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Abstract. The theory of symmetric multivariate Lagrange interpolation is a
beautiful but rather unknown tool that has many applications. Here we derive
from it an Exchange Lemma that allows to explain in a simple and natural
way the full description of the double sum expressions introduced by Sylvester

in 1853 in terms of subresultants and their Bézout coefficients.
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1. Introduction

W. Chen and J. Louck proved in [Chen & Louck 1996, Th.2.1] a beautiful inter-
polation result which describes the Lagrange interpolation basis for all multivariate
symmetric polynomials in m − d variables of multidegree bounded by (d, . . . , d),
for 0 ≤ d < m, see Section 2 below for a precise statement. They use their result
to recover identities involving symmetric functions, generalizing for instance the
following polynomial identity for a finite set A = {α1, . . . , αm} contained in a field,
and a finite set of variables X = {x1 . . . , xm−d}:

x1 · · ·xm−d =
∑

A′⊂A,|A′|=d

( ∏
αj /∈A′

αj

) ∏
xj∈X,αi∈A′(xj − αi)∏
αj /∈A′,αi∈A′(αj − αi)

.

Here we take another direction and derive from this symmetric interpolation
the following Exchange Lemma (see Corollary 3.2 below): given 0 ≤ d ≤ m and
0 ≤ r ≤ m− d, for any finite sets A and B contained in a field, satisfying |A| = m
and |B| ≥ d, and any set of variables X with |X| = r, one has the following
polynomial identity∑

A′⊂A
|A′|=d

R(A\A′, B)
R(X,A′)

R(A′, A\A′)
= (−1)d(m−d)

∑
B′⊂B
|B′|=d

R(A,B\B′)
R(X,B′)

R(B′, B\B′)
,

where R(Y,Z) :=
∏

y∈Y,z∈Z(y − z) (and R(Y,Z) := 1 if Y or Z is empty).

In the particular case that |B| = d, our Exchange Lemma reads∑
A′⊂A,|A′|=d

R(A\A′, B)
R(X,A′)

R(A\A′, A′)
= R(X,B),

which is exactly the statement of [Lascoux, Lem.Rt1], proved there using Schur
functions. However, it does not seem possible to directly recover our Exchange
Lemma from Lascoux result.

In these pages, we use symmetric interpolation and the Exchange Lemma to show
in a very natural way the different and somehow puzzling relationships between
Sylvester single and double sums, subresultants and their Bézout coefficients.
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Double sums were introduced in [Sylvester 1853]: for A = {α1, . . . , αm} and
B = {β1, . . . , βn} contained in a field, he defined for 0 ≤ p ≤ m, 0 ≤ q ≤ n

Sylp,q(A,B)(x) :=
∑

A′⊂A,B′⊂B
|A′|=p, |B′|=q

R(A′, B′)R(A\A′, B\B′)
R(x,A′)R(x,B′)

R(A′, A\A′)R(B′, B\B′)
,

which is a polynomial in x of degree bounded by p+ q =: d. When p = 0 or q = 0,
the resulting expression is called a single sum.

Note that the previous Exchange Lemma applied to X = {x} reads

(1) Syld,0(A,B)(x) = (−1)d(m−d)Syl0,d(A,B)(x),

which is one of the relationships between single sums that we can derive from
Sylvester’s statements in his original work.

Subresultants were also introduced by Sylvester in the same article. For f(x) =∑m
i=0 fix

i with fm ̸= 0, g(x) =
∑n

i=0 gix
i with gn ̸= 0, and d ≤ min{m,n} when

m ≠ n or d < m = n,

Sresd(f, g)(x) := det

m+n−2d

fm · · · · · · fd+1−(n−d−1) xn−d−1f(x)
. . .

...
... n−d

fm . . . fd+1 f(x)
gn · · · · · · gd+1−(m−d−1) xm−d−1g(x)

. . .
...

... m−d

gn · · · gd+1 g(x)

.

This turns out to be a polynomial in x of degree bounded by d.
Associating to A and B the monic polynomials f(x) := (x−α1) · · · (x−αm) and

g(x) := (x− β1) · · · (x− βn), one has for instance

Syl0,0(A,B) = R(A,B) = Res(f, g),

Sylm,0(A,B) = R(x,A) = f (= Sresm(f, g) if m < n),

Syl0,n(A,B) = R(x,B) = g (= Sresn(f, g) if n < m),

Sylm,n(A,B) = R(A,B)R(x,A)R(x,B) = Res(f, g) f g,

where Res(f, g) := Sres0(f, g) is the resultant of f and g, which is well-known to
satisfy the Poisson formula Res(f, g) =

∏
α∈A g(α) = R(A,B).

Sylvester also mentions in his article [Sylvester 1853] the link between double
sums and subresultants, and many other expressions for Sylp,q(A,B) depending on
the values of p and q, see also [Lascoux and Pragasz 2003, D’Andrea et al. 2007,
Roy & Szpirglas 2011]. The full description of Sylp,q(A,B) for all possible cases of
0 ≤ p ≤ m, 0 ≤ q ≤ n is given as follows:

Theorem 1.1. (See [D’Andrea et al. 2009, Main Th. 1] and also [Krick & Szanto 2012,
Th. 1].)
Let 1 ≤ m ≤ n, 0 ≤ p ≤ m, 0 ≤ q ≤ n, and set d := p+ q and k := m+n−d−1.
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Then

Sylvp,q(A,B) =



(−1)p(m−d)
(
d
p

)
Sresd(f, g) for 0 ≤ d < m or m = d < n

0 for m < d < n− 1

(−1)(p+1)(m+n−1)
(
m
p

)
f for m < d = n− 1

(−1)σ
((

k
m−p

)
Fk(f, g) f −

(
k

n−q

)
Gk(f, g) g

)
= (−1)σ+1

((
k

n−q

)
Sresk(f, g)−

(
k+1
m−p

)
Fk(f, g) f

)
for n ≤ d ≤ m+ n− 1

Res(f, g) f g for d = m+ n.

where σ := (d−m)(n− q)+d−n−1 and Fk(f, g) and Gk(f, g) are the polynomial
coefficients of f and g in the Bezout identity

(2) Sresk(f, g) = Fk(f, g) f +Gk(f, g) g,

given by the determinantal expressions

Fk(f, g)(x) := det

m+n−2k

fm · · · · · · fk+1−(n−k−1) xn−k−1

. . .
...

... n−k

fm . . . fk+1 1
gn · · · · · · gk+1−(m−k−1) 0

. . .
...

... m−k

gn · · · gk+1 0

Gk(f, g)(x) := det

m+n−2k

fm · · · · · · fk+1−(n−k−1) 0

. . .
...

... n−k

fm . . . fk+1 0

gn · · · · · · gk+1−(m−k−1) xm−k−1

. . .
...

... m−k

gn · · · gk+1 1

.

We note that Theorem 1.1, even if stated for m ≤ n, indeed gives the full
description of Sylp,q(A,B) in terms of Sresd(f, g) and Fk(f, g), Gk(f, g) for any
value of m and n because of the symmetries

Sylp,q(A,B) = (−1)pq+(m−p)(n−q)Sylq,p(B,A)(3)

Sresd(f, g) = (−1)(m−d)(n−d)Sresd(g, f).

This theorem implies in particular Identity (1). In fact many authors worked out
the relationship between single sums Syld,0(A,B) and subresultants Sresd(f, g) in
the case d ≤ min{m,n} when m ̸= n or d < m = n, but all descriptions involving
double sums or the other cases of p and q were much harder and unnatural to ob-
tain. In [D’Andrea et al. 2009], Theorem 1.1 was obtained as the determinant of an
intricate matrix expression describing Sylp,q(A,B) while in [Krick & Szanto 2012]
it was obtained by a careful induction from some extremal cases, knowing of course
in advance what one wants to show. Here we show that Theorem 1.1 is in fact a
natural consequence of interpreting single and double sums as specific instances of
symmetric multivariate Lagrange interpolation and the Exchange Lemma. On one
hand, symmetric interpolation yields very easily the identity between single sums
and subresultants (answering thus the question of a referee of [D’Andrea et al. 2009]
who asked whether this could be obtained using specialization instead of linear al-
gebra). This is because Sylvester single sums can be viewed as generalizations of
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Lagrange interpolation formulas, as it is for the case p = 0, q = n − 1 explained
below. This is in fact the way we recovered Chen and Louck’s symmetric interpo-
lation result [Chen & Louck 1996], as we were unaware of its existence. We also
note that Lascoux in [Lascoux 2003, Section 3.5] mentions the possibility of us-
ing Lagrange interpolation techniques to prove identities for Sylvester single sums,
without developing it. On the other hand, the Exchange Lemma shows that in fact
a natural relationship exists between single and double sums (Propositions 3.3 and
3.8 below), therefore yielding all remaining expressions in Theorem 1.1.

Section 2 below treats the particular case of the Sylvester single sum Syl0,d, which
not only motivates the use of the interpolation technique we are referring to, but
ends up being a key case for the general case treated in Section 3. We emphasize
in Section 2 the very simple symmetric Lagrange interpolation Proposition 2.3,
see [Chen & Louck 1996, Th.2.1], which is the basis for all our development, and
Proposition 2.9, which allows to make the link between the single sum and the
subresultant. In Section 3 we stress again the crucial Exchange Lemma 3.1, also
obtained as a consequence of the symmetric Lagrange interpolation Proposition
2.3, that seems to be novel and allows to express all cases of Sylvester’s double
sums Sylp,q(A,B) in terms of the particular cases Syl0,d(A,B) and Sylm,d−m(A,B),
where d := p + q. Theorem 1.1 is then obtained as a consequence of Corollaries
3.4 and 3.8. In addition, in Corollary 3.10 we obtain expressions in roots for the
polynomials Fk(f, g) and Gk(f, g) in Bezout identity (2) below. Finally, we show
in Corollary 3.13 that Fk(f, g) and Gk(f, g) are symmetric polynomials in A ∪ {x}
and B ∪ {x}, respectively.

2. Sylvester’s single sums and symmetric Lagrange interpolation

We keep the following notation for the whole paper:

A = (α1, . . . , αm), f = (x− α1) · · · (x− αm) =
m∑
i=0

fix
i, where fm = 1,

B = (β1, . . . , βn), g = (x− β1) · · · (x− βn) =
n∑

i=0

gix
i, where gn = 1.

The double sum expression specializes when p = 0 and q = d ≤ n to the following
single sum expression:

Syl0,d(A,B)(x) =
∑

B′⊂B,|B′|=d

R(A,B\B′)
R(x,B′)

R(B′, B\B′)

= (−1)(m−d)(n−d)
∑

B′⊂B,|B′|=d

R(B\B′, A)
R(x,B′)

R(B\B′, B′)

= (−1)(m−d)(n−d)
∑

B′⊂B,|B′|=d

( ∏
β/∈B′

f(β)
) ∏

β∈B′(x− β)

R(B\B′, B′)
.

In this section we investigate the relationship between this single sum expression
and a specific multivariate symmetric Lagrange interpolation instance. As we will
see in next section, the symmetric interpolation tools that we describe here for the
single sum expressions will be crucial to tackle the claims about Sylvester’s double
sums.

As a motivation for what follows, we note that when d = n− 1 we get

Syl0,n−1(A,B)(x) = (−1)m+n−1
∑

1≤i≤n

f(βi)

∏
j ̸=i(x− βj)∏
j ̸=i(βi − βj)

,
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where it is well-known that the set{ ∏
j ̸=i(x− βj)∏
j ̸=i(βi − βj)

; 1 ≤ i ≤ n
}

forms the so-called Lagrange basis, used to define the solution of the Lagrange
interpolation problem, that is the unique polynomial of degree ≤ n − 1 that
takes given values at the n nodes β1, . . . , βn. Therefore, Syl0,n−1(A,B)(x) equals
the unique polynomial hn−1 of degree ≤ n − 1 which satisfies the n conditions
hn−1(β1) = (−1)m+n−1f(β1), . . . , hn−1(βn) = (−1)m+n−1f(βn). In particular,
when m < n, Syl0,n−1(A,B)(x) = (−1)m+n−1f(x).

When trying to generalize this to the case when d < n− 1, the difficulty is that
the polynomials {

R(x,B′) =
∏
β∈B′

(x− β) ; B′ ⊂ B, |B′| = d
}

are linearly dependent in the vector space Kd[x] of polynomials of degree bounded
by d, since there are

(
n
d

)
> d+ 1 of them (here K = Q(A,B), a field containing A

and B).
This can be fixed for 0 ≤ d ≤ n − 1 by considering a symmetric multivariate

interpolation problem.

2.1. Symmetric Lagrange interpolation.

Notation 2.1. We denote by S(ℓ,d) the K-vector space of all symmetric polynomi-
als h in ℓ variables x1, . . . , xℓ of multidegree bounded by (d, . . . , d), i.e. such that
degxi

(h) ≤ d for 1 ≤ i ≤ ℓ (with no specified bound for the total degree of h).

Lemma 2.2. dimK(S(ℓ,d)) =
(
ℓ+d
d

)
.

Proof. It is well-known by the fundamental theorem of elementary symmetric poly-
nomials that the symmetric polynomials in ℓ-variables are generated as an algebra
by the elementary symmetric polynomials

e1(x1, . . . , xℓ) = x1 + · · ·+ xℓ, . . . , eℓ(x1, . . . , xℓ) = x1 · · ·xℓ,

all homogeneous of degree 1 in each variable xi. Therefore, each symmetric poly-
nomial of multidegree bounded by (d, . . . , d) can be uniquely expressed as h =∑

a cae
a1
1 · · · eaℓ

ℓ satisfying |a| := a1 + · · ·+ aℓ ≤ d. Thus it corresponds to a poly-
nomial in e1, . . . , eℓ of total-degree bounded by d: the space of such polynomials
has dimension

(
ℓ+d
d

)
. �

We note that when d < n and ℓ := n− d, then dimK(S(n−d,d)) =
(
n
d

)
.

Next proposition was proved in [Chen & Louck 1996, Th.2.1], but we include

its proof here for sake of completeness. It shows that the set { R(X,B′)
R(B\B′,B′) , B′ ⊂

B, |B′| = d} is the Lagrange interpolation basis for all symmetric polynomials in
n− d variables X = {x1, . . . , xn−d} of multidegree bounded by (d, . . . , d).

Proposition 2.3. Set 0 ≤ d ≤ n − 1 and X := (x1, . . . , xn−d). Given B =
{β1, . . . , βn}, the set

B :=
{
R(X,B′) ; B′ ⊂ B, |B′| = d

}
⊂ S(n−d,d)

is a basis of S(n−d,d).
Moreover, any polynomial h(X) ∈ S(n−d,d) satisfies

h(X) =
∑

B′⊂B,|B′|=d

h(B\B′)
R(X,B′)

R(B\B′, B′)
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where h(B\B′) := h(βi1 , . . . , βin−d
) for B\B′ = {βi1 , . . . , βin−d

}.

Proof. Since there are exactly
(
n
d

)
= dimK(S(n−d,d)) elements in B, it is enough to

prove that all the elements are linearly independent. Suppose∑
B′⊂B,|B′|=d

cB′R(X,B′) = 0.

For each subset {βi1 , . . . , βin−d
} ⊂ B, if we evaluate the left hand side at x1 =

βi1 , . . . , xn−d = βin−d
, every term in the sum vanishes except forB′ := B\{βi1 , . . . , βin−d

},
where it gives cB′R(B\B′, B′). Since R(B\B′, B′) ̸= 0, we get that cB′ = 0, prov-
ing linear independence. The second claim follows from the fact that h(X) ∈
S(n−d,d) is uniquely expressed in the basis B, and its coordinates are uniquely de-
fined by all evaluations at {βi1 , . . . , βin−d

} ⊂ B. �

2.2. Sylvester single sum.

Notation 2.4. Set 0 ≤ d ≤ n− 1 and X := {x1, . . . , xn−d}. We define

MSyl0,d(A,B)(X) := (−1)(m−d)(n−d)
∑

B′⊂B,|B′|=d

( ∏
β/∈B′

f(β)
) R(X,B′)

R(B\B′, B′)
.

Observation 2.5. By Proposition 2.3, MSyl0,d(A,B)(X) ∈ S(n−d,d) is the unique

polynomial in S(n−d,d) satisfying the
(
n
d

)
conditions

MSyl0,d(A,B)(B\B′) = (−1)(m−d)(n−d)
∏

β∈B\B′

f(β) for all B′ ⊂ B, |B′| = d.

In particular,

(4) MSyl0,d(A,B)(X) = (−1)(m−d)(n−d)f(x1) · · · f(xn−d) when deg(f) ≤ d.

The choice of the notation MSyl0,d(A,B)(X) for this polynomial stands for multi-
variate Sylvester’s sum: the polynomial coincides with Syl0,d(A,B)(x) when X =
{x}, i.e. d = n − 1, or the latter is a coefficient of the former when there are two
variables or more, i.e. d < n− 1:

Remark 2.6. Set 0 ≤ d ≤ n− 1 and X := (x1, . . . , xn−d). Then

Syl0,d(A,B)(xn−d) =

{
coeffxd

1 ···xd
n−d−1

(
MSyl0,d(A,B)(X)

)
for 0 ≤ d < n− 1

MSyl0,d(A,B)(xn−d) for d = n− 1.

Here coeffxd
1 ···xd

n−d−1
denotes the coefficient inK[xn−d] of the monomial xd

1 · · ·xd
n−d−1

of MSyl0,d(A,B)(X).

Together with (4), this immediately implies:

Corollary 2.7. Set 0 ≤ d ≤ n− 1. If m ≤ d then

Syl0,d(A,B) =

{
0 for m < d < n− 1
(−1)(m−d)(n−d) f for m < d = n− 1 or m = d ≤ n− 1.

Next we show a matrix formulation for the polynomial MSyl0,d(A,B) that will
allow to recover the value of Syl0,d(A,B)(x) for the remaining case d ≤ m. We
need to introduce the following notations for the Vandermonde matrix.

Notation 2.8. Let X = (x1, . . . , xk) be a k-tuple of (distinct) indeterminates or
elements. We denote the (shifted) Vandermonde matrix of size ℓ× k corresponding
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to X by

Vℓ(X) :=

k

xℓ−1
1 . . . xℓ−1

k
...

... ℓ

1 . . . 1

.

When ℓ = k we simply write V (X) := Vℓ(X), and we recall that det(V (X)) =∏
1≤i<j≤k(xi − xj).

Proposition 2.9. Set 0 ≤ d ≤ min{n − 1,m} and X := {x1, . . . , xn−d}. The
polynomial MSyl0,d(A,B)(X) of Notation 2.4 satisfies the following determinantal
expression:

MSyl0,d(A,B)(X) =

det

m−d n−d

fm · · · · · · fd+1 xn−d−1
1 f(x1) · · · xn−d−1

n−d f(xn−d)

. . .
...

...
... n−d

fm . . . fn f(x1) · · · f(xn−d)

gn · · · · · · gn−(m−d−1) xm−d−1
1 g(x1) · · · xm−d−1

n−d g(xn−d)

. . .
...

...
... m−d

gn g(x1) · · · g(xn−d)

det(V (X))
.

Proof. In view of the definition of MSyl0,d(A,B), we only need to check that the
expression given in the right-hand side of the equality is a polynomial, which is
symmetric, of degree at most d in each variable xk, and that when specializing the
expression into (βi1 , . . . , βin−d

) it gives (−1)(m−d)(n−d)f(βi1) · · · f(βin−d
).

It is a polynomial because the denominator divides the numerator: for each j > i
the term xj − xi of det(V (x1, . . . , xn−d)) divides the numerator (letting xi = xj

yields the vanishing of the above determinant). This polynomial is symmetric
because permuting xi with xj changes the sign of the determinants both in the
numerator and in the denominator.

Let us show the degree bound for x1. We denote by C(j) the column j of the
matrix in the numerator. Then, performing the change

C(m−d+1) 7→ C(m−d+1)−xm+n−d−1
1 C(1)−· · ·−xn

1C(m−d) =: C ′(m−d+1)

does not change the determinant. However, we have

C ′(m− d+ 1)1 = fdx
n−1
1 + · · ·

...
C ′(m− d+ 1)n−d = fn−1x

n−1
1 + · · ·

C ′(m− d+ 1)n−d+1 = gn−(m−d−1)−1x
n−1
1 + · · ·

...
C ′(n− d+ 1)m+n−2d = gn−1x

n−1
1 + · · ·

Therefore, the degree in x1 of the top determinant is bounded by n − 1 while the
degree in x1 of det(V (x1, . . . , xn−d)) is exactly n − d − 1, which implies that the
degree in x1 of the quotient is bounded by n− 1− (n− d− 1) = d.
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We then evaluate the right-hand side expression into a (n−d)-tuple (βi1 , . . . , βin−d
)

for fixed 1 ≤ i1 < · · · < in−d ≤ n. It is clear that the top determinant equals

(−1)(m−d)(n−d) det(V (βi1 , . . . , βin−d
))f(βi1) · · · f(βin−d

),

while the bottom determinant equals det(V (βi1 , . . . , βin−d
)). This concludes the

proof.
�

Note that Proposition 2.9 is very similar in spirit to the matrix definition of the
subresultant: actually they coincide when d = n − 1. This inspires the following
result.

Proposition 2.10. Set 0 ≤ d ≤ n− 1. For d ≤ m, one has

Syl0,d(A,B) = Sresd(f, g).

Proof. We denote by S(X) the polynomial in the numerator of the expression for
MSyl0,d(A,B)(X) in the right-hand side of Lemma 2.9, and by cd(xn−d) ∈ K[xn−d]

the coefficient of xd
1 · · ·xd

n−d−1 in MSyl0,d(A,B)(X), that we want to show equals
Sresd(f, g)(xn−d) according to Remark 2.6.

Since MSyl0,d(A,B)(X) = S(X)/det(V (X)), we get

S(X) = MSyl0,d(A,B)(X) det(V (X))

= (cd(xn−d)x
d
1 · · ·xd

n−d−1 + · · · )(xn−d−1
1 xn−d−2

2 · · ·xn−d−1 + · · · )

= cd(xn−d)x
n−1
1 xn−2

2 · · ·xd+1
n−d−1 + · · ·

Therefore,
cd(xn−d) = coeffxn−1

1 xn−2
2 ···xd+1

n−d−1
(S(X)).

It is clear that the coefficient of xn−1
1 · · ·xd+1

n−d−1 in the determinant is obtained,
by multilinearity, from the coefficients when the column with x1 has all its ex-
ponents equal to n − 1, the column with x2 has all its exponents equal to n −
2 up to the column with xn−d−1 has all its exponents equal to d + 1, that is
coeffxn−1

1 ···xd+1
n−d−1

(S(X)) equals

det

m−d n−d

fm · · · · · · fd+1 fd · · · fd+1−(n−d−1) xn−d−1
n−d f(xn−d)

. . .
.
.
.

.

.

.
.
.
.

.

.

. n−d

fm . . . fn fn−1 · · · fd+1 f(xn−d)

gn · · · · · · gn−(m−d−1) gn−(m−d) · · · gd+1−(m−d−1) xm−d−1
n−d g(xn−d)

. . .
.
.
.

.

.

.
.
.
.

.

.

. m−d

gn gn−1 · · · gd+1 g(xn−d)

Thus
coeffxn−1

1 xn−2
2 ···xd+1

n−d−1
(S(X)) = Sresd(f, g)(xn−d),

which implies cd(xn−d) = Sresd(f, g)(xn−d) as desired. �

Putting together the information of Corollary 2.7, Proposition 2.10 and the value
of Syl0,d for d = n, this interpolation technique therefore allowed us to recover very
naturally the full description of Sylvester’s single sums Syl0,d for any 0 ≤ d ≤ n
and any m:

Syl0,d(A,B) =


Sresd(f, g) for 0 ≤ d ≤ {m− 1, n} or d = m < n
0 for m < d < n− 1
(−1)m+n−1f for m < d = n− 1
g for m ≤ d = n.
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3. Sylvester’s double sums

We treat now the case of the general double sum expression, defined for 0 ≤ p ≤
m, 0 ≤ q ≤ n. Below we show how all cases reduce to the specific instances of
Syl0,d and Sylm,d−m.

The whole section flows from the following Exchange Lemma and its Corollary,
which we could prove thanks to the interpolation Proposition 2.3 on symmetric
polynomials.

Lemma 3.1. Let A be any set with |A| = m, and set 0 ≤ p ≤ m and X =
{x1, . . . , xm−p}. Let B be any set with |B| ≥ p. Then

∑
A′⊂A,|A′|=p

R(A\A′, B)
R(X,A′)

R(A\A′, A′)
=

∑
B′⊂B,|B′|=p

R(A,B\B′)
R(X,B′)

R(B′, B\B′)
.

Proof. We observe that Proposition 2.3 implies that the polynomial h(X) ∈ sλ(m− p, p)
on the left-hand side is the only symmetric polynomial satisfying the

(
m
p

)
conditions

h(A\A′) = R(A\A′, B). Since the polynomial on the right-hand side also belongs
to S(m−p,p), it suffices to show that it satisfies the same specialization properties,
i.e. that ∑

B′⊂B,|B′|=p

R(A,B\B′)
R(A\A′, B′)

R(B′, B\B′)
= R(A\A′, B), ∀A′ ⊂ A, |A′| = p.

But∑
B′⊂B,|B′|=p

R(A,B\B′)
R(A\A′, B′)

R(B′, B\B′)
=

∑
B′⊂B,|B′|=p

R(A′, B\B′)R(A\A′, B\B′)
R(A\A′, B′)

R(B′, B\B′)

= R(A\A′, B)
∑

B′⊂B,|B′|=p

R(A′, B\B′)

R(B′, B\B′)
.

Consider for Y = {y1, . . . , yp} the polynomial

Ψ(Y ) =
∑

B′⊂B,|B′|=p

R(Y,B\B′)

R(B′, B\B′)
∈ S(p,|B|−p).

It is, again by Proposition 2.3, the only polynomial in S(p,|B|−p) satisfying the
(|B|

p

)
conditions Ψ(B′) = 1, ∀B′ ⊂ B, |B′| = p, and therefore Ψ = 1. In particular
Ψ(A′) = 1, which implies the statement. �
Corollary 3.2. Let A be any set with |A| = m, and set 0 ≤ p ≤ m and X =
(x1, . . . , xr), with r ≤ m− p. Let B be any set with |B| ≥ p. Then

∑
A′⊂A,|A′|=p

R(A\A′, B)
R(X,A′)

R(A\A′, A′)
=

∑
B′⊂B,|B′|=p

R(A,B\B′)
R(X,B′)

R(B′, B\B′)
.

Proof. The expressions above is simply the coefficient of xp
r+1 · · ·x

p
m−p of the ex-

pressions in Lemma 3.1. �
3.1. The case 0 ≤ d ≤ n− 1.

In this section we set d := p+ q, where 0 ≤ p ≤ n and 0 ≤ q ≤ n, and we assume
that it satisfies d ≤ n− 1.
We first deal with the case d ≤ min{m − 1, n − 1}. The Corollary 3.2 of the
Exchange Lemma allows to relate Sylp,q(A,B) to Syl0,p+q(A,B), simply by a careful
manipulation of terms.
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Proposition 3.3. Let 0 ≤ p ≤ m, 0 ≤ q ≤ n and set d := p + q. Assume
d ≤ min{m− 1, n− 1}. Then

Sylp,q(A,B) = (−1)p(m−d)

(
d

p

)
Syl0,d(A,B).

Proof. First note that

Sylp,q(A,B) = (−1)p(m−d)
∑

B′⊂B
|B′|=q

 ∑
A′⊂A
|A′|=p

R(A\A′, B\B′)
R(x ∪B′, A′)

R(A\A′, A′)

 R(x,B′)

R(B′, B\B′)
.

Applying the Exchange Corollary 3.2 to the coefficients inside the parenthesis of
this expression for X = x ∪ B′ of size q + 1 ≤ m − p and B\B′ of size n − q ≥ p
instead of B, we get∑

A′⊂A
|A′|=p

R(A\A′, B\B′)
R(x ∪B′, A′)

R(A\A′, A′)
=

∑
C′⊂B\B′

|C′|=p

R(A,B\(B′ ∪ C′))
R(x ∪B′, C′)

R(C′, B\(B′ ∪ C′))
.

Therefore,

Sylp,q(A,B) = (−1)p(m−d)
∑

B′⊂B
|B′|=q

 ∑
C′⊂B\B′

|C′|=p

R(A,B\(B′ ∪ C′))
R(x ∪B′, C′)

R(C′, B\(B′ ∪ C′))

 R(x,B′)

R(B′, B\B′)

= (−1)p(m−d)
∑

B′⊂B,|B′|=q

C′⊂B\B′,|C′|=p

R(A,B\(B′ ∪ C′))
R(B′, C′)

R(C′, B\(B′ ∪ C′))

R(x,B′ ∪ C′)

R(B′, B\B′)

= (−1)p(m−d)
∑

B′⊂B,|B′|=q

C′⊂B\B′,|C′|=p

R(A,B\(B′ ∪ C′))
R(x,B′ ∪ C′)

R(B′ ∪ C′, B\(B′ ∪ C′))
.

Finally, rewriting the sum over B′ ⊂ B, |B′| = q, C ′ ⊂ B\B′, |C ′| = p as a sum
over D = B′ ∪ C ′ ⊂ B, |D| = d;C ′ ⊂ D, |C ′| = p, we get

Sylp,q(A,B) = (−1)p(m−d)
∑

D⊂B,|D|=d
C′⊂D,|C′|=p

R(A,B\D)
R(x,D)

R(D,B\D)

= (−1)p(m−d)

(
d

p

) ∑
D⊂B,|D|=d

R(A,B\D)
R(x,D)

R(D,B\D)

= (−1)p(m−d)

(
d

p

)
Syl0,d(A,B),

by the definition of Syl0,d(A,B). �

Proposition 2.10 then immediately implies

Corollary 3.4. Let 0 ≤ p ≤ m, 0 ≤ q ≤ n and set d := p + q. Assume d ≤
min{m− 1, n− 1}. Then

Sylp,q(A,B) = (−1)p(m−d)

(
d

p

)
Sresd(f, g).

We now deal with the remaining case of this section, m ≤ d ≤ n − 1, where
d := p+ q with 0 ≤ p ≤ m, 0 ≤ q ≤ n. We express the double sum Sylp,q(A,B) by
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means of an interpolation problem as in Section 2. We rewrite Sylp,q(A,B) as

Sylp,q(A,B)(x) = (−1)(m−d)(n−q)
∑

A′⊂A
|A′|=p

 ∑
B′⊂B
|B′|=q

R(B\B′, A\A′)
R(x ∪A′, B′)

R(B\B′, B′)

 R(x,A′)

R(A′, A\A′)

= (−1)(m−d)(n−q)
∑

A′⊂A,|A′|=p

hA′(x ∪A′)
R(x,A′)

R(A′, A\A′)
,

where

hA′(x1, x2, . . . , xp+1) :=
∑

B′⊂B,|B′|=q

R(B\B′, A\A′)
R({x1, . . . , xp+1}, B′)

R(B\B′, B′)
,

is a symmetric polynomial in (x1, . . . , xp+1) of multidegree bounded by (q, . . . , q).
Since by hypothesis p + q ≤ n − 1, we can complete the set (x1, . . . , xp+1) to the
set X = (x1, . . . , xn−q). We have the following Lemma:

Lemma 3.5. Let 0 ≤ p ≤ m, 0 ≤ q ≤ n, and set d := p+q. Assume m ≤ d ≤ n−1
and define for X = (x1, . . . , xn−q) the polynomial

HA′(X) :=
∑

B′⊂B,|B′|=q

R(B\B′, A\A′)
R(X,B′)

R(B\B′, B′)
.

Then

HA′(X) = f
A\A′ (x1) · · · fA\A′ (xn−q)

where f
A\A′ (x) :=

∏
α∈A\A′(x− α).

Proof. Clearly HA′(X) has multidegree (q, . . . , q), thus by Proposition 2.3, HA′ is
the only polynomial in S(n−q,q) satisfying the

(
n
q

)
conditions

HA′(B\B′) =
∏

β∈B\B′

f
A\A′ (β) for all B′ ⊂ B, |B′| = q,

which proves the claim since deg(f
A\A′ ) = m− p ≤ q by the hypothesis m ≤ d. �

Note the similarity of HA′ with hA′ : they are the same when d = n − 1, or
the latter is a coefficient of the former when there are two variables or more, i.e.
d < n− 1:

Remark 3.6. Let 0 ≤ p ≤ m, 0 ≤ q ≤ n and set d := p+q. Assume m ≤ d ≤ n−1
and set X = (x1, . . . , xn−q). Then

hA′(x1, x2, . . . , xp+1) =

{
coeffxq

p+2···x
q
n−q

(
HA′(X)

)
for 0 ≤ d < n− 1

HA′(X) for d = n− 1.

Here coeffxq
p+2···x

q
n−q

denotes the coefficient in K[x1, . . . , xp+1] of the monomial

xq
p+2 · · ·x

q
n−q of HA′ .

Together with Corollary 3.4, Lemma 3.5 and Remark 3.6 immediately imply the
following full description of the case d ≤ n− 1:

Corollary 3.7. Let 0 ≤ p ≤ m, 0 ≤ q ≤ n and set d := p+q. Assume 0 ≤ d ≤ n−1.
Then,

Sylp,q(A,B) =


(−1)p(m−d)

(
d
p

)
Sresd(f, g) for 0 ≤ d ≤ min{m,n− 1}

0 for m < d < n− 1
(−1)(p+1)(m+n−1)

(
m
p

)
f for m < d = n− 1.
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Proof. The first case is direct from Corollary 3.4 for d ≤ m − 1 while for d = m,
Sylm,0(A,B) = f = Sresm(f, g) when m < n.
The two following cases are a consequence of the definition of Sylp,q(A,B) in terms
of hA′(x ∪ A′), Identity (3.5) and Remark 3.6. For the second case we observe
that hA′ = 0 and for the third one, that the polynomial f

A\A′ (x1) · · · fA\A′ (xp+1)

specialized into x ∪A′ equals f
A\A′ (x)R(A′, A\A′). So, for d = n− 1,

Sylp,q(A,B) = (−1)(m−d)(n−q)
∑

A′⊂A,|A′|=p

hA′(x ∪A′)
R(x,A′)

R(A′, A\A′)

= (−1)(m−d)(n−q)
∑

A′⊂A,|A′|=p

R(x,A\A′)R(A′, A\A′)
R(x,A′)

R(A′, A\A′)

= (−1)(m+n−1)(p+1)
∑

A′⊂A,|A′|=p

f(x) = (−1)(p+1)(m+n−1)

(
m

p

)
f(x).

�

3.2. The case max{m,n} ≤ d ≤ m+ n.

In the previous section we concluded the case 0 ≤ d ≤ n−1 and m arbitrary. By
the symmetry mentioned in Identity (3), this also concludes the case 0 ≤ d ≤ m−1
and n arbitrary. Thus it only remains to consider the case d ≥ m and d ≥ n, i.e.
max{m,n} ≤ d ≤ m+ n.

First we observe that the case d = m+n, i.e. p = m and n = q is already solved,
since Sylm,n(A,B) = Res(f, g) f g, as was mentioned in the introduction.

In the rest of this section we restrict to the case max{m,n} ≤ d ≤ m + n − 1.
We show that we can express Sylp,q(A,B) in these cases in terms of Syl0,k(A,B)
and Sylm,d−m(A,B), where k := m+ n− d− 1.

Proposition 3.8. Let 0 ≤ p ≤ m, 0 ≤ q ≤ n and set d := p + q. Assume
max{m,n} ≤ d ≤ m+ n− 1. Then

Sylp,q(A,B) = (−1)c
(

k

n− q

)
Syl0,k(A,B) + (−1)e

(
k + 1

m− p

)
Sylm,d−m(A,B),

where k := m+ n− d− 1, c := (d−m)(n− q) + d− n and e := (d−m)(q + 1).

Proof. We rewrite, for a fixed B′ ⊂ B, |B′| = q,

∑
A′⊂A
|A′|=p

R(B′, A′)R(B\B′, A\A′)
R(x,A′)

R(A′, A\A′)
=

∑
A′⊂A
|A′|=p

R(B′ ∪ x,A′)
R(B\B′, A\A′)

R(A′, A\A′)

= (−1)p(q+1)
∑

A′′⊂A
|A′′|=m−p

R(A\A′′, B′ ∪ x)
R(B\B′, A′′)

R(A\A′′, A′′)

= (−1)p(q+1)
∑

C′′⊂B′∪{x}
|C′′|=m−p

R(A, (B′ ∪ x)\C′′)
R(B\B′, C′′)

R(C′′, (B′ ∪ x)\C′′)
,

where for the last equality we used the Exchange Corollary 3.2 for B′ ∪{x} of size
q+1 ≥ m−p since d ≥ m−1 instead of B and X = B\B′ of size n−q ≤ m−(m−p)
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since d ≥ n. Therefore, setting ζ := (m− p)(n− q), we get

Sylp,q(A,B)(x) = (−1)ζ+pq
∑

B′⊂B
|B′|=q

( ∑
A′⊂A
|A′|=p

R(B′, A′)R(B\B′, A\A′)
R(x,A′)

R(A′, A\A′)

) R(x,B′)

R(B′, B\B′)

= (−1)ζ+p
∑

B′⊂B
|B′|=q

( ∑
C′′⊂B′∪{x}
|C′′|=m−p

R(A, (B′ ∪ x)\C′′)
R(B\B′, C′′)

R(C′′, (B′ ∪ x)\C′′)

) R(x,B′)

R(B′, B\B′)
.

Now we split this sum (without considering the sign (−1)ζ+p for now) in two sums,
according whether x ∈ C ′′ or x /∈ C ′′. The first sum S1, when x ∈ C ′′, equals

S1 =
∑

B′⊂B,|B′|=q
C′⊂B′,|C′|=m−p−1

R(A,B′\C ′)
R(B\B′, C ′ ∪ x)

R(C ′ ∪ x,B′\C ′)

R(x,B′)

R(B′, B\B′)

= (−1)n−q+(n−q)q
∑

B′⊂B,|B′|=q
C′⊂B′,|C′|=m−p−1

R(A,B′\C ′)
R(x, (B\B′) ∪ C ′)

R((B\B′) ∪ C ′, B′\C ′)

= (−1)n(q+1)
∑

B′⊂B,|B′|=q
C′⊂B′,|C′|=m−p−1

R(A,B\((B\B′) ∪ C ′)
R(x, (B\B′) ∪ C ′)

R((B\B′) ∪ C ′, B\((B\B′) ∪ C ′))
.

Finally, replacing the summation over B′ by a sum over D = (B\B′) ∪ C ′ ⊂ B,
where |D| = n − q + m − p − 1 = m + n − d − 1 = k (observe that 0 ≤ k ≤
min{m− 1, n− 1} since max{m,n} ≤ d ≤ m+ n− 1), we get

S1 = (−1)n(q+1)
∑

D⊂B,|D|=k
C′⊂D,|C′|=m−p−1

R(A,B\D)
R(x,D)

R(D,B\D)

= (−1)n(q+1)

(
k

m− p− 1

) ∑
D⊂B,|D|=k

R(A,B\D)
R(x,D)

R(D,B\D)

= (−1)n(q+1)

(
k

n− q

)
Syl0,k(A,B)(x).

Let S2 denote the second sum (without the sign (−1)ζ+p for now), when x /∈ C ′′:
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S2 =
∑

B′⊂B,|B′|=q
C′′⊂B′,|C′′|=m−p

R(A, (B′ ∪ x)\C ′′)
R(B\B′, C ′′)

R(C ′′, (B′ ∪ x)\C ′′)

R(x,B′)

R(B′, B\B′)

= (−1)εf(x)
∑

B′⊂B,|B′|=q
C′′⊂B′,|C′′|=m−p

R(A,B′\C ′′)
R(x,B′\C ′′)

R(B′\C ′′, (B\B′) ∪ C ′′)

= (−1)εf(x)
∑

B′⊂B,|B′|=q
C′′⊂B′,|C′′|=m−p

R(A,B\((B\B′) ∪ C ′′))
R(x,B\((B\B′) ∪ C ′′))

R(B\((B\B′) ∪ C ′′), (B\B′) ∪ C ′′)

= (−1)εf(x)
∑

D⊂B,|D|=k+1
C′′⊂D,|C′′|=m−p

R(A,B\D)
R(x,B\D)

R(B\D,D)

= (−1)ε
(
k + 1

m− p

)
f(x)

∑
D⊂B,|D|=k+1

R(A,B\D)
R(x,B\D)

R(B\D,D)

= (−1)ε
(
k + 1

m− p

)
f(x)

∑
D′⊂B,|D′|=d−m

R(A,D′)
R(x,D′)

R(D′, B\D′))

= (−1)ε
(
k + 1

m− p

)
Sylm,d−m(A,B),

where ε := m + m − p + (m − p)(n − q) + (m − p)(q + p − m) ≡ m + n(m − p)
(mod 2), and D = (B\B′)∪C ′′ with |D| = m+n−d−1+1 = k+1 and D′ = B\D
with |D′| = n− (k + 1) = d−m, by the definition of Sylm,d−m.

Finally we add up the signs

c : = ζ + p+ n(q + 1) ≡ (d−m)(n− q) + d− n (mod 2)

e : = ζ + p+ ε = (m− p)(n− q) +m+ n(m− p) ≡ (d−m)(q + 1) (mod 2)

to get the expression in the claim. �

We end up considering the only remaining case, Sylm,d−m(A,B) for max{m,n} ≤
d ≤ m+ n− 1. Remember that

Sylm,d−m(A,B)(x) =
∑

B′⊂B,|B′|=d−m

R(A,B′)
R(x,A)R(x,B′)

R(B′, B\B′)

= f(x)
∑

B′⊂B,|B′|=d−m

R(A,B′)
R(x,B′)

R(B′, B\B′)
,

which is a polynomial of degree bounded by m+ (d−m) = d.
Since max{m,n} ≤ d ≤ m+n−1, k := m+n−d−1 satisfies k ≤ min{m−1, n−1}.
Thus, for these values of k we have the Bezout Identity (2)

Sresk(f, g) = Fk(f, g)f +Gk(f, g)g.

Here Fk(f, g) is a polynomial of degree bounded by n− k − 1 = d−m.

Proposition 3.9. Let max{m,n} ≤ d ≤ m + n − 1 and set k := m + n − d − 1.
Then

Sylm,d−m(A,B) = (−1)(d−m)n+m+n−1Fk(f, g) f.

Proof. Since Sylm,d−m(A,B) and Fk(f, g) f are both polynomials of degree bounded
by d ≤ m + n − 1, it suffices to show the equality by interpolating them on the
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indeterminates of A ∪ B. It is clear that they both vanish –thus coincide– on any
α ∈ A. So it remains to evaluate both polynomials on β ∈ B. We have

Sylm,d−m(A,B)(β) = f(β)
∑

B′⊂B,|B′|=d−m,β/∈B′

R(A,B′)
R(β,B′)

R(B′, B\B′)

= f(β)
∑

B′⊂B\{β},|B′|=d−m

R(A,B′)
R(β,B′)

R(B′, β)R(B′, B\(β ∪B′))

= (−1)d−mf(β)
∑

B′⊂B\{β},|B′|=d−m

R(A,B′)

R(B′, B\(β ∪B′))
.

On the other hand, since g(β) = 0,

(Fk(f, g) f)(β) = (Fk(f, g) f +Gk(f, g) g)(β) = Sresk(f, g)(β) = Syl0,k(A,B)(β)

by Proposition 2.10. Therefore we need to compute Syl0,k(A,B)(β). But

Syl0,k(A,B)(β) =
∑

D⊂B,|D|=k

R(A,B\D)
R(β,D)

R(D,B\D)

=
∑

D⊂B\{β},|D|=k

R(A, β)R(A,B\(β ∪D))
R(β,D)

R(D,β)R(D,B\(β ∪D))

= (−1)m−kf(β)
∑

D⊂B\{β},|D|=k

R(A,B\(β ∪D))

R(D,B\(β ∪D))

= (−1)m−kf(β)
∑

B′⊂B\{β},|B′|=d−m

R(A,B′)

R(B\(β ∪B′), B′)

= (−1)m−k+k(d−m)f(β)
∑

B′⊂B\{β},|B′|=d−m

R(A,B′)

R(B′, B\(β ∪B′))
,

setting B′ := B\(β ∪D).
Therefore Sylm,m−d(A,B)(β) = (−1)m−k+(k+1)(d−m)Syl0,k(A,B)(β). The state-
ment follows from m− k + (k + 1)(d−m) ≡ (d−m)n+m+ n− 1 (mod 2). �

The previous proposition allows to recover expressions in roots for the polyno-
mials Fk(f, g) and Gk(f, g) appearing in Bezout Identity (2). Note that these
identities already appeared in [Sylvester 1853, Art. 29], and more recently in
[Krick & Szanto 2012, D’Andrea et al. 2015].

Corollary 3.10. Let 0 ≤ k ≤ min{m− 1, n− 1}. Then

Fk(f, g) = (−1)m−k
∑

B′⊂B,|B′|=k+1

R(A,B\B′)
R(x,B\B′)

R(B′, B\B′)

Gk(f, g) = (−1)m−k+1
∑

A′⊂A,|A′|=k+1

R(A\A′, B)
R(x,A\A′)

R(A\A′, A′)
.
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Proof. The identity for Fk(f, g) is simply obtained by comparing Sylm,d−m(A,B)
and Fk(f, g) f and simplifying f in both sides:

Fk(f, g) = (−1)(d−m)n+m+n−1
∑

B′⊂B,|B′|=d−m

R(A,B′)
R(x,B′)

R(B′, B\B′)

= (−1)d−n+1
∑

B′⊂B,|B′|=d−m

R(A,B′)
R(x,B′)

R(B\B′, B′)

= (−1)m−k
∑

D⊂B,|D|=k+1

R(A,B\D)
R(x,B\D)

R(D,B\D)
.

On the other hand, we have that

Gk(f, g) = (−1)(m−k)(n−k)Fk(g, f)

which implies

Gk(f, g) = (−1)(m−k+1)(n−k)
∑

A′⊂A,|A′|=k+1

R(B,A\A′)
R(x,A\A′)

R(A′, A\A′)

= (−1)m−k+1
∑

A′⊂A,|A′|=k+1

R(A\A′, B)
R(x,A\A′)

R(A\A′, A′)
.

�

Propositions 3.8, 2.10 and 3.9 then imply

Corollary 3.11. Let 0 ≤ p ≤ m, 0 ≤ q ≤ n and set d := p + q. Assume
max{m,n} ≤ d ≤ m+ n− 1. Then

Sylp,q(A,B) = (−1)(d−m)(n−q)+d−n
(( k

n− q

)
Sresk(f, g)−

(
k + 1

m− p

)
Fk f

)
,

where k := m+ n− d− 1.

Proof. We have

Sylp,q(A,B) = (−1)c
(

k

n− q

)
Syl0,k(A,B) + (−1)e

(
k + 1

m− p

)
Sylm,d−m(A,B)

= (−1)c
(

k

n− q

)
Sresk(f, g) + (−1)e(−1)(d−m)n+m+n−1

(
k + 1

m− p

)
Fk(f, g) f,

where c := (d−m)(n− q) + d− n and e := (d−m)(q + 1). The statement follows
from e+ (d−m)n+m+ n ≡ (d−m)(n− q) + d− n (mod 2). �

The following proposition is another application of the Exchange Lemma 3.1,
and gives simple identities for the polynomials Fk and Gk in the Bezout Identity
(2) in terms of the roots, which enable us to make a further connection with Schur
polynomials.

Proposition 3.12. Let 0 ≤ k ≤ min{m− 1, n− 1}. Then

Fk = (−1)k(m−k)
∑

C′⊂A∪{x},|C′|=k+1

R((A ∪ {x})\C ′, B)

R(C ′, (A ∪ {x})\C ′)
,

Gk = (−1)m(n−k)
∑

D′⊂B∪{x},|D′|=k+1

R((B ∪ {x})\D′, A)

R(D′, (B ∪ {x})\D′)
.
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Proof. These identities are also an immediate consequence of Exchange Corollary
3.2, applied to r = 0 variables. We set C := A ∪ {x}, D := B ∪ {x}.

Fk(f, g) = (−1)m−k
∑

B′⊂B,|B′|=k+1

R(C,B\B′)

R(B′, B\B′)

= (−1)(m−k)(n−k)
∑

B′⊂B,|B′|=k+1

R(B\B′, C)

R(B\B′, B′)

= (−1)(m−k)(n−k)
∑

C′⊂C,|C′|=k+1

R(B,C\C ′)

R(C ′, C\C ′)

= (−1)k(m−k)
∑

C′⊂C,|C′|=k+1

R(C\C ′, B)

R(C ′, C\C ′)
,

Gk(f, g) = (−1)(m−k)(n−k)Fk(g, f)

= (−1)m(n−k)
∑

D′⊂D,|D′|=k+1

R(D\D′, A)

R(D′, D\D′)
.

�

As a corollary, we can express Fk(f, g) and Gk(f, g) as symmetric polynomials
in the variables A ∪ {x} and B ∪ {x}, respectively.

Corollary 3.13. Let 0 ≤ k ≤ min{m − 1, n − 1}. Then we have the following
expressions for Fk(f, g) and Gk(f, g) as symmetric polynomials in A ∪ {x} and
B ∪ {x}, respectively:

Fk(f, g) = (−1)m−k

det

m+1

g(α1)α
m−k−1
1 . . . g(αm)αm−k−1

m g(x)xm−k−1

...
... m−k

g(α1) . . . g(αm) g(x)

αk
1 . . . αk

m xk

...
... k+1

1 . . . 1 1

det(V (A ∪ {x})) .

and

Gk(f, g) = (−1)(m−k−1)(n−k)

det

n+1

f(β1)β
n−k−1
1 . . . f(βn)β

n−k−1
n f(x)xn−k−1

...
... n−k

f(β1) . . . f(βn) f(x)

βk
1 . . . βk

n xk

...
... k+1

1 . . . 1 1

det(V (B ∪ {x})) ,

Proof. We prove the claim for Fk(f, g), the claim forGk(f, g) follows fromGk(f, g) =
(−1)(m−k)(n−k)Fk(g, f).
First we verify that the expression in the right-hand side is a polynomial: the
denominator divides the numerator since making αi = αj or αi = x yields the van-
ishing of the numerator. It is symmetric in A∪{x} because both the numerator and
the denominator are alternate. We set C := A ∪ {x}. We expand the determinant



18 TERESA KRICK, AGNES SZANTO, AND MARCELO VALDETTARO

in the numerator of the right-hand side by the first m − k rows, and get that the
ratio of determinants equals

1

V (C)

∑
C′′⊂C,|C′′|=m−k

sg(C ′′, C)V (C\C ′′)V (C ′′)
∏

c∈C′′

g(C ′′)

=
∑

C′′⊂C,|C′′|=m−k

∏
c∈C′′ g(C ′′)

R(C ′′, C\C ′′)

=
∑

C′⊂C,|C′|=k+1

R(C\C ′, B)

R(C\C ′, C ′)
= (−1)m−kFk(f, g),

using for the first equality that

det(V (C)) = sg(C ′′, C) det(V (C ′′)) det(V (C\C ′′))R(C ′′, C\C ′′),

where sg(C ′′, C) is the sign needed to bring the columns of C ′′ into {1, . . . ,m −
k}. �

We close the paper by pointing to a simple connection of the previous corollary
to Schur polynomials. Recall that the Schur polynomial sλ(X) corresponding to an
ℓ-tuple of indeterminates X = (x1, . . . , xℓ) and a partition λ = (λ1, . . . , λℓ) ∈ Zℓ

≥0,
where λ1 ≥ λ2 ≥ · · · ≥ λℓ ≥ 0, is defined as

sλ(X) :=

det

ℓ

xλ1+ℓ−1
1 . . . xλ1+ℓ−1

ℓ

xλ2+ℓ−2
1 . . . xλ2+ℓ−2

ℓ
...

... ℓ

x
λℓ−1+1
1 . . . x

λℓ−1+1
ℓ

xλℓ
1 . . . xλℓ

ℓ

det(V (X))
,

or equivalently, it is the determinant of the submatrix of the Vandermonde matrix
Vλ1+ℓ(X) corresponding to the rows indexed by the exponents λ1 + ℓ− 1, λ2 + ℓ−
2, . . . , λℓ, divided by the usual Vandermonde determinant det(V (X)).

To see the connection between Corollary 3.13 and Schur polynomials, assume
first that g = xn. Then we have

Fk(f, x
n) = (−1)m−k

det

m+1

αn+m−k−1
1 . . . αn+m−k−1

m xn+m−k−1

...
... m−k

αn
1 . . . αn

m xn

αk
1 . . . αk

m xk

...
... k+1

1 . . . 1 1

det(V (A ∪ {x}))
.

Thus, by definition, we immediately get that

Fk(f, x
n) = (−1)m−ksλ(A ∪ {x}),

where λ := (n− k − 1, . . . , n− k − 1, 0, . . . , 0) = ((n− k − 1)m−k; 0k+1) ∈ Zm+1
≥0 .

Similar expressions can be obtained for Gk(x
m, g) in terms of the Schur polynomial

on B ∪ {x} with respect to the partition ((m− k − 1)n−k; 0k+1).
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For general g =
∑n

i=0 gix
i we can use the following matrix identity, together with

the Cauchy-Binet formula, to get an expression for Fk(f, g) in terms of Schur poly-
nomials on A ∪ {x}:

m+1

g(α1)α
m−k−1
1 . . . g(αm)αm−k−1

m g(x)xm−k−1

...
... m−k

g(α1) . . . g(αm) g(x)

αk
1 . . . αk

m xk

...
... k+1

1 . . . 1 1

=

=

m+n−k

gn . . . g0

m−k
. . .

. . .

gn . . . g0

k+1 0(k+1)×(m+n−1) Idk+1

· Vm+n−k(A ∪ {x}).

Note that the above expressions using Schur polynomials on A∪ {x} are related
to the expressions given in [Lascoux, page 3], where the k = m−1 case is considered.
In the k = m − 1 case, the Lagrange operator defined in [Lascoux, page 3] is the
map LA : g 7→ Fm−1(f, g), using our notation. For general k, a special case of the
Sylvester operator defined in [Lascoux, page 16] is the map g(x1) · · · g(xm−k) 7→
Fk(f, g).
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