m′+n′−d}
R1⊂{m+n−2d,...,m′+n′−d},
|R1|=r1, r1≤d−(m+n)+1
|R2|=r2,m′−d≤r2≤m−d
|R3|=r3, n′−d≤r3≤n−d

(−1)σR

∑
A′⊂A

|A′|=r2−(m′−d)

∑
B′⊂B

|B′|=r3−(n′−d)

R(A\A,B\B′)R(A\A′, B\B′)R(x,A′)R(x,B′)

R(A′, A\A′)R(B′, B\B′)
·

· S(R̃1)
d+1 (A′ ∪B′ ∪ x)S

(R2)
m+n−d((A\A

′) ∪B)S
(R3)
m+n−d(A ∪ (B\B′)),
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where for the partition R = R1 tR2 tR3 of {1, . . . ,m′ + n′ − d},
(10)

(−1)σR = (−1)m
′(m−d)+r1(n−d+r2+r3)+r2(m−1)+r3(m′+n′−d−1)+r2r3sg(R),

and R̃1 := {i− (m+ n− 2d− 1) : i ∈ R1}.

Proof. As in the proof of Theorem 3.1, we can assume that A∩B = ∅. The
idea of the proof is to add an auxiliary set of variables T = {t1, · · · , tr} with
r = m′ + n′ − d so that E := A ∪ B ∪ T has size |E| = m + n − d, which
allows us to apply Proposition 2.1 to E and X = {x}, and then to compare
coefficients in the obtained expression.
Applying Proposition 2.1 we get

∑
A1tA2=A
|A1|=d,
|A2|=m−d

R(A2, B)R(x,A1)

R(A1, A2)
=

∑
E1tE2tE3=A∪B∪T
|E1|=d,|E2|=m−d
|E3|=n−d

R(A,E3)R(E2, B)R(x,E1)

R(E1, E2)R(E1, E3)R(E2, E3)
.

As in the proof of Theorem 3.1, R(A,E3) = ∅ when E3 ∩ A 6= ∅ and
R(E2, B) = ∅ when E2 ∩ B 6= ∅. Therefore E3 ⊂ B ∪ T and E2 ⊂ A ∪ T .
Let us write E2 = (A\A′) ∪ T2 with A′ ⊂ A and T2 ⊂ T , E3 = (B\B′) ∪ T3
with B′ ⊂ B and T3 ⊂ T with T2 ∩ T3 = ∅. Then E1 = (A′ ∪B′)∪ T1 where
T1 = T\(T2 ∪ T3), and we can rewrite the sum as we did in Theorem 3.1:

∑
T1tT2tT3=T
|T1|=r1,0≤r1≤d
|T2|=r2,0≤r2≤m−d
|T3|=r3,0≤r3≤n−d

∑
A′⊂A

|A′|=r2+d−m′
0≤|A′|≤m

∑
B′⊂B

|B′|=r3+d−n′
0≤|B′|≤n

R(A, (B\B′) ∪ T3)R((A\A′) ∪ T2, B)R(x, (A′ ∪B′) ∪ T1)

R((A′ ∪B′) ∪ T1, (A\A′) ∪ T2)R((A′ ∪B′) ∪ T1, (B\B′) ∪ T3)R((A\A′) ∪ T2, (B\B′) ∪ T3)

=
∑

T1tT2tT3=T
|T1|=r1,0≤r1≤d

|T2|=r2,max{0,m′−d}≤r2≤m−d
|T3|=r3,max{0,n′−d}≤r3≤n−d

∑
A′⊂A

|A′|=r2−(m′−d)

∑
B′⊂B

|B′|=r3−(n′−d)

R(A, (B\B′) ∪ T3)R((A\A′) ∪ T2, B)R(x, (A′ ∪B′) ∪ T1)

R((A′ ∪B′) ∪ T1, (A\A′) ∪ T2)R((A′ ∪B′) ∪ T1, (B\B′) ∪ T3)R((A\A′) ∪ T2, (B\B′) ∪ T3)

Here for each choice of T1, T2, T3 and A′, B′, the numerator equals

R(A,B\B′)R(A, T3)R(A\A′, B)R(T2, B)R(x,A′)R(x,B′)R(x, T1)

while the denominator can be rewritten as

R(A′ ∪B′, A\A′)R(A′ ∪B′, T2)R(T1, A\A′)R(T1, T2)·
· R(A′ ∪B′, B\B′)R(A′ ∪B′, T3)R(T1, B\B′)R(T1, T3)·
· R(A\A′, B\B′)R(A\A′, T3)R(T2, B\B′)R(T2, T3)



14 C. D’ANDREA, T. KRICK, A. SZANTO, AND M. VALDETTARO

Therefore, the part of the quotient which is free of T`’s equals, as in Theo-
rem 3.1,

= (−1)σ1

∑
A′⊂A

|A′|=r2−(m′−d)

∑
B′⊂B

|B′|=r3−(n′−d)

R(A\A,B\B′)R(A\A′, B\B′)R(x,A′)R(x,B′)

R(A′, A\A′)R(B′, B\B′)

where σ1 := |B′| |A\A′|.
We deal now with the part of the quotient that involves some T`. Multiplying
and dividing by R(T1, A

′ ∪ B′)R(T2, A\A′)R(T3, B\B′), we get that this
quotient equals

(−1)σ2
R(T3, A ∪ (B\B′))R(T2, (A\A′) ∪B)R(T1, A

′ ∪B′ ∪ x)

R(T,A ∪B)R(T1, T2)R(T1, T3)R(T2, T3)
,

where σ2 := |T3| |A\A′|+ (|T2|+ |T3|)|A′ ∪B′|+ |T3| |A|+ |T1|.
Next we multiply and divide by the product of Vandermonde determinants
det(V (T1)) det(V (T2)) det(V (T3)), where we consider in each T` the elements
ti with the indices i in increasing order, and get

R(T3, A ∪ (B\B′))R(T2, (A\A′) ∪B)R(T1, A
′ ∪B′ ∪ x) det(V (T1)) det(V (T2)) det(V (T3))

R(T,A ∪B)R(T1, T2)R(T1, T3)R(T2, T3) det(V (T1)) det(V (T2)) det(V (T3))
=

= sg(T1, T2, T3)·

· R(T3, A ∪ (B\B′))R(T2, (A\A′) ∪B)R(T1, A
′ ∪B′ ∪ x) det(V (T1)) det(V (T2)) det(V (T3))

R(T,A ∪B) det(V (T ))
,

where sg(T1, T2, T3) := (−1)σ where σ is the parity of the number of trans-
positions needed to bring the ordered set T1 t T2 t T3 to {t1, . . . , tr}.

Since the denominator is independent of the choices of T`, going back to
the first expression, we have

R(T,A ∪B) det(V (T ))
∑

A1tA2=A
|A1|=d, |A2|=m−d

R(A2, B)R(x,A1)

R(A1, A2)
=

=
∑

T1tT2tT3=T
|T1|=r1,0≤r1≤d

|T2|=r2,max{0,m′−d}≤r2≤m−d
|T3|=r3,max{0,n′−d}≤r3≤n−d

(−1)σ
′
sg(T1, T2, T3) ·

·
∑
A′⊂A

|A′|=r2−(m′−d))

∑
B′⊂B

|B′|=r3−(n′−d)

R(A\A,B\B′)R(A\A′, B\B′)R(x,A′)R(x,B′)

R(A′, A\A′)R(B′, B\B′)
·

· R(T3, A ∪ (B\B′))R(T2, (A\A′) ∪B)R(T1, A
′ ∪B′ ∪ x)·

· det(V (T1)) det(V (T2)) det(V (T3)),

where

σ′ : = σ1 + σ2

= (|B′|+ |T3|)|A\A′|+ (|T2|+ |T3|)|A′ ∪B′|+ |T3| |A|+ |T1|
≡ (n′ − d)(m− d) + r1 + r2(m′ − d+ 1) + r3(n′ −m+ 1) (mod 2)

≡ m′(m− d) + r1(m− d− 1) + r2(m− 1) + r3(m′ + n′ − d− 1) (mod 2).
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(The last row is written in a way that it coincides with the exponent in
Theorem 3.1, when r < 0 is interpreted as r1 = r2 = r3 = 0.)

To recover the sum we are looking for, we take a specific coefficient in
(t1, . . . , tr) in both sides. Note that the leading coefficient of R(T,A ∪
B) det(V (T )) w.r.t. the lexicographic term order t1 > · · · > tr equals

coefftm+n−d−1
1 tm+n−d−2

2 ···tm+n−d−r
r

(
R(T,A ∪B) det(V (T ))

)
= 1.

We look now at this coefficient on the right hand side of the whole ex-
pression: we do it considering the variables ti that belong to each T`. We
look first at variables in T2, and then in T3, since they behave similarly.
Observe that

R(T2, (A\A′) ∪B) det(V (T2)) =
det(V (T2 ∪ (A\A′) ∪B))

det(V ((A\A′) ∪B))
,

and

R(T3, A ∪ (B\B′)) det(V (T3)) =
det(V (T3 ∪A ∪ (B\B′)))

det(V (A ∪ (B\B′)))
,

where the matrices in the numerator of the right-hand sides are both of size
(m+n− d)× (m+n− d). The coefficient of the monomial

∏
ti∈T2 t

m+n−d−i
i

corresponds in the numerator to the submatrix of Vm+n−d((A\A′)∪B) where
the rows indexed by R2 := {i : ti ∈ T2} have been erased. Then

coeff∏
ti∈T2

tm+n−d−i
i

(
det(V (T2 ∪ (A\A′) ∪B))

det(V ((A\A′) ∪B))

)
= sgm+n−d(R2)S

(R2)
m+n−d((A\A

′) ∪B)

= sgm′+n′−d(R2)S
(R2)
m+n−d((A\A

′) ∪B)

since R2 ⊂ {1, . . . ,m′ + n′ − d}. Analogously

coeff∏
ti∈T3

tm+n−d−i
i

(
det(V (T3 ∪A ∪ (B\B′)))

det(V (A ∪ (B\B′)))

)
= sgm′+n′−d(R3)S

(R3)
m+n−d(A∪(B\B′)),

where R3 := {i : ti ∈ T3}.
Now we deal with variables in T1. Note that

R(T1, A
′ ∪B′ ∪ x) det(V (T1)) =

det(V (T1 ∪A′ ∪B′ ∪ x))

det(V (A′ ∪B′ ∪ x))
.

Here the matrix in the numerator is a Vandermonde matrix of size (d +
1) × (d + 1) and the maximal exponent of ti for ti ∈ T1 that can appear
equals tdi . Set R1 := {i : ti ∈ T1}. Therefore, for all i ∈ R1 one needs
m + n − d − i ⊂ {0, 1, . . . , d}, i.e. m + n − 2d ≤ i ≤ m + n − d. Since
i satisfies i ≤ r = m′ + n′ − d one needs m + n − 2d ≤ m′ + n′ − d and
R1 ⊂ {m+ n− 2d, . . . ,m′ + n′ − d}.
In particular, when m+ n− 2d > m′ + n′ − d, i.e. when d < m+ n there is
no choice of R1. In that case, we conclude
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∑
A1tA2=A
|A1|=d,
|A2|=m−d

R(A2, B)R(x,A1)

R(A1, A2)
=

∑
R2tR3={1,...,m′+n′−d}

|R2|=r2,max{0,m′−d}≤r2≤m−d
|R3|=r3,max{0,n′−d}≤r3≤n−d

(−1)σ sg(R2, R3)

∑
A′⊂A

|A′|=r2−(m′−d)

∑
B′⊂B

|B′|=r3−(n′−d)

R(A\A,B\B′)R(A\A′, B\B′)R(x,A′)R(x,B′)

R(A′, A\A′)R(B′, B\B′)
·

· S(R2)
m+n−d((A\A

′) ∪B)S
(R3)
m+n−d(A ∪ (B\B′)),

where

σ = m′(m− d) + r2(m− 1) + r3(m
′ + n′ − d− 1) + r2r3,

since it is easy to check that sgm′+n′−d(R2)sgm′+n′−d(R3) = (−1)r2r3 as R2

and R3 are complementary sets in {1, . . . ,m′ + n′ − d} (or see Lemma 3.4
below).

Now, when d ≥ m+n and R1 = {i : ti ∈ T1} ⊂ {m+n−2d, . . . ,m′+n′−d}
we have

coeff∏
ti∈T1

tm+n−d−i
i

(
det(V (T1 ∪A′ ∪B′ ∪ x))

det(V (A′ ∪B′ ∪ x))

)
= sgd+1(R̃1)S

(R̃1)
d+1 (A′∪B′∪x),

where R̃1 := {i− (m+n− 2d− 1) : i ∈ R1} ⊂ {1, . . . , d+ 1− (m+n)}. We
prove in Lemma 3.4 below that

sgd+1(R̃1)sgm′+n′−d(R2)sgm′+n′−d(R3) = (−1)r1(r2+r3+m+n−1)+r2r3 .

Therefore we get∑
A1tA2=A
|A1|=d,
|A2|=m−d

R(A2, B)R(x,A1)

R(A1, A2)
=

∑
R1tR2tR3={1,...,m′+n′−d}
R1⊂{m+n−2d,...,m′+n′−d},
|R1|=r1,0≤r1≤d−(m+n)+1

|R2|=r2,max{0,m′−d}≤r2≤m−d
|R3|=r3,max{0,n′−d}≤r3≤n−d

(−1)σ sg(R1, R2, R3)

∑
A′⊂A

|A′|=r2−(m′−d)

∑
B′⊂B

|B′|=r3−(n′−d)

R(A\A,B\B′)R(A\A′, B\B′)R(x,A′)R(x,B′)

R(A′, A\A′)R(B′, B\B′)
·

· S(R̃1)
d+1 (A′ ∪B′ ∪ x)S

(R2)
m+n−d((A\A

′) ∪B)S
(R3)
m+n−d(A ∪ (B\B′)),

where

σ = m′(m− d) + r1(n− d+ r2 + r3) + r2(m− 1) + r3(m
′+n′− d− 1) + r2r3.

�

Lemma 3.4. Let R1tR2tR3 be a partition of {1, . . . , r} with |Ri| = ri for

1 ≤ i ≤ 3, and 0 ≤ s ≤ r be such that R̃1 = {i−s : i ∈ R1} ⊂ {1, . . . , r−s}.
Then

sgr−s(R̃1) sgr(R2) sgr(R3) = (−1)r1(r2+r3+s)+r2r3 .
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Proof. We set R1 = {i1, . . . , ir1}, R2 = {j1, . . . , jr2} and R3 = {k1, . . . , kr3}.
Then

sgr−s(R̃1) sgr(R2) sgr(R3) =
∑

1≤`≤r1

(i` − s− `) +
∑

1≤`≤r2

(j` − `) +
∑

1≤`≤r3

(k` − `)

=
r(r + 1)

2
− r1s−

r1(r1 + 1)

2
− r2(r2 + 1)

2
− r3(r3 + 1)

2

=
r2 − r21 − r22 − r23

2
− r1s

=
r2 − (r1 + r2 + r3)2 + 2r1r2 + 2r1r3 + 2r2r3

2
− r1s

≡ r1r2 + r1r3 + r2r3 + r1s (mod 2).

�

We are ready now to conclude the proof of Theorem 1.5.

Proof of Theorem 1.5. First we note that the definition of SylMd,0(A,B)(x)
in Definition 1.4 is not only a generalization of Definition 1.1 as mentioned
in the introduction but also generalizes the term in the right-hand side of
Theorem 3.3(1) for sets, since when d < m+n, R1 ⊂ {m+n− 2d, . . . ,m′+
n′ − d} = ∅. Therefore, thanks to Theorems 3.1 and 3.3, one has that the
following equality holds for sets A and B, any subsets A ⊂ A and B ⊂ B
and any 0 ≤ d ≤ min{m,n} if m 6= n or 0 ≤ d < m = n:

Sresd(f, g)(x) = (−1)d(m−d)SylMd,0(A,B)(x).

The transition from sets to multisets is then straightforward taking limits
of sets to multisets, as in the proof of Theorem 1.2, thanks to Lemma 3.2
and its proof, since both quantities are well defined for multisets. �
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