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Introduction

Hilbert Nullstellensatz is a cornerstone of algebraic geometry. Under a simplified form, its state-
ment is the following:

Let f1, . . . , fs ∈ ZZ[x1, . . . , xn] be polynomials such that the equation system

f1(x) = 0, . . . , fs(x) = 0 (1)

has no solution in Cn . Then there exist a ∈ ZZ \ {0} and g1, . . . , gs ∈ ZZ[x1, . . . , xn]
satisfying the Bézout identity

a = g1 f1 + · · ·+ gs fs. (2)

As for many central results in commutative algebra and algebraic geometry, it is an existential non-
effective statement. The estimation of both the degree and the height of polynomials satisfying
identity (2) became an important and widely considered question. Effective versions of Hilbert
Nullstellensatz apply to a wide range of situations in number theory and theoretical computer
science. In particular, they decide the consistency of a given polynomial system. In their arithmetic
presentation, they apply to Lojasiewicz inequalities [51], [26] and to the consistency problem over
finite fields [28], [22].
Let h(f) denote the height of an arbitrary polynomial f ∈ ZZ[x1, . . . , xn] , defined as the logarithm
of the maximum modulus of its coefficients. The main result of this paper is the following effective
arithmetic Nullstellensatz:

Theorem 1 Let f1, . . . , fs ∈ ZZ[x1, . . . , xn] be polynomials without common zeros in Cn . Set
d := maxi deg fi and h := maxi h(fi) .
Then there exist a ∈ ZZ \ {0} and g1, . . . , gs ∈ ZZ[x1, . . . , xn] such that

• a = g1 f1 + · · ·+ gs fs ,

• deg gi ≤ 4 n dn ,

• h(a), h(gi) ≤ 4 n (n + 1) dn (h + log s + (n + 7) log(n + 1) d) .

As we will see below, this result substantially improves all previously known estimates for the
arithmetic Nullstellensatz.
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The following variant of a well-known example due to Masser and Philippon [6] yields a lower
bound for any general degree and height estimate. Set

f1 := xd
1 , f2 := x1 xd−1

n − xd
2 , . . . , fn−1 := xn−2 xd−1

n − xd
n−1 , fn := xn−1 xd−1

n −H

for any positive integers n , d and H . These are polynomials of degree d and height bounded by
h := log H without common zeros in Cn . Let a ∈ ZZ \ {0} and g1, . . . , gn ∈ ZZ[x1, . . . , xn] such
that

a = g1 f1 + · · ·+ gn fn.

Specializing this identity at x1 := Hdn−2
td

n−1−1, . . . , xn−1 := H td−1, xn := 1/t we obtain

a = g1(Hdn−2
td

n−1−1, . . . , H td−1, 1/t)Hdn−1
td

n−d.

We conclude that deg g1 ≥ dn−d and h(a) ≥ dn−1 h . In fact, a modified version of this example
gives the improved lower bound h(a) ≥ dn h (Example 3.10). This shows that our estimate is
essentially optimal.

The earlier work on the effective Nullstellensatz dealt with the degree bounds. Let k be a field
and k its algebraic closure, and let f1, . . . , fs ∈ k[x1, . . . , xn] be polynomials of degree bounded
by d without common zeros in k

n
.

In 1926, Hermann [25] (see also [23], [43]) proved that there exist g1, . . . , gs ∈ k[x1, . . . , xn] such
that

1 = g1 f1 + · · ·+ gs fs

with deg gi fi ≤ 2 (2d)2
n−1

.
After a conjecture of Keller and Gröbner, this estimate was dramatically improved by Brownawell
[6] to deg gifi ≤ n2dn + n d in case char (k) = 0 , while Caniglia, Galligo and Heintz [7] showed
that deg gifi ≤ dn2

holds in the general case.
These results were then independently refined by Kollár [29] and by Fitchas and Galligo [12] to

deg gi fi ≤ max{3, d}n,

which is optimal in case d ≥ 3 . For d = 2 , Sombra [53] recently showed that the bound deg gifi ≤
2n+1 holds.

Now, let us consider the height aspect: assume that f1, . . . , fs ∈ ZZ[x1, . . . , xn] are polynomials of
degree and height bounded by d and h , respectively. The previous degree bound reduces Bézout
identity (2) to a system of Q -linear equations. Applying Cramer rule to this linear system one
obtains an estimate for the height of a and the polynomials gi of type s dn2

(h + log s + d) .
However, it was soon conjectured that the true height bound should be much smaller.
Philippon [48] obtained the following sharper estimate for the denominator a in the Bézout equa-
tion:

deg gi ≤ (n + 2) dn , h(a) ≤ κ(n) dn(h + d),

where κ(n) depends exponentially on n .
The first essential progress on height estimates for all the polynomials gi was achieved by Beren-
stein and Yger [2], who obtained

deg gi ≤ n (2n + 1) dn , h(a), h(gi) ≤ λ(n) d8n+3 (h + log s + d log d),

where λ(n) is a (non-explicit) constant which depends exponentially on n . Their proof relies on
the previous work of Philippon and on techniques from complex analysis.
Later on, Krick and Pardo [31], [32] obtained

deg gi ≤ (nd)c n , h(a), h(gi) ≤ (nd)c n(h + log s + d),
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where c is a universal constant ( c ≤ 35 ). Their proof, based on duality theory for Gorenstein
algebras, is completely algebraic.
Finally, Berenstein and Yger [3] improved their height bound to λ(n) d4n+2 (h + log s + d ) , and
extended it to the case when ZZ is replaced by an arbitrary diophantine ring. It should be said,
however, that the possibility of such an extension was already clear from the arguments of [32].
We refer the reader to the surveys [58], [1], [45] for a broad introduction to the history of the
effective Nullstellensatz, main results and open questions. Aside from degree and height estimates,
there is a strong current area of research on computational issues [19], [13], [32], [18], [16], [22].
There are other results in the recent research papers [50], [30], [10].

With respect to previous work, in this paper we improve in an almost optimal way the dependence
of the height estimate on dn and we eliminate the extraneous exponential constants depending on
n . We remark that the polynomials arising in Theorem 1 are a slight variant of the polynomials
which appear in [32] and can thus be effectively computed by their algorithm.

Although the exponential behavior of the degree and height estimates is — in the worst-case —
unavoidable, it has been observed that there are many particular instances in which these estimates
can be essentially improved. This has motivated the introduction of parameters associated to
the input system which identify special families whose behavior with respect to our problem is
polynomial instead of exponential.
In this spirit, Giusti et al. [18] introduced the notion of degree of a polynomial system f1, . . . , fs .
Roughly speaking, this parameter measures the degree of the varieties cut out by f1, . . . , fi for
i = 1, . . . , s − 1 . It was soon realized that the degrees in the Nullstellensatz can be controlled in
terms of this parameter, giving rise to the so-called “intrinsic Nullstellensätze” [18], [33], [16], [52].
Recently Hägele, Morais, Pardo and Sombra [22] (see also [21]) obtained an arithmetic analogue
of these intrinsic Nullstellensätze. To this aim, they introduced the notion of height of a poly-
nomial system, the arithmetic analogue of the degree of the system. They obtained degree and
height estimates which depend polynomially on the number of variables and on the degree, height
and complexity of the input system. This result followed from their study of the computational
complexity of the Nullstellensatz.
In this paper we obtain a dramatical improvement over this result, bringing it to an (apparently)
almost optimal form. In particular, we show that the dependence on the degree and the height of
the system is linear, and we eliminate the influence of the complexity of the input.

Theorem 2 Let f1, . . . , fs ∈ ZZ[x1, . . . , xn] be polynomials without common zeros in Cn . Set
d := maxi deg fi and h := maxi h(fi) . Let δ and η denote the degree and the height of the
polynomial system f1, . . . , fs .
Then there exist a ∈ ZZ \ {0} and g1, . . . , gs ∈ ZZ[x1, . . . , xn] such that

• a = g1 f1 + · · ·+ gs fs ,

• deg gi ≤ 2 n2 d δ ,

• h(a), h(gi) ≤ (n + 1)2 d (2 η + (h + log s) δ + 21 (n + 1)2 d log(d + 1) δ).

Since δ ≤ dn−1 and η ≤ ndn−1 (h + log s + 3 n (n + 1) d) (Lemma 4.8) one recovers from this
statement essentially the same estimates of Theorem 1. However, we remark that Theorem 2 is a
more flexible result, as there are many situations in which the degree and the height of the input
system are smaller than the Bézout bounds. When this is the case, it yields a much more accurate
estimate (Subsection 4.2.2).

A more general example of the situation when both the degree and the height of the system are
smaller than the expected worst-case bounds is the sparse case. To state the result, we first need
to introduce some standard notation.
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The support Supp(f1, . . . , fs) of a polynomial system f1, . . . , fs ⊂ C[x1, . . . , xn] is defined as the
set of exponents of all the non-zero monomials of all fi ’s, and the Newton polytope N (f1, . . . , fs)
is the convex hull of this support. The (normalized) volume of f1, . . . , fs equals n! times the
volume of the corresponding Newton polytope.
The notions of Newton polytope and volume of a polynomial system give a sharper characterization
of its monomial structure than the degree alone. These concepts were introduced in the context of
root counting by Bernstein [4] and Kushnirenko [35], and are now in the basis of sparse elimination
theory (see e.g. [56]).
As an application of Theorem 2 we derive the following arithmetic effective Nullstellensatz for
sparse polynomial systems:

Corollary 3 Let f1, . . . , fs ∈ ZZ[x1, . . . , xn] be polynomials without common zeros in Cn . Set
d := maxi deg fi and h := maxi h(fi) . Let V denote the volume of the polynomial system
1, x1, . . . , xn, f1, . . . , fs .
Then there exist a ∈ ZZ \ {0} and g1, . . . , gs ∈ ZZ[x1, . . . , xn] such that

• a = g1 f1 + · · ·+ gs fs ,

• deg gi ≤ 2 n2 dV ,

• h(a), h(gi) ≤ 2 (n + 1)3 d V (h + log s + 22n+3d log(d + 1)).

The crucial observation here is that both the degree and the height of a polynomial system are
essentially controlled by the normalized volume. This follows from an adequate arithmetic version
of the Bernstein-Kushnirenko theorem (Proposition 2.12). Our result follows then from Theorem
2 in a straightforward way.
As before, we can apply the worst-case bound V ≤ dn to recover from this result an estimate
similar to the one presented in Theorem 1. However, this result gives sharper estimates for both
the degree and the height when the input system is sparse (Example 4.13).
The sparse aspect in the Nullstellensatz was previously considered by Canny and Emiris [8, Thm.
8.2] for the case of n + 1 n -variate Laurent polynomials without common roots at toric infinity.
Their result is the sparse analogue of Macaulay’s effective Nullstellensatz [40]. The first general
sparse Nullstellensatz was obtained by Sombra [53]. In both cases the authors give bounds for the
Newton polytopes of the output polynomials in terms of the Newton polytopes of the input ones.
We refer to the original papers for the exact statements.
It is quite difficult to make a definite comparison between these results and ours. The latter does
not give sharp bounds for Newton polytopes. But on the other hand, our degree estimate for the
general case is better, while the height estimate is completely new.

The key ingredient in our treatment of the arithmetic Nullstellensatz is the notion of local height
of a variety defined over a number field K .
Let V ⊂ IAn(Q) be an equidimensional affine variety defined over K . For each absolute value
v over K , we introduce the local height hv(V ) of V at v as a Mahler measure of a suitable
normalized Chow form of V . This is consistent with the Falting’s height h(V ) of V , namely:

h(V ) =
1

[K : Q]

∑

v∈MK

Nv hv(V ),

where MK denotes the set of canonical absolute values of K , and Nv the multiplicity of v .
We study the basic properties of this notion. In particular we are able to estimate the local height
of the trace and the norm of a polynomial f ∈ K[x1, . . . , xn] with respect to an integral extension
K[IAr] ↪→ K[V ] . We also obtain local analogues of many of the global results of Bost, Gillet and
Soulé [5] and Philippon [49].
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Our proof of the arithmetic Nullstellensatz is based on duality theory for Gorenstein algebras (trace
formula). This technique was introduced in the context of the effective Nullstellensatz in [19], [13].
Here, we follow mostly the lines of Sabia-Solernó [50] and Krick–Pardo [32].
The trace formula allows to perform division modulo complete intersection ideals, with good control
of the degree and height of the involved polynomials. The local arithmetic intersection theory plays,
with respect to the height estimates, the role of the classical intersection theory with respect to
the degree bounds.

Finally, we remark that all of our results are valid not just for Q but for arbitrary number fields.
In fact, the general analysis over number fields is necessary to obtain the sharpest estimates for the
case K := Q . We also remark that the estimates in the general version of Theorem 1 (Theorem
3.6) do not depend on the involved number field.

The outline of the paper is the following:
In Chapter 1, we recall the basic definitions and properties of the height of polynomials, and we
introduce the notion of local height of a variety defined over a number field.
In Chapter 2, we derive useful estimates for the local heights of the trace and the norm of a
polynomial in K[V ] , and we study the behavior of the local heights of the intersection of a variety
with a hypersurface.
In Chapter 3, we recall the basic facts of duality theory which will be useful in our context, and
we prove Theorem 1.
In Chapter 4, we focus on the intrinsic and sparse versions of the arithmetic Nullstellensatz.

1 Height of polynomials and varieties

Throughout this paper Q denotes the field of rational numbers, ZZ the ring of rational integers,
K a number field, and OK its ring of integers. We also denote by IR the field of real numbers,
C the field of complex numbers, k an arbitrary field, and k an algebraic closure of k . As usual,
IAn and IPn will denote the affine and the projective space of n dimensions over k , respectively.
For every rational prime p we denote by | · |p the p -adic absolute value over Q such that
|p|p = p−1 . We also denote the ordinary absolute value over Q by | · |∞ or simply by | · | . These
form a complete set of independent absolute values over Q : we identify the set MQ of these
absolute values with the set {∞, p ; p prime} .
For v ∈ MQ we denote by Qv the completion of Q with respect to the absolute value v . In case
v = ∞ we have Q∞ = IR , while in case p is prime, we have that Qp is the p -adic field. There
exists a unique extension of v to an absolute value over the algebraic closure Qv . We denote by
Cv the completion of Qv with respect to this absolute value. This field is algebraically closed
and complete with respect to the induced absolute value, which we also denote by v . We have
C∞ = C.

1.1 Height of polynomials

In this section we introduce the different measures for the size of a multivariate polynomial, both
over Cv and over a number field. We establish the link between the different notions and study
their basic properties.

1.1.1 Height of polynomials over Cv

We fix an absolute value v ∈ {∞, p ; p prime} for the rest of this subsection. Let A ⊂ Cv be
a finite set. We denote by |A|v := max{ |a|v , a ∈ A} its absolute value. Then we define the

6



(logarithmic) height of A as
hv(A) := max{ 0, log |A|v },

that is hv(A) = log |{1} ∪ A|v .
For a polynomial f =

∑
α aα xα ∈ Cv[x1, . . . , xn] , we define its absolute value |f |v as the absolute

value of its set of coefficients, that is |f |v := maxα{ |aα|v } . In the same way we define the height
hv(f) of f as the height of its set of coefficients:

hv(f) := max{ 0, log |f |v }.

When v = ∞ , i.e. when f has complex coefficients, we will make use of the (logarithmic) Mahler
measure of f defined as

m(f) :=
∫ 1

0

· · ·
∫ 1

0

log |f(e2π i t1 , . . . , e2π i tn)| dt1 . . . dtn.

This integral is well-defined, as log |f | is a plurisubharmonic function on Cn [39, Appendix I].
The Mahler measure was introduced by Lehmer [37] for the case of a univariate polynomial f :=
ad

∏d
i=1(x− αi) ∈ C[x] as

m(f) = log |ad|+
d∑

i=1

max{0, log |αi| }.

The link between both expressions of m(f) is given by Jensen’s formula. The general case was
introduced and studied by Mahler [41].
The key property of the Mahler measure is its additivity:

m(f g) = m(f) + m(g).

We have the following relation between log |f | and m(f) :

− log(n + 1) deg f ≤ m(f)− log |f | ≤ log(n + 1) deg f. (1.1)

The right inequality follows from the definition of m and the fact that the number of monomials
of f is bounded by

(
n+deg f

n

) ≤ (n + 1)deg f . For the left inequality, we refer to [47, Lem. 1.13]
and its proof.
When f has total degree bounded by 1 , the inequality is refined to log |f | ≤ m(f) . Also, for any
degree, m(f(x1, . . . , xn−1, 0)) ≤ m(f) .
We will make frequent use of the following more precise relation:

Lemma 1.1 Let f ∈ C[X1, . . . , Xr] be a polynomial in r groups of ni variables each, for i =
1, . . . , r . Let di denote the degree of f in the group of variables Xi . Then

−
r∑

i=1

log(ni + 1) di ≤ m(f)− log |f | ≤
r∑

i=1

log(ni + 1) di.

Proof.– The right inequality follows directly from the definition of m(f) and the fact that we can
bound by

∏
i(ni + 1)di the number of monomials of f . Thus we only consider the left inequality.

Let fα1···αi ∈ C[Xi+1, . . . , Xr] denote the coefficient of f with respect to the monomial Xα1
1 · · ·Xαi

i .
Applying inequality (1.1) we obtain for all (ξi+1, . . . , ξr) ∈ Cni+1+···+nr :

log |fα1···αi−1(Xi, ξi+1, . . . , ξr)| ≤ m(fα1···αi−1(Xi, ξi+1, . . . , ξr)) + log(ni + 1) di.
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We have |fα1···αi−1(Xi, ξi+1, . . . , ξr)| = maxαi |fα1···αi(ξi+1, . . . , ξr)| . We integrate both sides of
the last inequality on S

ni+1+···+nr

1 and we deduce

max{m(fα1···αi
) ; αi ∈ ZZni} ≤ m(fα1···αi−1) + log(ni + 1) di

We apply this relation recursively and we obtain

log |f | = max{m(fα1···αr
) ; α1 ∈ ZZn1 , . . . , αr ∈ ZZnr} ≤ m(f) +

r∑

i=1

log(ni + 1) di.

2

Let f ∈ C[X1, . . . , Xr] be a multihomogeneous polynomial in r groups of ni + 1 each, and set
fa for a deshomogenization of f with respect to these groups of variables. Then m(fa) = m(f) ,
log |fa| = log |f | . Thus the estimates of the preceding lemma also hold for f .
Next we introduce the (logarithmic) Sn -Mahler measure of a polynomial f ∈ C[x1, . . . , xn] as

m(f ; Sn) :=
∫

Sn

log |f(x)| µn(x),

where Sn := {(z1, . . . , zn) ∈ Cn : |z1|2 + · · ·+ |zn|2 = 1} is the unit sphere in Cn , and µn is the
measure of total mass 1 , invariant with respect to the unitary group U(n) .
More generally, let f ∈ C[X1, . . . , Xr] be a polynomial in r groups of n variables each. Its
Sr

n -Mahler measure is then defined as

m(f ; Sr
n) :=

∫

Sr
n

log |f(X)| µr
n(X),

with Sr
n := Sn × · · · × Sn . This alternative Mahler measure was introduced by Philippon [49, I].

With this notation, the ordinary Mahler measure m(f) of f ∈ C[x1, . . . , xn] coincides with
m(f ; Sn

1 ) . When f ∈ C is a constant, we agree that m(f ; S0
n) = log |f | .

The Sr
n -Mahler measure is related to the ordinary Mahler measure by the following inequalities

[38, Thm. 4]:

0 ≤ m(f)−m(f ; Sr
n) ≤ r d

n−1∑

i=1

1
2 i

, (1.2)

where d is a bound for the degree of f in each group of variables.

Finally, we summarize in the following lemma the basic properties of the notion of height of
polynomials in Cv[x1, . . . , xn] .

Lemma 1.2 Let v ∈ MQ and f1, . . . , fs ∈ Cv[x1, . . . , xn] .

1. If v = ∞ then

(a) h∞(
∑

i fi) ≤ maxi{h∞(fi)}+ log s .

(b) h∞(
∏s

i=1 fi) ≤
∑s

i=1 h∞(fi) + log(n + 1)
∑s−1

i=1 deg fi .
h∞(f1 f2) ≤ h∞(f1) + h∞(f2) + log(n + 1) min{deg f1, deg f2}

(c) Let g ∈ C[y1, . . . , ys] . Set d := maxi{deg fi} and h∞ := maxi{h∞(fi)} . Then

h∞(g(f1, . . . , fs)) ≤ h∞(g) + deg g (h∞ + log(s + 1) + log(n + 1) d).

(d) log |∏i fi|∞ ≥ ∑
i log |fi|∞ − 2 log(n + 1)

∑
i deg fi .

2. If v = p for some prime p then
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(a) hp(
∑

i fi) ≤ maxi{hp(fi)} .

(b) hp(
∏

i fi) ≤
∑

i hp(fi) .

(c) Let g ∈ Cp[y1, . . . , ys] . Set d := maxi{deg fi} and hp := maxi{hp(fi)} . Then
hp(g(f1, . . . , fs)) ≤ hp(g) + deg g hp.

(d) log |∏i fi|p =
∑

i log |fi|p .

Proof of Lemma 1.2.– The different behavior for v = ∞ or v = p is simply due to the fact that
| · |p is non-archimedean, that is verifies the stronger inequality |a + b|p ≤ max{|a|p, |b|p} for any
a, b ∈ Cp .
Inequalities (1.a), (1.b), (2.a) and (2.b) are now immediate from the definition of hv .
(1.c) and (2.c):
Let us consider the case v = ∞ . Set c(n) := log(n + 1) .
First we compute hv(fα1

1 · · · fαs
s ) for the exponent (α1, . . . , αs) of a monomial of g . Applying

(1.b) we obtain

h∞(fα1
1 · · · fαs

s ) ≤ (c(n) d + h∞)
∑

i

αi ≤ (c(n) d + h∞) deg g.

The polynomial g has at most (s + 1)deg g monomials and so

h∞(g(f1, . . . , fs)) ≤ h∞(g) + (c(n) d + h∞) deg g + c(s) deg g.

The case v 6= ∞ follows in a similar way.
(1.d) and (2.d):
In case v = ∞ , we apply directly Inequality (1.1):

∑

i

log |fi|∞ ≤
∑

i

(m(fi) + c(n) deg fi)

= m(
∏

i

fi) + c(n)
∑

i

deg fi

≤ log |
∏

i

fi|∞ + 2 c(n)
∑

i

deg fi.

In case v = p , Gauss Lemma implies that
∑

i log |fi|p = log |∏i fi|p . 2

We will make frequent use of the following particular case of the previous lemma:
Let (fij)ij be a s× s -matrix of polynomials in Cv[x1, . . . , xn] of degrees and heights bounded by
d and hv respectively. From Lemma 1.2(a,b) we obtain:

• h∞(det(fij)ij) ≤ s (h∞ + log s + d log(n + 1)) ,

• hp(det(fij)ij) ≤ s hp .

1.1.2 Height of polynomials over a number field

The set MK of absolute values over K which extend the absolute values in MQ is called the
canonical set. We denote by M∞

K the set of archimedean absolute values in MK , i.e. the absolute
values extending ∞ .
If v ∈ MK extends an absolute value v0 ∈ MQ (which is denoted by v | v0 ) there exists a (non
necessarily unique) embedding σv : K ↪→ Cv0 corresponding to v , i.e. such that |a|v = |σv(a)|v0

for every a ∈ K .
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In the p -adic case, there is a one-to-one correspondence P 7→ v(P) between prime ideals of OK

which divide p , and absolute values extending p , defined by

|a|v(P) := p−ordP(a)/eP = N(P)−ordP(a)/eP fP

for a ∈ K∗ . Here ordP(a) denotes the order of P in the factorization of a , and N(P) the norm
of the ideal P . Also eP := ordP(p) denotes the ramification index, and fP := [OK/P : ZZ/(p)]
the residual degree of the prime ideal P .
Note that a ∈ OK if and only if log |a|v ≤ 0 for every v ∈ MK \M∞

K .
We denote by Kv the completion of K in Cv0 . The local degree of K at v is defined as:

Nv := [Kv : Qv0 ],

and it coincides with the number of different embeddings σ : K ↪→ Cv0 which correspond to v .
When v is archimedean, Kv is either IR or C , and Nv equals 1 or 2 accordingly. When v is
non-archimedean, Nv = ePfP , where P is the prime ideal which corresponds to v .
In any case

[K : Q] =
∑

v | v0

Nv

for v0 ∈ MQ . The canonical set MK satisfies the product formula with multiplicities Nv :
∏

v∈MK

| a |Nv
v = 1, ∀ a ∈ K∗. (1.3)

Let A ⊂ K be a finite set. Let v ∈ MK be an absolute value which extends v0 ∈ MQ , and let
σv be an embedding corresponding to v . The local absolute value of A at v is defined as

|A|v := |σv(A)|v0 = max{|σv(a)|v0 , a ∈ A}.

Then we define the local height of A as

hv(A) := max{0, log |A|v} = hv0(σv(A)).

We note that this notion behaves well with respect to extensions: let K ↪→ L be a finite extension,
and let w ∈ ML be an absolute value extending v . Then hv(A) = hw(A) .
For a polynomial f =

∑
α aα xα ∈ K[x1, . . . , xn] , we define the local absolute value of f at v

(denoted by |f |v ) as the absolute value at v of its set of coefficients, and the local height of f at
v (denoted by hv(f) ) as the local height at v of its set of coefficients.

Finally we define the (global) height of a finite set A ⊂ K as

h(A) :=
1

[K : Q]

∑

v∈MK

Nv hv(A).

In classical terms, this is the affine height of A : if we set A := {a1, . . . , aN} then h(A) equals
the Weil absolute height of the point (1 : a1 : · · · : aN ) ∈ IPN .
Because of the imposed normalization, this quantity does not depend on the field K in which we
consider the set A . This allows us to extend the definition of h to subsets of Q .
We also define the (global) height of f1, . . . , fs ∈ K[x1, . . . , xn] as the global height of its set of
coefficients, that is

h(f1, . . . , fs) :=
1

[K : Q]

∑

v∈MK

Nv max
i

hv(fi). (1.4)
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We have hv(a) ≤ hv(A) for every a ∈ A and every v ∈ MK , and so

max
a∈A

h(a) ≤ h(A).

In case A ⊂ OK , we have that hv(A) = 0 for every v ∈ MK \ M∞
K and so h(A) = (1/[K :

Q])
∑

v∈M∞
K

Nv hv(A) . We also have hv(A) ≤ [K : Q] maxa∈A h(a) for all v ∈ MK and hence

h(A) ≤ [K : Q] max
a∈A

h(a).

Both inequalities are sharp. Equality is attained in the first one when, for instance, A has only
one element.
For the second one, set A = {1 +

√
2, 1 − √

2} ⊂ Q[
√

2] . Then h(A) = log(1 +
√

2) while
h(1 +

√
2) = h(1−√2) = (1/2) log(1 +

√
2) . Hence h(A) = 2 maxa∈A h(a).

More generally, if a ∈ C is a Pisot number, namely an algebraic integer such that |a| > 1 and
all its conjugates lie inside the unit disk, and K := Q[a] is Galois, then, for A := {σ(a) : σ ∈
Gal(K/Q)} ⊂ K , we have h(A) = [K : Q] h(a) .

Let a = m/n ∈ Q ∗ be a rational number, where m ∈ ZZ and n ∈ IN are coprime. Then
h(a) = max{|m|, n} , that is, the height of a controls both the size of the minimal numerator
and denominator of a . More generally, let A ⊂ Q be a finite set, and let b ∈ IN be a minimal
common denominator for all the elements of A . Then h(A) = log max{ |bA|, b } . The following
is the analogous statement for the general case:

Lemma 1.3 Let A ⊂ K be a finite set. Then there exist b ∈ ZZ \ {0} and B ⊂ OK such that

bA = B , h(A) ≤ h({b} ∪ B) ≤ [K : Q] h(A).

Proof.– Let v ∈ MK \ M∞
K , and set P for the corresponding prime ideal of OK . Let av ∈ A

such that hv(A) = hv(av) and set

c(P) = max{0,−ordP(av)}.
Then ordP(a) ≥ −c(P) for every a ∈ A , and hv(A) = c(P) log N(P)/eP fP . Set

b :=
∏

P
N(P)c(P) , B := {b a ; a ∈ A},

where P runs over all prime ideals of OK . Clearly b ∈ IN \ {0} . We have ordP(b) = eP fP c(P)
and so ordP(b a) ≥ eP fP c(P)− c(P) ≥ 0 for every a ∈ A . Hence B ⊂ OK .
For v ∈ M∞

K we have hv({b} ∪ B) = hv(A) + log b and so

h({b} ∪ B) =
1

[K : Q]

∑

v∈M∞
K

Nv hv({b} ∪ B) =
1

[K : Q]

∑

v∈M∞
K

Nv hv(A) + log b.

We have
log b =

∑

P
c(P) log N(P) =

∑

v/∈M∞
K

Nvhv(A).

and therefore:

h({b} ∪ B) =
1

[K : Q]

∑

v∈M∞
K

Nv hv(A) +
∑

v/∈M∞
K

Nvhv(A) ≤ [K : Q] h(A).

On the other hand we have hv(A) + log |b|v ≤ hv({b}∪B) for all v ∈ MK . Applying the product
formula (1.3) to b we obtain:

h(A) =
1

[K : Q]

∑
v

Nv (hv(A) + log |b|v) ≤ 1
[K : Q]

∑
v

Nv hv({b} ∪ B) = h({b} ∪ B).

2
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Finally, let a ∈ Q
∗

be a non-zero algebraic number, and set pa ∈ ZZ[t] for its primitive minimal
polynomial. We have h(a) = m(pa)/ deg a . More generally, the height of a finite set can be seen
as the height of the minimal polynomial of a generic linear combination of its elements. This gives
a partial motivation for the notion of global height of a finite set.

Lemma 1.4 Let A := {a1, . . . , aN} ⊂ K be a finite set and set

pA :=
∏
σ

(u0 + σ(a1) u1 + · · ·+ σ(aN ) uN ) ∈ Q[u0, . . . , uN ],

where the product is taken over all Q -embeddings σ : K ↪→ Q . Then

− log(N + 1) ≤ h(A)− h(pA)/[K : Q] ≤ log(N + 1).

Proof.– Set L(u) := u0 + a1u1 + · · ·+ aNuN ∈ K[u] so that

pA =
∏
σ

σ(L).

For v0 ∈ MQ we choose an inclusion Q ↪→ Cv0 . Then for each v ∈ MK such that v|v0 there are Nv

embeddings σ : K ↪→ Q which correspond to it. We note that for each such σ , log |σ(L)| = hv(A)
holds. Applying Lemma 1.2(b) we obtain

h∞(pA) ≤
∑

σ

log |σ(L)|+ [K : Q] log(N + 1) =
∑

v∈M∞
K

Nv hv(A) + [K : Q] log(N + 1).

In the same way we obtain hp(pA) ≤ ∑
v|p Nv hv(A) for p prime and hence

h(pA) ≤
∑

v∈MK

Nv hv(A) + [K : Q] log(N + 1) = [K : Q] (h(A) + log(N + 1)).

On the other hand log |σ(L)| ≤ m(σ(L)) for every σ , as L has total degree 1. Thus

[K : Q]h(A) =
∑

v∈MK
Nv hv(A)

=
∑

σ log |σ(L)|∞ +
∑

p

∑
σ log |σ(L)|p

≤ m(pA) +
∑

p hp(pA)

≤ h(pA) + [K : Q] log(N + 1)

by application of Lemma 1.2(d) and inequality (1.1), and the definition of the height. 2

1.2 Height of varieties

In this section we introduce the notions of local and global height of an affine variety defined over
a number field. For this aim, we recall the basic facts of the degree and Chow form of varieties.
As an important particular case, we study the height of an affine toric variety.

1.2.1 Degree of varieties

Let k be an arbitrary field and V ⊂ IAn be an affine equidimensional variety of dimension r .
We recall that the degree of V is defined as the number of points in the intersection of V with a
generic linear space of dimension n−r . This coincides with the sum of the degrees of its irreducible
components.
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For an arbitrary variety V ⊂ IAn we set V = ∪i Vi for its decomposition into equidimensional
varieties. Following Heintz [23], we define the degree of V as

deg V :=
∑

i

deg Vi.

For V = ∅ we agree deg V := 1 .
This is a positive integer, and we have deg V = 1 if and only V is a linear variety.
The degree of a hypersurface equals the degree of any generator of its defining ideal. The degree
of a finite variety equals its cardinal.
For a linear morphism ϕ : IAn → IAm and a variety V ⊂ IAn we have deg ϕ(V ) ≤ deg V , where
ϕ(V ) denotes the Zariski closure of ϕ(V ) in IAm .
The basic aspect of this notion of degree is its behavior with respect to intersections. It verifies
the Bézout inequality:

deg(V ∩W ) ≤ deg V deg W

for V,W ⊂ IAn , without any restriction on the intersection type of V and W [23, Thm. 1], [14,
Example 8.4.6].

1.2.2 Normalization of Chow forms

Let V ⊂ IAn be an affine equidimensional variety of dimension r defined over a field k . Let FV

be a Chow form of V , that is a Chow form of its projective closure V ⊂ IPn . This is a squarefree
polynomial over k in r + 1 groups U0, . . . , Ur of n + 1 variables each. It is multihomogeneous
of degree D := deg V in each group of variables, and is uniquely determined up to a scalar
factor. In case V is irreducible, FV is an irreducible polynomial, and in the general case of an
equidimensional variety, the product of Chow forms of its irreducible components is a Chow form
of V .
In order to avoid this indeterminacy of FV , we are going to fix one of its coefficients under a
technical assumption on the variety V . For purpose of reference, we resume it in the following:

Assumption 1.5 We assume that the projection πV : V → IAr defined by x 7→ (x1, . . . , xr)
verifies #π−1

V (0) = deg V .

This assumption implies that πV : V → IAr is a dominant map of degree deg V , by the theorem of
dimension of fibers. Later on, we will prove that in fact this assumption implies that the projection
πV is finite, that is, the variables x1, . . . , xr are in Noether normal position with respect to V
(Lemma 2.14). We remark that the previous condition is satisfied by any variety under a generic
linear change of variables.
Each group of variables Ui is associated to the coefficients of a generic linear form Li(Ui) :=
Ui 0 + Ui 1 x1 + · · ·+ Ui nxn . The main feature of a Chow form is that

FV (ν0, . . . , νr) = 0 ⇔ V ∩ {Lh(ν0) = 0} ∩ . . . ∩ {Lh(νr) = 0} 6= ∅

holds for νi ∈ k
n+1

. Here Lh
i := Ui 0 x0 + · · ·+ Ui nxn stands for the homogenization of Li .

Assumption 1.5 implies that V ∩ {x1 = 0} ∩ . . . ∩ {xr = 0} is a zero-dimensional variety of IPn

lying in the affine space {x0 6= 0} . Set ei for the (i + 1) -vector of the canonical basis of kn+1 .
Then FV (e0, . . . , er) — that is, the coefficient of the monomial UD

0 0 · · ·UD
r r — is non-zero.

We then define the (normalized) Chow form ChV of V by fixing the election of FV through the
condition

ChV (e0, . . . , er) = 1.

Under this normalization, ChV equals the product of the normalized Chow forms of the irreducible
components of V .
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1.2.3 Height of varieties over Cv

Let v ∈ {∞, p; p prime} be an absolute value over Q , and V ⊂ IAn(Cv) an equidimensional
variety of dimension r which satisfies Assumption 1.5. We introduce the height of V as a Mahler
measure of its normalized Chow form:

Definition 1.6 The height of the affine variety V ⊂ IAn(Cv) is defined as

hv(V ) := m(ChV ;Sr+1
n+1) + (r + 1) (

n∑

i=1

1/2 i) deg V

in case v = ∞ , and as
hv(V ) := hv(ChV )

in case v = p for some prime p .

This definition coincides in the non-archimedean cases with the local height of V ⊂ IPn with
respect to the divisors div(x0), . . . , div(xr) ∈ Div(IPn) as it is introduced in [20, Section 9]. In
general, it is also closely related to Philippon’s local height of a projective variety [49, II].

Let us consider some examples:

• We have that h∞(IAn(C)) equals the Stoll number
∑n

i=1

∑i
j=1 1/2 j , while hp(IAn(Cp)) =

0 . This follows from [5, Lem. 3.3.1] and [55, Thm. 3], [49, I, Thm. 2], and the fact that
ChIAn = det(U0, . . . , Un) .

• Let V ⊂ IAn(Cv) be a hypersurface verifying Assumption 1.5, defined by a squarefree poly-
nomial f ∈ Cv[x1, . . . , xn] . Then the coefficient of the monomial xdeg V

n is non-zero, and we
can suppose without loss of generality that it equals 1. Let fh denote the homogenization
of f . Then

hv(V ) = m(fh; Sn+1) + (
n−1∑

i=1

i∑

j=1

1/2 j) deg V,

in case v = ∞ , while in case v = p for some prime p , hv(V ) = hv(f) . [49, I, Cor. 4].

• In case V = {ξ} for some ξ ∈ IAn , we have (see e.g. [49, I, Prop. 4])

h∞(V ) =
1
2

log(1 + |ξ1|2 + · · ·+ |ξn|2),
hp(V ) = hp(ξ).

1.2.4 Height of varieties over a number field

Let V ⊂ IAn(Q) be an equidimensional variety of dimension r defined over a number field K .
We define the (global) height h(V ) of V as the Faltings’ height [11] of its projective closure
V ⊂ IPn . It verifies the identity

h(V ) =
1

[K : Q]
(

∑

v∈M∞
K

Nv m(σv(FV ); Sr+1
n+1) +

∑

v/∈M∞
K

Nv log |FV |v ) + (r + 1) (
n∑

i=1

1/2 i) deg V,

where FV denotes any Chow form of V [55, Thm. 3], [49, I, Thm. 2]. Following Philippon [49,
III], we introduce h through this identity, without appealing to Arakelov theory.
For an arbitrary affine variety, we define its (global) height as the sum of the heights of its
equidimensional components. It coincides with the sum of the heights of its equidimensional
components. We agree that h(∅) := 0 .
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We also introduce the local counterpart of this notion. Let v ∈ MK be an absolute value over K ,
and suppose that V satisfies Assumption 1.5. Let v0 ∈ MQ such that v|v0 , and let σv : Kv → Cv0

be an embedding corresponding to v . We define the local height of V at v as

hv(V ) := hv0(σv(V )).

This is consistent with the global height:

h(V ) =
1

[K : Q]

∑

v∈MK

Nv hv(V ).

The global height h is related to the height hBGS of Bost, Gillet and Soulé by the formula [5,
Prop. 4.1.2 (i)]:

h(V ) = hBGS(V ) + (
r∑

i=1

i∑

j=1

1/2 j) deg V.

It is also related to the height h introduced by Giusti et al. [16] in terms of the so-called geometric
solution of a variety. They are polynomially equivalent [54, Thm. 1.3.26], namely

h(V ) ≤ (n deg V h(V ))c , h(V ) ≤ (n deg V h(V ))c,

for some constant c > 0 .
We have h(V ) ≥ (

∑r
i=1

∑i
j=1 1/2 j) deg V , with equality only in case V is defined by the vanishing

of n − r standard coordinates. [5, Thm. 5.2.3]. For instance h(IAn) =
∑n

i=1

∑i
j=1 1/2 j . In

particular h(V ) ≥ 0 .

This notion of height satisfies the arithmetic Bézout inequality [5, Thm. 5.5.1 (iii)], [49, III, Thm.
3]:

h(V ∩W ) ≤ h(V ) deg W + deg V h(W ) + c deg V deg W,

for V,W ⊂ IAn(Q) , with c := (
∑dim V

i=0

∑dim W
j=0 1/2(i + j + 1) )+( n− (dimV + dim W )/2 ) log 2 .

1.2.5 Height of affine toric varieties

Now we consider the case of affine toric varieties. The obtained height estimate is crucial in our
treatment of the sparse arithmetic Nullstellensatz (Corollary 4.12).
In what follows we recall some basic notation and results of affine toric varieties and sparse resul-
tants. References are [15], [57].
Let A = {α1, . . . , αN} ⊂ ZZn be a finite set of integer vectors. Let r := dimA denote the
dimension of A , that is, the dimension of the free ZZ -module ZZA . We normalize the volume form
of IRA in order that any elementary simplex of the lattice ZZA has volume 1. The (normalized)
volume Vol(A) of A is defined as the volume of the convex hull Conv({0} ∪ A) with respect to
this volume form. In case ZZA = ZZn , then Vol(A) equals n! times the volume of Conv({0} ∪A)
with respect to the Euclidean volume form of IRn .

We associate to the set A a map (Q
∗
)n → Q

N
defined by ξ 7→ (ξα1 , . . . , ξαN ) . The Zariski

closure of the image of this map is the affine toric variety XA ⊂ IAN . This is an irreducible
variety of dimension r and degree Vol(A) .
For i = 0, . . . , r , we denote by Ui a group of variables indexed by the elements of A and we set

Fi :=
∑

α∈A
Uiα xα

15



for the generic Laurent polynomial with support contained in A . Let W ⊂ (IPN−1)r+1 × (Q
∗
)n

be the incidence variety of F0, . . . , Fr in (Q
∗
)n , that is

W = {(ν0, . . . , νr; ξ); Fi(νi)(ξ) = 0 ∀i},
and let π : (IPN−1)r+1 × (Q

∗
)n → (IPN−1)r+1 be the canonical projection. Then π(W ) is an

irreducible variety of codimension 1. Any of its defining polynomial RA ⊂ Q[U0, . . . , Ur] is called
the A -resultant or sparse resultant, and it coincides with a Chow form of the affine toric variety
XA [27]. It is a multihomogeneous polynomial of degree Vol(A) in each group of variables, and
it is uniquely defined up to its sign, if we assume it to be a primitive polynomial with integer
coefficients.
We obtain the following bound for the height of XA . Our argument relies on the Canny-Emiris
determinantal formula for the sparse resultant [8].

Proposition 1.7 Let A ⊂ ZZn be a finite set of dimension r and cardinality #A ≥ 2 . Then
h(XA) ≤ 22 r+2 log(#A) Vol(A) .

Proof.– Let RA denote the A− resultant, which we assume to be primitive with integer coeffi-
cients. Thus

h(XA) = m(RA; Sr+1
N+1) + (r + 1) (

N∑

i=1

1/2 i)Vol(A)

and so it suffices to estimate the Sr+1
N+1 -Mahler measure of RA .

Let M be the Canny-Emiris matrix associated to the generic polynomial system F0, . . . , Fr . This
is a non-singular square matrix of order M , where M denotes the cardinality of the set

E := ((r + 1) Q + ε) ∩ ZZn.

Here Q := Conv({0} ∪ A) , and ε ∈ IRn is any vector such that each point in E is contained in
the interior of a cell in a given triangulation of the polytope (r + 1) Q . In particular ε can be
arbitrarily chosen in a non empty open set of IRn .
Every non-zero entry of M is a variable Uiα . In fact, each row has exactly N non-zero en-
tries, which consist of the variables in some group Ui . We refer to [8, Section 4] for the precise
construction.
Thus detM ∈ ZZ[U0, . . . , Ur] is a multihomogeneous polynomial of total degree M and height
bounded by M log N . This polynomial is a non-zero multiple of the sparse resultant RA [8, Thm.
5.2]. The assumption that RA is primitive implies that detM/RA lies in ZZ[U0, . . . , Ur] , and so
m(RA) ≤ m(detM) .
Let {Tj}j∈J be a unimodular triangulation of Q , so that {(r + 1) Tj}j∈I is a triangulation of
(r+1) Q . For every ε ∈ IRn , the set of integer points contained in (r+1) Tj+ε is in correspondence
with a subset of those of (r + 1) Tj . Moreover, for a generic choice of ε we loose — at least —
the set of integer points in a facet of codimension 1. Thus

#((r + 1) Tj + ε) ∩ ZZn ≤ # r Tj ∩ ZZn =
(

2 r

r

)
≤ 22 r−1

and so
M ≤

∑

j∈J

#((r + 1) Tj + ε) ∩ ZZn ≤ 22 r−1 #J = 22 r−1 Vol(A).

Applying Lemma 1.1 we obtain

m(RA) ≤ log | detM|+ deg(detM) log N

≤ 2 M log N

≤ 22 r log N Vol(A).
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We conclude

h(XA) = m(RA; Sr+1
N+1) + (r + 1) (

N∑

i=1

1/2 i) Vol(A)

≤ m(RA) + 2 (r + 1) log N Vol(A)

≤ 22 r+1 log N Vol(A),

as N = #A ≥ 2 . 2

In case A ⊂ (ZZ≥0)n — that is, when F0, . . . , Fr are polynomials — we set d := max{|α| : α ∈
A} = deg F0 . We have then N =

(
d+n

n

) ≤ (n + 1)d and so

h(XA) ≤ 22 r+1 log(n + 1) dVol(A).

2 Estimates for local and global heights

In this chapter we study the basic properties of local and global heights that we will need for our
purposes. The key result is a precise estimate for the local height of the trace and the norm of a
polynomial f ∈ K[x1, . . . , xn] with respect to an integral extension K[IAr] ↪→ K[V ] .
We also study some of the basic properties of the height of a variety, in particular its behavior
under intersection with hypersurfaces and under affine maps.

2.1 Estimates for Chow forms

In this section we recall the notion of generalized Chow form of a variety in the sense of Philippon
[47], and we prove a technical estimate for its local height.

2.1.1 Generalized Chow forms

Let V ⊂ IAn be an affine equidimensional variety of dimension r and degree D defined over a
field k .
For d ∈ IN we denote by U(d)0 a group of

(
d+n

n

)
variables. Also, for 1 ≤ i ≤ r we denote by Ui

a group of n + 1 variables, and we set U(d) := {U(d)0, U1, . . . , Ur} . Set

F :=
∑

|α|≤d

U(d)0α xα , Li := Ui 0 + Ui 1 x1 + · · ·+ Ui n xn

for the generic polynomial in n variables of degree d and 1 associated to U(d)0 and Ui respec-
tively.
Set N :=

(
d+n

n

)
+ r (n + 1) and let W ⊂ IAN × V be the incidence variety of F, L1, . . . , Lr with

respect to V , that is

W := {(ν(d)0, ν1, . . . , νr; ξ) ; ξ ∈ V, F (ν(d)0)(ξ) = 0, Li(νi)(ξ) = 0, 1 ≤ i ≤ r}.
Let π : IAN × IAn → IAN denote the canonical projection. Then π(W ) ⊂ IAN is a hypersurface
[47, Prop. 1.5] and any of its defining equations Fd,V ∈ k[U(d)] is called a generalized Chow form
or a d -Chow form of V .
A d -Chow form is uniquely defined up to a scalar factor. It shares many properties with the usual
Chow form, which corresponds to the case d = 1 . We have

Fd,V (ν(d)0, ν1, . . . , νr) = 0 ⇔ V ∩ {Fh(ν(d)0) = 0} ∩ {Lh
1 (ν1) = 0} ∩ · · · ∩ {Lh

r (νr) = 0} 6= ∅
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for ν(d)0 ∈ k
(d+n

n ) and νi ∈ k
n+1

. Here V ⊂ IPn denotes the projective closure of V , while Fh

and Lh
i stand for the homogenization of F and Li respectively.

A d -Chow form Fd,V ∈ k[U(d)] is a multihomogeneous polynomial of degree D in the group of
variables U(d)0 and of degree dD in each group Ui [47, Lem. 1.8]. When V is an irreducible
variety, Fd,V is an irreducible polynomial of k[U(d)] . When V is equidimensional, it coincides
with the product of d -Chow forms of its irreducible components.

Now, let U0 be another group of n + 1 variables, and consider the morphism

%d : k[U(d)] → k[U0, U1, . . . , Ur]

defined by %d(F ) = Ld
0 and %d(Li) = Li for i = 1, . . . , r , where L0 stands for the generic

linear form associated to U0 .
In other terms

%d(U(d)0α) =
(

d

α

)
U

d−|α|
00 Uα1

01 · · · Uαn
0n where

(
d

α

)
:=

d!
(d− |α|)! α1! · · · αn!

for |α| ≤ d , and %d(Ui j) = Ui j for i = 1, . . . , r and j = 0, . . . , n .
This morphism gives the following relation between a d -Chow form Fd,V and the usual one [47,
Proof of Prop. 2.8]:

Lemma 2.1 Let V ⊂ IAn be an equidimensional variety. Then %d(Fd,V ) = λFd
V for some

λ ∈ k∗ .

Proof. It is enough to consider the case when V is irreducible. Set r := dim V .
The polynomials %d(Fd,V ) and FV have both the same zero locus: let νi ∈ IAn+1 for i =
0, . . . , r . As %d(Fd,V ) = Fd,V ((%d(U(d)0))α, U1, . . . , Ur) , then %d(Fd,V )(ν0, . . . , νr) = 0 if and
only if V ∩ {%d(Fh)(ν0) = 0} ∩ {Lh

1 (ν1) = 0} ∩ · · · ∩ {Lh
r (νr) = 0} 6= ∅ , that is if and only if

V ∩ {Lh
0 (ν0)d = 0} ∩ {Lh

1 (ν1) = 0} ∩ · · · ∩ {Lh
r (νr) = 0} 6= ∅,

which is clearly equivalent to FV (ν0, . . . , νr) = 0 .
On the other hand, as V is irreducible, FV is an irreducible polynomial, and thus %d(Fd,V )
is a power of FV (modulo a constant λ ). Since degFV = (r + 1) deg V and deg %d(Fd,V ) =
(r + 1) d deg V , we derive that %d(Fd,V ) = λFd

V for some λ ∈ k∗ . 2

Now assume that V satisfies Assumption 1.5. Then V ∩{xd
0 = 0}∩{x1 = 0}∩ . . .∩{xr = 0} = ∅.

Setting e(d)α and ei for the α -vector and the (i+1) -vector of the canonical bases of k(d+n
n ) and

kn+1 respectively, we infer that Fd,V (e(d)0, e1, . . . , er) — that is, the coefficient of the monomial
U(d)D

00 Ud D
11 · · ·Ud D

rr — is non-zero.
We define the (normalized) d -Chow form Chd,V of V by fixing the election of Fd,V with the
condition ChV (e(d)0, e1, . . . , er) = 1 .
In the previous construction, U(d)D

00 Ud D
11 . . . Ud D

rr is the only monomial of k[U(d)] which maps
through %d to Ud D

00 · · ·Ud D
rr . The imposed normalizations imply then

%d(Chd,V ) = Chd
V .

2.1.2 An estimate for generalized Chow forms

The following technical result is crucial to our local height estimates for the trace and the norm of
a polynomial (Subsection 2.3.2), as well as for the intersection of a variety with an hypersurface
(Subsection 2.2.2). The proof follows the lines of [47, Prop. 2.8].
We adopt the following convention:
Let f ∈ k[x1, . . . , xn] be a polynomial of degree d . We denote by Fd,V (f) and Chd,V (f) the
specialization of U(d)0 into the coefficients of f in Fd,V and Chd,V respectively.
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Lemma 2.2 Let V ⊂ IAn(Cv) be an equidimensional variety of dimension r which satisfies
Assumption 1.5. Let f ∈ Cv[x1, . . . , xn] . Then

• m(Chdeg f,V (f); Sr
n+1) + r (

∑n
i=1 1/2 i) deg f deg V

≤ deg f hv(V ) + hv(f) deg V + log(n + 1) deg f deg V
for v = ∞ ,

• hv(Chdeg f,V (f)) ≤ deg f hv(V ) + hv(f) deg V for v = p for some prime p .

We will need the following lemma in order to treat the non-archimedean case:

Lemma 2.3 Let g ∈ Cp[y1, . . . , ym] , and let Ω ⊂ IAm(Cp) be a Zariski open set. Then

|g|p = max {|g(ν)|p; ν ∈ Ω, |ν|p = 1}.

Proof.– For q ∈ IN we denote by Gq the set of q -roots of 1 in Q ↪→ Cp . Let α = (α1, . . . , αm) ∈
ZZm such that |αi| < q . Then

∑

ξ∈Gm
q

ξα =

{
0 if α 6= 0,

qm if α = 0.

Set g =
∑

α aα xα . Let q > deg g such that |q|p = 1 , that is p 6 | q . Then for any ω =
(ω1, . . . , ωm) ∈ (C∗p)

m we have

aα =
1

ωα qm

∑

ξ∈Gm
q

g(ω ξ) ξ−α.

From the previous expression we derive that for each ω ∈ S := {ω ; |ωi|p = 1} there exists ξω ∈ Gm
q

such that |g|p ≤ maxξ |g(ω ξ)|p = |g(ω ξω)|p . But on the other hand |g(ω ξω)|p ≤ maxα |aα|p =
|g|p . Thus |g|p = |g(ω ξω)|p .
The set S is Zariski dense in IAm(Cp) , and as Gm

q is finite, the set {ω ξω; ω ∈ S } ∩ Ω is also
dense, and in particular it is non empty. For any ν0 in this set we have |g|p = |g(ν0)|p and
therefore:

|g|p ≤ max {|g(ν)|p; ν ∈ Ω, |ν|p = 1}.
The other inequality is straightforward. 2

Proof of Lemma 2.2.– First we consider the case when V is a 0–dimensional variety. We may
assume without loss of generality that V is irreducible, that is V = {ξ} for some ξ = (ξ1, . . . , ξn) ∈
Cn

v .
Set d := deg f . Then

ChV = L(ξ) := U0 + U1ξ1 + · · ·+ Unξn , Chd,V = F (ξ) :=
∑
α

Uα ξα,

where L and F denote generic polynomials in n variables of degree 1 and d respectively. Then

h∞(F (ξ)) = log max
|α|≤d

{|ξα|}

= log max
i
{1, |ξi|d}

= d h∞(L(ξ))

≤ d m(L(ξ); Sn+1) + d (
n∑

i=1

1/2 i).
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This last line follows from inequality (1.2). Now, a direct computation shows that

h∞(Chd,V (f)) ≤ h∞(F (ξ)) + h∞(f) + log(n + 1) d.

In this case Chd,V (f) ∈ C and so

m(Chd,V (f)) = h∞(Chd,V (f))

≤ dm(L(ξ); Sn+1) + d (
n∑

i=1

1/2 i) + h∞(f) + log(n + 1) d

≤ d h∞(V ) + h∞(f) + log(n + 1) d.

Analogously, hp(F (ξ)) ≤ d hp(L(ξ)) and so hp(Chd,V (f)) ≤ d hp(V ) + hp(f) .

Now we consider the general case. Set ν = (ν1, . . . , νr) ∈ Cr (n+1)
v , L(νi) := νi 0 + νi 1 x1 + · · · +

νi n xn and
V (ν) := V ∩ V (L(ν1), . . . , L(νr)) ⊂ IAn(Cv).

Then V (ν) is a 0-dimensional variety of degree deg V for ν in a Zariski open set Ωv of IAr (n+1)(Cv) .
Let ν ∈ Ω . By [47, Prop. 2.4] there exist λν , θν ∈ C∗v such that

ChV (ν)(U0) = λν ChV (U0, ν) , Chd,V (ν)(U(d)0) = θν Chd,V (U(d)0, ν), (2.1)

where ChV (U0, ν), Chd,V (U(d)0, ν) stand for the specialization of U1, . . . , Ur into ν1, . . . , νr . Ap-
plying the morphism %d linking the d -Chow form with the usual one we obtain

Chd
V (ν) = %d(Chd,V (ν)) = θν %d(Chd,V (ν)) = θν Chd

V (ν)

and so, θν = λd
ν in identities (2.1).

We consider the case v = ∞ . Any Zariski closed set of IAr (n+1)(C) intersects Sr
n+1 in a set of

µr
n+1 -measure 0, and so the previous relation holds for almost every ν ∈ Sr

n+1 , which means that
for those ν , Chd,V (f, ν) = Chd,V (ν)(f)/λd

ν . Therefore

m(Chd,V (f); Sr
n+1) =

∫

Sr
n+1

log |Chd,V (f, ν)|µr
n+1

=
∫

Sr
n+1

(log |Chd,V (ν)(f)| − d log |λν |)µr
n+1

≤
∫

Sr
n+1

(d h∞(V (ν)) + h∞(f) deg V (ν) + log(n + 1) d deg V (ν)− d log |λν |) µr
n+1

= d

∫

Sr
n+1

(m(ChV (ν)(U0); Sn+1)− log |λν |)µr
n+1 + (

n∑

i=1

1/2 i) d deg V + h∞(f) deg V

+ log(n + 1) d deg V

= d

∫

Sr
n+1

m(ChV (U0, ν); Sn+1)µr
n+1 + (

n∑

i=1

1/2 i) d deg V + h∞(f) deg V

+ log(n + 1) d deg V

= d h∞(V ) + h∞(f) deg V + log(n + 1) d deg V − r (
n∑

i=1

1/2 i) d deg V.

The case v = p follows analogously from the previous lemma, identities (2.1) and the 0-dimensional
case:
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As before, let Ωv ⊂ IAr (n+1)(Cv) be a Zariski open set such that ν ∈ Ωv implies that V (ν) is a
0-dimensional variety of degree deg V . By Lemma 2.3 we can take ν ∈ Ωv such that log |ν|p = 1
and

|Chd,V (f)|p = |Chd,V (f, ν)|p.
Thus

log |Chd,V (f)|p = log |Chd,V (ν)(f)|p − d log |λν |p
≤ d log |ChV (ν)|p + hp(f) deg V − d log |λν |p
= d log |ChV (U0, ν)|p + hp(f) deg V

≤ d log |ChV |p + hp(f) deg V.

2

The hypothesis that V satisfies Assumption 1.5 is essential in order to properly normalize the
involved Chow forms and to define the local height of V . If we disregard normalization, we obtain
altogether the following global result:

Lemma 2.4 Let V ⊂ IAn be an equidimensional variety of dimension r defined over a number
field K , and let Fd,V be a d -Chow form of V . Let f ∈ K[x1, . . . , xn] be a polynomial of degree
d . Then

1
[K : Q]

(
∑

v∈M∞
K

Nv m(σv(Fd,V (f));Sr
n+1) +

∑

v/∈M∞
K

Nv log |Fd,V (f)|v) + r (
∑n

i=1 1/2 i) d deg V

≤ d h(V ) + h(f) deg V + log(n + 1) d deg V.

Proof.– Note first that the product formula implies that the left hand side of the inequality does
not depend on the choice of the d -Chow form Fd,V .
In case V is 0-dimensional, it satisfies Assumption 1.5 trivially. Thus the result follows from direct
application of the previous lemma.
For the general case, we let Fd,V be an arbitrary d−Chow form of V and we choose FV so that
%d(Fd,V ) = Fd

V holds.
Fix an absolute value v ∈ MK . Following the notation in the proof of the previous lemma, for
any ν ∈ Ωv there exists λν ∈ C∗v such that

ChV (ν)(U0) = λν FV (U0, ν) , Chd,V (ν)(U(d)0) = λd
ν Fd,V (U(d)0, ν).

We then proceed as in the previous lemma, and we obtain the corresponding estimate for v .
Adding up these estimates we derive the estimate in terms of the height of the variety. 2

2.2 Basic properties of the height

We derive some of the basic properties of the notion of height of a variety. In particular, we study
the behavior of the height of a variety under intersection with a hypersurface and under an affine
map.
We also obtain an arithmetic version of the Bernstein-Kushnirenko theorem.

2.2.1 Height of varieties under affine maps

Let ϕ : IAn → IAm be a regular map defined by polynomials ϕ1, . . . , ϕm ∈ K[x1, . . . , xn] . We
recall that the height of ϕ is defined as h(ϕ) := h(ϕ1, . . . , ϕm) .
We obtain the following estimate for the height of the image of a variety under an affine map:
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Proposition 2.5 Let V ⊂ IAn be a variety of dimension r , and let ϕ : IAn → IAN be an affine
map. Then

h(ϕ(V )) ≤ h(V ) + (r + 1) (h(ϕ) + 8 log(n + N + 1)) deg V.

The proof of this result follows from the study of the particular cases of a linear projection and an
injective affine map.
The following estimate for the height of a linear projection of a variety generalizes [11, Prop. 2.10]
and [5, 3.3.2]. Its proof is essentially based on the description of the Chow form of such projection
variety, due to Pedersen and Sturmfels [46, Prop. 4.1].

Lemma 2.6 Let V ⊂ IAn×IAm be a variety of dimension r , and let π : IAn×IAm → IAn denote
the projection (x, y) 7→ x . Then

h(π(V )) ≤ h(V ) + 3 (r + 1) log(n + m + 1) deg V.

Proof. We assume without loss of generality that V is irreducible. Set W := π(V ) ⊂ IAn and
s := dim W .
The case s = r follows directly from [46, Prop. 4.1]: in this case, there exists a partial monomial
order ≺ such that

FW | initFV ,

where initFV denotes the initial polynomial of FV with respect to ≺ . In particular initFV is
the sum of some of the terms in the monomial expansion of FV .
The general case s ≤ r reduces to the previous one: we choose standard coordinates zs+1, . . . , zr

of IAm such that the projection

$ : IAn × IAm → IAn × IAr−s , (x, y) 7→ (x, z)

verifies dim Z = r for Z := $(V ) .
Let % : IAn × IAr−s → IAn denote the canonical projection. Then FZ | initFV , π = % ◦ $ and
W = %(Z) . We have that %−1(ξ) = {ξ} × IAr−s for ξ ∈ %(Z) by the theorem of dimension of
fibers. Thus Z = W × IAr−s , and in particular

i(W ) = Z ∩ V (zs+1, . . . , zr) ⊂ IAn × IAr−s,

where i denotes the canonical inclusion IAn ↪→ IAn × IAr−s . We have deg W = deg Z and so
FW := FZ(zs+1, . . . , zr) is a Chow form of W [47, Prop. 2.4].

Now we estimate the height of FW . Let K be a number field of definition of V , and set

initFV = QFZ

for some polynomial Q . From the proof of [47, Lem. 1.12(v)], there is a non-zero coefficient λ of
Q such that log |λ|v ≤ m(σv(Q)) for all v ∈ M∞

K . Clearly log |λ|v ≤ log |Q|v also holds for all
v /∈ M∞

K . Thus
m(σv(FZ)) ≤ m(σv(initFV ))− log |λ|v

for v ∈ M∞
K , while log |FZ |v ≤ log |initFV |v − log |λ|v for v /∈ M∞

K .
Let v ∈ M∞

K . From [47, Lem. 1.13] we obtain m(σv(FW )) ≤ m(σv(FZ)) . Hence

m(σv(FW ); Ss+1
n+1) ≤ m(σv(FW ))

≤ m(σv(initFV ))− log |λ|v
≤ log |initFV |v + (r + 1) log(n + m + 1) deg V − log |λ|v
≤ log |FV |v + (r + 1) log(n + m + 1) deg V − log |λ|v

≤ m(σv(FV ); Sr+1
n+m+1) + (r + 1) (

n+m∑

i=1

1/2 i) deg V

+ 2 (r + 1) log(n + m + 1) deg V − log |λ|v
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by application of Lemma 1.1 and inequality (1.2). In case v /∈ M∞
K we have analogously log |FW |v ≤

log |FV |v − log |λ|v , and so

h(W ) ≤ h(V ) + (s + 1) (
n∑

i=1

1/2 i) deg V + 2 (r + 1) log(n + m + 1) deg V

≤ h(V ) + 3 (r + 1) log(n + m + 1) deg V.

2

The following is a variant of [49, I, Prop. 7]:

Lemma 2.7 Let V ⊂ IAm be a variety of dimension r , and let ψ : IAm → IAn be an injective
affine map. Then

h(ψ(V )) ≤ h(V ) + (r + 1) (h(ψ) + 5 log(n + 1)) deg V.

Proof.– We assume again without loss of generality that V is irreducible. Let K be a number
field of definition of both V and ψ , and set ψ(x) = a+A x for some m×n−matrix A of maximal
rank and a ∈ Kn . Then let ψ∗ : IAn+1 → IAm+1 be the linear map y 7→ (a,A)t y defined by
the transpose of the matrix associated to ψ .
Set W := ψ(V ) , and let V ⊂ IPm , W ⊂ IPn denote the projective closures of V and W
respectively.

For i = 0, . . . , r we let νi ∈ Q
n+1

, and we set Lh(νi) := νi 0 x0 + . . . + νi n xn for the homoge-
nization of the associated linear form. Then FW (ν0, . . . , νr) = 0 if and only if there exists ξ ∈ V
such that ψ(ξ) lies in the linear space determined by ν0, . . . , νr . Equivalently ξ lies in the linear
space determined by ψ∗(ν0), . . . , ψ∗(νr) . We conclude that

FW = FV ◦ (ψ∗)r+1.

Let v ∈ M∞
K . Then

m(σv(FW ), Sr+1
n+1) ≤ log |FW |v + (r + 1) log(n + 1) deg V

≤ log |FV |v + (r + 1) (hv(ψ) + 2 log(n + 1)) deg V + (r + 1) log(n + 1) deg V

≤ m(σv(FV )) + (r + 1) log(m + 1) deg V + (r + 1) (hv(ψ) + 3 log(n + 1)) deg V

≤ m(σ(FV ), Sr+1
m+1) + (

m∑

i=1

1/2 i) (r + 1) deg V

+ (r + 1) (hv(ψ) + 4 log(n + 1)) deg V.

Here we have applied Lemma 1.1, inequality (1.2) and the proof of Lemma 1.2(c), using the fact
that the number of monomials of FV is bounded by (n + 1)(r+1) deg V .
In case v 6∈ M∞

K we obtain analogously log |FW |v ≤ log |FV |v + (r + 1) hv(ψ) deg V , and hence

h(ψ(V )) ≤ h(V ) + (r + 1) (h(ψ) + 5 log(n + 1)) deg V.

2

Proof of Proposition 2.5.– Let ψ : IAn → IAN × IAn be the injective map x 7→ (ϕ(x), x) . Then ϕ
decomposes as

ϕ = π ◦ ψ,
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where π : IAN × IAn → IAN denotes the canonical projection. Thus

h(ϕ(V )) ≤ h(ψ(V )) + 3 (r + 1) log(n + N + 1) deg ψ(V )

≤ h(V ) + (r + 1) (h(ψ) + 5 log(n + N + 1)) deg V + 3 (r + 1) log(n + N + 1) deg V

= h(V ) + (r + 1) (h(ϕ) + 8 log(n + N + 1)) deg V.

2

2.2.2 Local height of the intersection of varieties

We obtain the following estimate for the local height of the intersection of a variety with an
hypersurface. This is a consequence of our previous estimate for generalized Chow forms. This
result can be seen as the local analogue of [47, Prop. 2.8], and its proof closely follows it.

Proposition 2.8 Let V ⊂ IAn be an equidimensional variety of dimension r defined over a
number field K . Let f ∈ K[x1, . . . , xn] be a polynomial which is not a zero-divisor in K[V ] . We
assume that both V and V ∩ V (f) satisfy Assumption 1.5.
Then there exists λ ∈ K∗ such that

• hv(V ∩V (f)) ≤ deg f hv(V )+hv(f) deg V +log(n+1) deg f deg V − log |λ|v for v ∈ M∞
K ,

• hv(V ∩ V (f)) ≤ deg f hv(V ) + hv(f) deg V − log |λ|v for v /∈ M∞
K .

Proof.– Set d := deg f and W := V ∩ V (f) ⊂ IAn . By [47, Prop. 2.4] there exists Q ∈
K[U1, . . . , Ur] \ {0} such that Chd,V (f) = Q ChW . Then — as in the proof of Lemma 2.6 —
there exists a non-zero coefficient λ of Q such that log |λ|v ≤ m(σv(Q)) for all v ∈ M∞

K and
log |λ|v ≤ log |Q|v for all v /∈ M∞

K .
Now let v ∈ M∞

K . From inequality (1.2) we obtain

log |λ|v ≤ m(σv(Q)) ≤ m(σv(Q); Sr
n+1) + r (

n∑

i=1

1/2 i) (d deg V − deg W )

since Q has degree d deg V − deg W in each group of variables. Then

hv(W ) = m(σv(ChW ); Sr
n+1) + r (

n∑

i=1

1/2 i) deg W

= m(σv(Chd,V (f));Sr
n+1) + r (

n∑

i=1

1/2 i) d deg V

− m(σv(Q); Sr
n+1)− r (

n∑

i=1

1/2 i) (d deg V − deg W )

≤ d hv(V ) + hv(f) deg V + log(n + 1) d deg V − log |λ|v.

by straightforward application of Lemma 2.2. The case v /∈ M∞
K follows in an analogous way. 2

Proposition 2.8 can be immediately generalized to families of polynomials:

Corollary 2.9 Let V ⊂ IAn be an equidimensional variety of dimension r defined over K . Let
f1, . . . , fs ∈ K[x1, . . . , xn] be polynomials which form a complete intersection in V . We assume
that V ∩ V (f1, . . . , fi) satisfies Assumption 1.5 for i = 0, . . . , s . Set di := deg fi .
Then there exists λ ∈ K∗ such that
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• hv(V ∩V (f1, . . . , fs)) ≤ (hv(V )+(
∑

i hv(fi)/di) deg V +s log(n+1) deg V )
∏

i di− log |λ|v
for v ∈ M∞

K ,

• hv(V ∩ V (f1, . . . , fs)) ≤ (hv(V ) + (
∑

i hv(fi)/di) deg V )
∏

i di − log |λ|v for v /∈ M∞
K .

Proof.– We just consider the case when v is archimedean, as the other one follows similarly. From
the preceding result we obtain

hv(V ∩ V (f1, . . . , fi)) ≤ di hv(V ∩ V (f1, . . . , fi−1)) + hv(fi) deg(V ∩ V (f1, . . . , fi−1))

+ log(n + 1) di deg(V ∩ V (f1, . . . , fi−1))− log |λi|v
for some λi ∈ K∗ . For the final estimate we apply iteratively this inequality and we set λ :=∏s

i=1 λ
di+1···ds

i . 2

Corollary 2.10 Let f1, . . . , fs ∈ K[x1, . . . , xn] be polynomials which form a complete intersection
in IAn . We assume that V (f1, . . . , fi) satisfies Assumption 1.5 for i = 1, . . . , s . Set di := deg fi .
Then there exists λ ∈ K∗ such that:

• hv(V (f1, . . . , fs)) ≤ (
∑

i hv(fi)/di + (n + s) log(n + 1))
∏

i di − log |λ|v for v ∈ M∞
K ,

• hv(V (f1, . . . , fs)) ≤ (
∑

i hv(fi)/di)
∏

i di − log |λ|v for v /∈ M∞
K .

Proof.– We apply the previous result to V := IAn , using the fact that

h∞(IAn) =
n∑

i=1

i∑

j=1

1/2 j ≤ n log(n + 1) , hp(IAn) = 0.

2

The following is the global counterpart of the previous results. It can be seen as an arithmetic
analogue of [24, Prop. 2.3].
We remark that in the global situation, we do not need to assume Assumption 1.5 for the inter-
mediate varieties. In particular f1, . . . , fs do not need to be a complete intersection in V .

Corollary 2.11 Let V ⊂ IAn be a variety of dimension r , and let f1, . . . , fs ∈ Q[x1, . . . , xn] .
Set di := deg fi , h := h(f1, . . . , fs) and n0 := min{r, s} . We assume that d1 ≥ . . . ≥ ds holds.
Then:

h(V ∩ V (f1, . . . , fs)) ≤ (h(V ) + (
n0∑

i=1

1/di) h deg V + n0 log(n + 1) deg V )
n0∏

i=1

di.

Proof.– We proceed by induction on (r, s) with respect to the product order on IN × IN defined
by (r, s) Â (r′, s′) ⇔ r ≥ r′ and s ≥ s′ .
The case when r = 0 or s = 0 are both trivial. Now let r, s ≥ 1 , and we assume that the
statement holds for all (r′, s′) ≺ (r, s) such that (r′, s′) 6= (r, s) .
Let V = ∪C C be the decomposition of V into irreducible components. In case C ⊂ V (fs) we
have that C ∩ V (f1, . . . , fs) = C ∩ V (f1, . . . , fs−1) and by the inductive hypothesis:

h(C ∩ V (f1, . . . , fs)) ≤ (h(C) + (
m0∑

i=1

1/di) h deg C + m0 log(n + 1) deg C)
m0∏

i=1

di

with m0 := min{r, s− 1} .
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In case C 6⊂ V (fs) we have either C ∩ V (fs) = ∅ or dim(C ∩ V (fs)) ≤ r − 1 . The first case is
trivial. For the second case, we proceed as in the proof of Lemma 2.8 applying Lemma 2.4 instead
of Lemma 2.2, and we obtain

h(C ∩ V (fs)) ≤ ds h(C) + h deg C + log(n + 1) d deg C.

Since then dim(C∩V (fs)) = r−1 , we can apply the inductive hypothesis to the variety C∩V (fs)
and we obtain

h(C ∩ V (f1, . . . , fs)) ≤ (h(C ∩ V (fs)) + (
n0−1∑

i=1

1/di) h deg(C ∩ V (fs))
n0−1∏

i=1

di

+ (n0 − 1) log(n + 1) deg(C ∩ V (fs)))

≤ (h(C) + (
n0∑

i=1

1/di)h deg C + n0 log(n + 1) deg C)
n0∏

i=1

di.

Finally

h(V ∩ V (f1 ∩ · · · ∩ fs)) ≤
∑

C

h(C ∩ V (f1 ∩ · · · ∩ fs))

≤
∑

C

(h(C) + (
n0∑

i=1

1/di)h deg C + n0 log(n + 1) deg C)
n0∏

i=1

di

= (h(V ) + (
n0∑

i=1

1/di) h deg V + n0 log(n + 1) deg V )
n0∏

i=1

di.

2

With the same notations of Corollary 2.11, for V := IAn we obtain

h(V (f1, . . . , fs)) ≤ ((
n0∑

i=1

1/di)h + (n + n0) log(n + 1))
n0∏

i=1

di.

2.2.3 An arithmetic Bernstein-Kushnirenko theorem

From our estimate for the height of an affine toric variety (Proposition 1.7) and the previous results
of this section we derive the following arithmetic version of the Bernstein-Kushnirenko theorem.
We refer to Subsection 1.2.5 for the notation.

Proposition 2.12 Let f1, . . . , fs ∈ K[x1, . . . , xn] , and set A := Supp(1, x1, . . . , xn, f1, . . . , fs) ⊂
(ZZ≥0)n . Also set d := maxi deg fi and h := h(f1, . . . , fs) . Then

• deg V (f1, . . . , fs) ≤ Vol(A) ,

• h(V (f1, . . . , fs)) ≤ (nh + 22(n+1) log(n + 1) d)Vol(A) .

Proof.– Set A := {α1, . . . , αN} . The case N = 1 is trivial, and so we assume N ≥ 2 . We also
assume that α1, . . . , αn are the vectors of the canonical basis of IRn .
The map ϕA : IAn → IAN induces an isomorphism between IAn and the affine toric variety
XA ⊂ IAN . The projection map πA : IAN → IAn defined by y 7→ (y1, . . . , yn) restricted to XA
is the inverse map of ϕA .
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For i = 1, . . . , s we set fi =
∑N

j=1 ai j xαj and we let

`i :=
N∑

j=1

ai j yj ∈ K[y1, . . . , yN ]

be the associated linear form. Set V := V (f1, . . . , fs) ⊂ IAn and W := XA∩V (`1, . . . , `s) ⊂ IAN .
We have ϕA(V ) = W and so V = πA(W ) . Then

deg V ≤ deg W ≤ deg XA = Vol(A)

and

h(V ) ≤ h(W ) + 3 (n + 1) log(N + 1) deg W

≤ h(XA) + n h deg(XA) + 4 (n + 1) log(N + 1) deg(XA)

≤ (nh + (22 n+1 log N + 4 (n + 1) log(N + 1)) Vol(A).

by successive application of Lemma 2.6, Corollary 2.11 and Proposition 1.7. Finally N ≤ (
d+n

n

)

and so h(V ) ≤ (nh + 22(n+1) log(n + 1) d ) Vol(A) . 2

It seems that the factor 22 n in the estimate of h(XA) is superfluous. If this is the case, the above
estimate can be considerably improved. Maillot has recently obtained another estimate for the
height of the isolated points of V (f1, . . . , fs) , which is more precise in some particular cases [42,
Cor. 8.2.3].

2.3 Local height of norms and traces

Let V ⊂ IAn be an equidimensional variety of dimension r and degree D defined over a field k
which satisfies Assumption 1.5. As we will see below, this implies that the projection πV : V → IAr

defined by x 7→ (x1, . . . , xr) is finite (Lemma 2.14). Set L := k(IAr) and M := L⊗k[IAr ] k[V ] , so
that M is a finite L -algebra of dimension D .
Let f ∈ k[x1, . . . , xn] . We identify f ∈ k[V ] with the multiplication map M → M defined by
q 7→ f q . ¿From Hamilton-Cayley theorem, we derive that the characteristic polynomial Xf ∈ L[t]
of this map verifies Xf (f) = 0 .
The fact that the inclusion π∗V : k[IAr] ↪→ k[V ] is integral implies that the minimal polynomial
mf of this map lies in k[IAr][t] . We have that Xf |mD

f in L[t] , and so Gauss lemma implies that
Xf lies in fact in k[IAr][t] .
Moreover the natural map k[V ] → M is an inclusion, as V is an equidimensional variety, and so
Xf (f) = 0 in k[V ] .

Set Xf = tD + bD−1 tD−1 + · · ·+ b0 ∈ k[IAr][t] . Then the norm NV (f) and the trace TrV (f) of
f are defined as

NV (f) := (−1)D b0 ∈ k[IAr] , TrV (f) := −bD−1 ∈ k[IAr].

They equal the determinant and the trace of the L -linear map f : M → M respectively. We also
define the adjoint polynomial f∗ of f as

f∗ := (−1)D−1 (fD−1 + bD−1 fD−2 + · · ·+ b1) ∈ k[x1, . . . , xn].

From the identity Xf (f) = 0 we obtain that f∗f = NV (f) in k[V ] .

The key result of this subsection is a precise bound for the height of the norm and the trace of a
polynomial in case k is a number field.
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2.3.1 Characteristic polynomials

Let V ⊂ IAn be an equidimensional variety of dimension r and degree D defined over k . We
keep notations as in Subsection 2.1.1: for d ∈ IN we denote by F :=

∑
|α|≤d U(d)0 α xα and

Li := Ui 0 + Ui 1 x1 + · · · + Ui n xn the generic polynomial of degree d and 1 associated to the
group of variables U(d)0 and Ui respectively.
As before, we set U(d) := {U(d)0, U1, . . . , Ur} and N :=

(
d+n

n

)
+ r (n + 1) . Also we introduce an

additional group T := {T0, . . . , Tr} of r+1 variables which correspond to the coordinate functions
of IAr+1 . We consider the map

ψ : IAN × IAn → IAN × IAr+1 , (ν(d), ξ) 7→ (ν(d), F (ν(d)0)(ξ), L1(ν1)(ξ), . . . , Lr(νr)(ξ)).

where ν(d) := (ν(d)0, ν1, . . . , νr) ∈ IAN and ξ ∈ IAn .
Then the Zariski closure ψ(IAN × V ) ⊂ IAN × IAr+1 is a hypersurface, and any of its defining
equations Pd,V ∈ k[U(d)][T ] is called a d -characteristic polynomial of V . Also we define the
characteristic polynomial of V by PV := P1,V .
A d -characteristic polynomial is uniquely defined up to a scalar factor. In case V is irreducible,
ψ(IAN × V ) is an irreducible hypersurface and thus Pd,V is an irreducible polynomial. When V
is equidimensional, it coincides with the product of d -characteristic polynomials of its irreducible
components.

The following construction links the characteristic polynomial of a variety with its generalized
Chow form. Set

ζ(d)0α :=

{
U(d)00 − T0 for α = 0
U(d)0α for α 6= 0.

Analogously, for i = 1, . . . , r we set ζi 0 := Ui 0 − Ti and ζi j := Ui j for j 6= 0 . Finally we set
ζ(d) := (ζ(d)0, ζ1, . . . , ζr) .

Lemma 2.13 Let V ⊂ IAn be an equidimensional variety of dimension r and degree D . Let
Fd,V be a d -Chow form of V . Then Fd,V ◦ ζ(d) is a d -characteristic polynomial of V .

Proof.– It is enough to consider the case when V is irreducible.
Let Pd,V be a d -characteristic polynomial of V . For (ν(d), ξ) ∈ IAN × V we set

ϑ := (F (ν(d)0)(ξ), L1(ν1)(ξ), . . . , Lr(νr)(ξ)) ∈ IAr+1,

so that Pd,V (ν(d))(ϑ) = 0 . We observe that

ξ ∈ V ∩ {F (ν(d)0)(x) = ϑ0} ∩ {L1(ν1)(x) = ϑ1} ∩ · · · ∩ {Lr(νr)(x) = ϑr)} ⊂ IAn.

In particular, this variety is non-empty, and so we infer that Fd,V ◦ζ(d)(ν(d), ϑ) = 0 . This implies
that Pd,V |Fd,V ◦ ζ(d) as Pd,V is an irreducible polynomial.
On the other hand Fd,V ◦ζ(d) is also irreducible, as it is multihomogeneous and Fd,V ◦ζ(d)(U(d), 0) =
Fd,V (U(d)) . We conclude that Pd,V and Fd,V ◦ ζ(d) coincide up to a factor in k∗ . 2

The previous construction shows that a d -characteristic polynomial of V is multihomogeneous of
degree D in the group of variables U(d)0 ∪ {T0} and of degree d D in each group Ui ∪ {Ti} .

Set kd := k(U(d)) , and set

φ : IAn(kd) → IAr+1(kd) , x 7→ (F (x), L1(x), . . . , Lr(x)).

Then Pd,V ∈ kd[T ] is also a minimal equation for the hypersurface φ(V ) , and by Bézout inequality
we have also degT Pd,V ≤ dD (see e.g. [50, Prop.1]).
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We assume from now on that V satisfies Assumption 1.5, that is #π−1
V (0) = deg V . In order to

avoid the indeterminacy of the d -characteristic polynomial, we fix it as

Pd,V := (−1)D Chd,V ◦ ζ(d).

In particular, we set PV := (−1)D ChV ◦ ζ(1) for the characteristic polynomial of V .
Set PV := aD TD

0 + · · · + a0 for the expansion of PV with respect to T0 . We have that PV

is multihomogeneous of degree D in each group Ui ∪ {Ti} . This implies that aD lies in fact in
k[U1, . . . , Ur] and is multihomogeneous of degree D in each Ui for i = 1, . . . , r .
Moreover, aD coincides with the coefficient of UD

00 in ChV , and the imposed normalization on
ChV implies that

aD(e1, . . . , er) = ChV (e0, e1, . . . , er) = 1.

We extend the morphism %d of Subsection 2.1.1 to a morphism k[U(d)][T ] → k[U0, . . . , Ur][T ]
defining %d(U(d)00 − T0) := (U00 − T0)d and %d(Ti) := Ti for 1 ≤ i ≤ r . In other terms

%d(T0) =
d∑

j=1

(−1)j−1

(
d

j

)
Ud−j

0 0 T j
0 .

From the previous lemma we obtain

%d(Pd,V ) = %d((−1)DChd,V ◦ ζ(d)) = (−1)D(ChV ◦ ζ(1))d = (−1)(d+1)DPd
V .

Now set
Pd,V = ad,D TD

0 + · · ·+ ad,0

for the expansion of Pd,V with respect to T0 . The previous remark implies that ad,D = %d(ad,D) =
ad

D . In particular ad,D ∈ k[U1, . . . , Ur] and ad,D(e1, . . . , er) = 1 .

The following lemma allows us to obtain a characteristic polynomial of f ∈ k[x1, . . . , xn] from the
d -characteristic polynomial of the variety V .
We introduce the following convention:
Given a polynomial f ∈ k[x1, . . . , xn] of degree d and linear forms `1, . . . , `r ∈ k[x1, . . . , xn] , we
denote by Pd,V (f, `1, . . . , `r) the specialization of the variables in U(d) into the coefficients of
f, `1, . . . , `r .

Lemma 2.14 Let V ⊂ IAn be an equidimensional variety of dimension r and degree D which
satisfies Assumption 1.5. Then the projection πV : V → IAr is finite.
Moreover, for a polynomial f ∈ k[x1, . . . , xn] of degree d , the characteristic polynomial of f is
given by

Xf = Pd,V (f, e1, . . . , er)(t, x1, . . . , xr) ∈ k[IAr][t].

Proof.– We have that PV (U0, . . . , Ur)(L0, . . . , Lr) = 0 in k[U ]⊗ k[V ] and so

PV (ej , e1, . . . , er)(t, x1, . . . , xr) ∈ k[IAr][t]

is a monic equation for xj in k[V ] , for j = r + 1, . . . , n . Thus the projection πV is finite.
For the second assertion, set

PF (t) := Pd,V (U(d)0, e1, . . . , er)(t, x1, . . . , xr) ∈ k[U(d)0][IAr][t].

This is a polynomial of degree D . It is monic with respect to t , as ad,D ∈ k[U1, . . . , Ur] and
ad,D(e1, . . . , er) = 1 . We have PF (F ) = 0 in k[U(d)0]⊗ k[V ] .

Now let mF be the monic minimal polynomial of F . Let U ′(d)0 be a group of
(
d+n−r

n−r

)
variables

and set F0 for the generic polynomial of degree d in the variables xr+1, . . . , xn .
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Then
mF (U ′(d)0, 0) ∈ k[U ′(d)0][t]

is an equation for F0 over π−1
V (0) . Since π−1

V (0) is a 0-dimensional variety of degree D and F0

separates its points, we infer that degT0
mF = D , and so PF = mF .

Finally we obtain

Xf = XF (f) = PF (f) = Pd,V (f, e1, . . . , er)(t, x1, . . . , xr).

2

2.3.2 Estimates for norms and traces

Finally we prove the announced estimates for the height of the norm and the trace of a polynomial.

Lemma 2.15 Let V ⊂ IAn be an equidimensional variety of dimension r defined over K which
satisfies Assumption 1.5. Let f ∈ K[x1, . . . , xn] . Then

• deg NV (f) ≤ deg f deg V ,

• hv(NV (f)) ≤ deg f hv(V ) + hv(f) deg V + (r + 1) log(n + 1) deg f deg V for v ∈ M∞
K ,

• hv(NV (f)) ≤ deg f hv(V ) + hv(f) deg V for v /∈ M∞
K .

Proof.– We keep notations as in Subsection 2.3.1. Set d := deg f and D := deg V . We have then

NV (f) = (−1)D Pd,V (f, e1, . . . , er)(0, x1, . . . , xr) = Chd,V (f, e1 − e0 x1, . . . , er − e0 xr)

by Lemmas 2.14 and 2.13. Then

deg NV (f) ≤ degT Pd,V ≤ d D.

From the previous expression we also obtain that the coefficients of NV (f) are some of the coeffi-
cients of Chd,V (f) , and so |NV (f)|v ≤ |Chd,V (f)|v for every absolute value v of K .
Let v ∈ M∞

K . Then

log |NV (f)|v ≤ log |Chd,V (f))|v

≤ m(σv(Chd,V (f)); Sr
n+1) + r (

n∑

i=1

1/2 i) dD + r log(n + 1) d D

≤ d hv(V ) + hv(f)D + (r + 1) log(n + 1)dD

by inequalities (1.1) and (1.2), and Lemma 2.2. In a similar way we obtain hv(NV (f)) ≤ d hv(V )+
hv(f)D for v /∈ M∞

K . 2

The proof of the following lemma follows closely that of [50, Lem. 9]. We slightly improve the
degree estimate obtained therein, and we get the corresponding height estimate.

Lemma 2.16 Let V ∈ IAn be an equidimensional variety of dimension r defined over K which
satisfies Assumption 1.5. Let f, g ∈ K[x1, . . . , xn] such that f is not a zero-divisor in K[V ] . Set
d := max{deg f, deg g} and hv := max{hv(f), hv(g)} for v ∈ MK . Then

• deg TrV (f∗g) ≤ d deg V ,

• hv(TrV (f∗g)) ≤ d hv(V ) + (hv + log 2) deg V + (r + 1) log(n + 1) d deg V for v ∈ M∞
K ,
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• hv(TrV (f∗g)) ≤ d hv(V ) + hv deg V for v /∈ M∞
K .

Proof.– Let D := deg V , and let t be a new variable. Then K[x1, . . . , xr, t] ↪→ K[V × IA1]
is again an integral inclusion and NV×IA1(t − f∗g) = Xf∗g(t) . Set Q(t) := NV×IA1(t f − g) ∈
K[x1, . . . , xr, t] . Since f∗ f = NV (f) we have that NV (f∗) = NV (f)D−1 , and so

NV (f)D−1 Q = NV (f∗) Q = Xf∗g(NV (f)t).

Set Q = cD tD + · · ·+ c0 with ci ∈ K[IAr] . The last identity implies then TrV (f∗g) = −cD−1 .
Set q > D , and let Gq denote the group of q -roots of 1. Then Q(ω) = NV (ω f − g) for ω ∈ Gq ,
and so

TrV (f∗g) = −1
q

∑

ω∈Gq

NV (ω f − g)ω1−D.

From Lemma 2.15 we get deg TrV (f∗g) ≤ d D .
For v ∈ M∞

K , we then obtain

hv(TrV (f∗g)) ≤ max
ω∈Gq

hv(NV (ω f − g)) ≤ d hv(V ) + (hv + log 2) D + (r + 1) log(n + 1) d D.

Analogously, for v /∈ M∞
K we take q > D such that |q|v = 1 , and we obtain hv(TrV (f∗g)) ≤

d hv(V ) + hv D . 2

3 An effective arithmetic Nullstellensatz

In this chapter we obtain the announced estimates for the arithmetic Nullstellensatz over the ring
of integers of a number field K . Theorem 1 in the Introduction corresponds to the case K := Q .
These estimates depend on the number of variables and on the degree and height of the input
polynomials.

3.1 Division modulo complete intersection ideals

A crucial tool in our treatment of the arithmetic Nullstellensatz is the trace formula. One of its
outstanding features is that it performs effective division modulo complete intersection ideals [19],
[13], [32], [50], [16], [22]. In this section we apply the trace formula to obtain sharp height estimates
in the division procedure.

3.1.1 Trace formula

We describe in what follows the basic aspects of duality theory for complete intersection algebras
that we will need in the sequel. We refer to Kunz [34, Appendix F] for a more complete presentation
of this theory.
Let k be a perfect field, and set A := k[t1, . . . , tr] and A[x] := A[x1, . . . , xn] . Let F :=
{F1, . . . , Fn} ⊂ A[x] be a reduced complete intersection which defines a radical ideal (F ) of
dimension r .
We consider the A -algebra

B := A[x]/(F ) = A[x1, . . . , xn]/(F1, . . . , Fn).

We assume that the inclusion A ↪→ B is finite, that is the variables t1, . . . , tr are in Noether
normal position with respect to the variety V := V (F ) ⊂ IAr+n . This is the case, for instance,
if V satisfies Assumption 1.5. Thus B is a projective A -module, which turns to be free of rank
bounded by deg V by the Quillen-Suslin theorem.
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The dual A -module B∗ := HomA(B, A) can be seen as a B -module with scalar multiplication
defined by f · τ(g) := τ(f g) for f, g ∈ B and τ ∈ B∗ . It is a free B -module of rank 1 and any
of its generators is called a trace of B .
The following construction yields a trace σ canonically associated to the complete intersection F .
We take new variables y := {y1, . . . , yn} , and we set F

(x)
i := Fi(x) ∈ A[x] and F

(y)
i := Fi(y) ∈

A[y] . Then F
(y)
i −F

(x)
i belongs to the ideal (y1−x1, . . . , yn−xn) and so there exist (non unique)

Pij ∈ A[x, y] such that

F
(y)
i − F

(x)
i =

n∑

j=1

Pij(x, y) (yj − xj),

for i = 1, . . . , n . We consider the determinant ∆ ∈ A[x, y] of the square matrix (Pij)ij , and we
write it as

∆ =
∑
m

am bm

with am ∈ A[x] and bm ∈ A[y] . Again, the polynomials am, bm are not uniquely defined. The
polynomial ∆ ∈ A[x, y] is called a pseudo-Jacobian determinant of the complete intersection F .
Set cm := bm(x) ∈ A[x] . Then there exists a unique trace σ ∈ B∗ such that for g ∈ A[x]

g =
∑
m

σ(g am) cm

where the bar denotes class modulo (F ) . This identity is known as the trace formula.
Let J := det(∂Fi/∂xj)i j be the Jacobian determinant of the complete intersection F with respect
to the variables x1, . . . , xn . Then the following identity —which justifies the name of pseudo-
Jacobian for ∆— holds

J =
∑
m

am cm.

The standard trace TrV is related to σ by the equality

TrV (g) = σ(J g)

for all g ∈ A[x] .

3.1.2 A division lemma

Throughout this subsection we keep notations and assumptions as in the previous one, but we
replace k by a number field K . Set d := maxi deg Fi and hv := maxi hv(Fi) for v ∈ MK . Here
deg Fi denotes the total degree of Fi as an element of K[t1, . . . , tr][x1, . . . , xn] .
We will choose concrete polynomials am, cm which satisfy the trace formula, and we will estimate
their degree and local height.
First we choose the polynomials Pij . Remarking that

F
(y)
i − F

(x)
i =

n∑

j=1

Fi(x1, . . . , xj−1, yj , . . . , yn)− Fi(x1, . . . , xj , yj+1, . . . , yn),

we set
Pij := (Fi(x1, . . . , xj−1, yj , . . . , yn)− Fi(x1, . . . , xj , yj+1, . . . , yn))/(yj − xj)

Here we perform the division through the formula

(yk
j − xk

j )/(yj − xj) = yk−1
j + yk−2

j xj + · · ·+ yj xk−2
j + xk−1

j .
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We set ∆ := det(Pij)ij . Finally we choose bm ∈ A[y] as the monomials in the expansion of ∆
with respect to y , am ∈ A[x] as the corresponding coefficient, and we set cm := bm(x) .
Set Fi =

∑
α Ai α xα with Ai α ∈ A . Then

Pij =
∑
α

Ai α xα1
1 · · ·xαj−1

j−1 y
αj+1
j+1 · · · yαn

n (yαj−1
j + · · ·+ x

αj−1
j ) ∈ A[x, y].

We deduce that deg Pij ≤ d− 1 and hv(Pij) ≤ hv for every v ∈ MK . Then deg ∆ ≤ n (d− 1)
and so

deg am + deg cm ≤ n (d− 1).

We have also hv(cm) = 0 and hv(am) ≤ hv(∆) .
Finally we can write

Pij = C0 + · · ·+ Cd−1 yd−1
j ,

where each Ck ∈ A[x1, . . . , xj , yj+1, . . . , yn] is a polynomial in n + r variables of total degree
bounded by deg Pij ≤ d − 1 . This implies that the number of monomials of Pij is bounded by
d

(
n+r+d−1

n+r

) ≤ d (n + r + 1)d−1 .
Therefore, for v ∈ M∞

K we have

hv(am) ≤ hv(∆)

≤ nhv + (n− 1) (log d + (d− 1) log(n + r + 1)) + n log n

≤ n (hv + d log(n + r + 1) + log d). (3.1)

Analogously we have hv(am) ≤ nhv for v /∈ M∞
K .

The following is a sharp estimate for the degree and local height of the polynomials in the division
procedure. It is a substantial improvement over [32, Thm. 29].
We introduce the notation degt f and degx f for the degree of a polynomial f ∈ A[x] with respect
to the group of variables t and x , respectively.

Main Lemma 3.1 (Division Lemma)
Set A := K[t1, . . . , tr] and A[x] := A[x1, . . . , xn] . Let F := {F1, . . . , Fn} ⊂ A[x] be a reduced
complete intersection defining a variety V := V (F ) ⊂ IAr+n which satisfies Assumption 1.5. Set
B := K[V ] = A[x]/(F ) .
Let f, g ∈ A[x] be polynomials such that f ∈ B is a non-zero divisor and f | g in B . Set
d := max{deg f, deg F1, . . . , deg Fn} and hv := max{hv(f), hv(F1), . . . , hv(Fn)} for v ∈ MK .
Then there exist q ∈ A[x] and ξ ∈ K∗ such that

• q f = g,

• degx q ≤ nd,

• deg q ≤ degt g + (nd + max{(n + 1) d, degx g}) deg V ,

• hv(q) ≤ hv(g) + (nd + max{d, degx g})hv(V )
+ ((n + 1) hv + (r + 6) log(n + r + 1) (nd + max{(n + 1) d, degx g})) deg V

+ 2 log(r + 1) degt g − log |ξ|v
for v ∈ M∞

K ,

• hv(q) ≤ hv(g) + (nd + max{d, degx g})hv(V ) + (n + 1) hv deg V − log |ξ|v
for v /∈ M∞

K .
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Proof.– Set L := K(t1, . . . , tr) for the quotient field of A and M := L⊗A B . Then M is a finite
L -algebra of dimension deg V and σ can be uniquely extended to a L -linear map σ : M → M .
The fact that B is a torsion-free A -algebra implies that the canonical map B → M is an inclusion.
We will only consider the case n ≥ 1 . For the case n = 0 we refer to Remark 3.2. Whenever it
is clear from the context, we will avoid explicit reference to the ring in which we are considering a
given element of A[x] .
Let q0 ∈ A[x] be any polynomial such that q0 f = g in B . We have that f is a non-zero divisor in
B , and so it is invertible in M . Then q0 = f−1 g in M and therefore σ(f−1 g p) = σ(q0 p) ∈ A
for all p ∈ A[x] . Then we set

q :=
∑
m

σ(f−1 g am) cm ∈ A[x].

Trace formula implies that q ≡ q0 (mod (F )) , and so q f = g in B .
Let J ∈ A[x] denote the Jacobian determinant of the complete intersection F with respect to the
group of variables x . This is a non-zero divisor because of the Jacobian criterion (see for instance
[9, Thm. 18.15]), and so it is also invertible in M .
Let (J f)∗ be the adjoint polynomial of J f and set

Λm := TrV ((J f)∗g am) ∈ A.

We have J f (J f)∗ = N(J f) ∈ A \ {0} , and so

Λm/N(J f) = Tr((J f)−1 g am) = σ(f−1 g am) ∈ A.

In particular N(J f) |Λm in A , and we have the expression

q =
1

N(J f)

∑
m

Λm cm.

In the sequel, ξ ∈ K∗ will be any non-zero coefficient of N(J f) .
Let us consider degrees. Clearly degx q ≤ maxm deg cm ≤ n(d− 1) ≤ nd.
Next we analyze the total degree of q . Let g :=

∑
α pα xα be the monomial expansion of g with

respect to x . Then

Λm =
∑
α

pα Tr((Jf)∗xα am), (3.2)

as Tr is a A -linear map. We have the estimates deg(J f) ≤ n (d − 1) + d ≤ (n + 1) d and
deg(xα am) ≤ degx g + deg am , from where we get

deg Tr((Jf)∗xα am) ≤ max{(n + 1) d, degx g + deg am}deg V

by Lemma 2.16. Thus

deg q ≤ degt g + max
m
{max{(n + 1) d, degx g + deg am} deg V + deg cm}

≤ degt g + max
m
{max{(n + 1) d + deg cm,degx g + deg am + deg cm}} deg V

≤ degt g + max{(n + 1) d + nd,degx g + nd}deg V

≤ degt g + (nd + max{(n + 1) d, degx g}) deg V.

For the rest of the proof, we will use several times the following basic estimates:

max{deg(J f), deg(xα am)} ≤ nd + max{d, degx g},
deg Tr((Jf)∗xα am) ≤ (n d + max{d, degx g}) deg V.
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Finally we estimate the local height of q . Let v ∈ M∞
K . We have hv(∂Fi/∂xj) ≤ hv + log d and

so

hv(J) ≤ n (hv + log d) + (n− 1) log(n + r + 1) (d− 1) + n log n ≤ n (hv + log(n + r + 1) d + log d).

Therefore

hv(J f) ≤ n(hv + log(n + r + 1) d + log d) + hv + log(n + r + 1) d

≤ (n + 1) hv + (n + 1) log(n + r + 1) d + n log d (3.3)

by Lemma 1.2(b). We recall that hv(xα am) ≤ n (hv + log(n + r + 1) d + log d) by inequality
(3.1) and so

max{hv(J f), hv(xα am)} ≤ (n + 1) hv + (n + 1) log(n + r + 1) d + n log d.

Then

hv(Tr((J f)∗xαam)) ≤ (nd + max{d, degx g})hv(V )

+ ((n + 1)hv + (n + 1) log(n + r + 1) d + n log d + log 2) deg V

+ (r + 1) log(n + r + 1) (nd + max{d, degx g}) deg V

≤ (nd + max{d, degx g})hv(V ) + ((n + 1) hv + ((2 n + 1) log(n + r + 1) d ) deg V

+ (r + 1) log(n + r + 1) (nd + max{d, degx g}) deg V

by Lemma 2.16.
By considering separately the cases degx g ≤ (n + 1) d and degx g > (n + 1) d we obtain

(2 n + 1) d + (r + 1) (nd + degx g) ≤ degx g + n d + (r + 1) (nd + degx g) ≤ (r + 2) (n d + degx g).

We conclude:

hv(Tr((J f)∗xαam)) ≤ (nd + max{d, degx g})hv(V )

+ ((n + 1) hv + (r + 2) log(n + r + 1) (n d + max{(n + 1) d, degx g})) deg V.

Hence

hv(Λm) ≤ max
α
{hv(pα Tr((J f)∗xαam)}+ log(n + 1) degx g

≤ hv(g) + max
α
{hv(Tr((J f)∗xαam))}

+ log(r + 1) (n d + max{d, degx g}) deg V + log(n + 1) degx g

≤ hv(g) + (nd + max{d, degx g})hv(V )

+ ((n + 1) hv + (r + 2) log(n + r + 1) (nd + max{(n + 1) d, degx g})) deg V

+ log(r + 1) (n d + max{d, degx g}) deg V + log(n + 1) degx g

≤ hv(g) + (nd + max{d, degx g}) hv(V )

+ ((n + 1) hv + (r + 4) log(n + r + 1) (nd + max{(n + 1)d, degx g})) deg V

by application of identity (3.2) and Lemma 1.2(a,b). We have

hv(q) ≤ max
m

{hv(Λm/N(J f))}

35



as each cm is a different monomial in x . Thus it only remains to estimate the local height of each
Λm/N(J f) .
Recall that ξ ∈ K∗ is any non-zero coefficient of N(J f) . Then

log |Λm/N(J f)|v ≤ hv(Λm) + 2 log(r + 1) (degt g + (nd + max{d, degx g}) deg V )− log |N(J f)|v
≤ hv(g) + (nd + max{d, degx g})hv(V )

+ ((n + 1) hv + (r + 6) log(n + r + 1) (nd + max{(n + 1)d, degx g})) deg V

+ 2 log(r + 1) degt g − log |ξ|v (3.4)

by Lemma 1.2(d) and the fact that log |ξ|v ≤ log |N(J f)|v . From Lemma 2.15 and inequality (3.3)
we obtain

log |ξ|v ≤ hv(N(J f))

≤ (n + 1) d hv(V ) + ((n + 1) hv + (n + 1) log(n + r + 1) d + n log d) deg V

+ (r + 1) (n + 1) log(n + r + 1) d deg V

≤ (n + 1) d hv(V ) + ((n + 1) hv + (r + 3) (n + 1) log(n + r + 1) d) deg V (3.5)

This implies that the right hand side of inequality (3.4) is non-negative. So the inequality also
holds for hv(Λm/N(J f)) , and thus for hv(q) .
The case v /∈ M∞

K is treated exactly in the same way. The obtained estimates do not involve any
constant terms with respect to hv , hv(g) and hv(V ) , in particular degt g does not appear in the
estimate. This follows simply from 1.2.
In this case, inequality (3.5) reads as follows:

log |ξ|v ≤ (n + 1) d hv(V ) + (n + 1) hv deg V. (3.6)

We remark that the election of ξ is independent of v , and so it can be done uniformly.
2

Remark 3.2 Let notations be as in the previous lemma. In case n = 0 we have the sharper
estimates

• deg q ≤ deg g ,

• hv(q) ≤ hv(g) + hv + 2 log(r + 1) deg g − log |ξ|v for v ∈ M∞
K ,

• hv(q) ≤ hv(g) + hv − log |ξ|v for v /∈ M∞
K .

Here ξ ∈ K∗ denotes any non-zero coefficient of f . The local height estimates follow from Lemma
1.2(d) and the fact that hv − log |ξ|v ≥ 0 .

3.2 An effective arithmetic Nullstellensatz

3.2.1 Estimates for the complete intersection case

The following result gives estimates for the degree and local height of the polynomials arising in
the Nullstellensatz over a number field K in case the input is a reduced weak regular sequence. It
is a direct consequence of the division lemma above.
These estimates depend mainly on the degree and height of the varieties successively cut out by
the input polynomials. They are quite flexible, and they apply to other situations as well, as we
will see in Chapter 4.
We recall that f1, . . . , fs ∈ K[x1, . . . , xn] is a weak regular sequence if fi+1 is not a zero-divisor
modulo the ideal (f1, . . . , fi−1) for i = 0, . . . , s − 1 . Furthermore, it is called reduced when all
these ideals are radical.
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Lemma 3.3 Let f1, . . . , fs ∈ K[x1, . . . , xn] be polynomials without common zeros in IAn which
form a reduced weak regular sequence. Assume that Vj := V (f1, . . . , fj) satisfies Assumption 1.5
for j = 1, . . . , s − 1 . Set d := maxi deg fi and hv := maxi hv(fi) for v ∈ MK . Assume also
n, d ≥ 2 .
Then there exist p1, . . . , ps ∈ K[x1, . . . , xn] and ξ ∈ K∗ such that

• 1 = p1 f1 + · · ·+ ps fs ,

• deg pi ≤ 2n d (1 +
∑min{n,s}−1

j=1 deg Vj) ,

• hv(pi) ≤ 2 n d
∑s−1

j=1 hv(Vj) + ((n+1) hv+2 n (2n+5) log(n+1) d ) (1+
∑s−1

j=1 deg Vj)−log |ξ|v
for v ∈ M∞

K ,

• hv(pi) ≤ 2 n d
∑s−1

j=1 hv(Vj) + (n + 1) hv (1 +
∑s−1

j=1 deg Vj)− log |ξ|v for v /∈ M∞
K .

Proof.– Set Ii := I(Vi) = (f1, . . . , fi) for i = 1, . . . , s − 1 . Also set f0 := 0 , V0 := V (f0) = IAn

and I0 := I(V0) = (0) . Finally set Ai := K[x1, . . . , xn−i] and Bi := K[Vi] = K[x1, . . . , xn]/Ii

for 0 ≤ i ≤ s− 1 . The fact that Vi satisfies Assumption 1.5 implies that the inclusion Ai ↪→ Bi

is integral.
We note that the sets of free and dependent variables of Bi have cardinality n− i and i respec-
tively. Also the set of dependent variables of Bj is contained in that of Bi for i ≤ j .
For f ∈ K[x1, . . . , xn] we denote by degx(i) f the degree of f in the dependent variables
xn−i+1, . . . , xn of Bi with respect to the integral inclusion Ai ↪→ Bi . For i ≤ j , the previ-
ous observation implies that degx(j) f ≤ degx(i) f .

Applying the Division Lemma 3.1, we will construct inductively polynomials p1, . . . , ps : first we
take ps such that

ps fs ≡ 1 (mod Is−1).

For 0 ≤ i ≤ s− 2 we assume that pi+2, . . . , ps are already constructed and we set

bi+1 := 1− (pi+2 fi+2 + · · ·+ ps fs).

Then fi+1 is a non-zero divisor and fi+1 | bi+1 in Bi . We apply again Division Lemma to obtain
pi+1 such that

pi+1 fi+1 ≡ bi+1 (mod Ii),

Continuing this procedure until i = 0 , we get 1 = p1 f1 + · · ·+ ps fs in K[x1, . . . , xn] .

Let us analyze degrees.
First we consider the case s ≤ n . Again we proceed by induction.
The estimates from the Division Lemma for As−1 := K[x1, . . . , xn−(s−1)] , g := 1 and f := fs

give degx(s−1) ps ≤ (s− 1) d ≤ (n− 1) d and deg ps ≤ (2 s− 1) d deg Vs−1.
Now let 1 ≤ i ≤ s− 2 . Then degx(i) pi+1 ≤ i d and

deg pi+1 ≤ deg bi+1 + (i d + max{(i + 1) d, degx(i) bi+1}) deg Vi.

where
degx(i) bi+1 ≤ max

j≥i+2
{degx(i) pj + deg fj} ≤ max

j≥i+2
degx(j−1) pj + d ≤ s d.

Applying recursively the previous inequality we obtain

deg pi+1 ≤ max
j≥i+2

deg pj + d + (s + i) d deg Vi

≤ (2 s− 1) d deg Vs−1 +
s−2∑

j=i

(d + (s + j) d deg Vj)

= (s− i− 1) d +
s−1∑

j=i

(s + j) d deg Vj .
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For i = 0 we have p1 | b1 and therefore deg p1 ≤ deg b1 ≤ maxj≥2 deg pj + d . Then for all i :

deg pi ≤ (s− 1) d +
s−1∑

j=1

(s + j) d deg Vj ≤ 2 nd (1 +
s−1∑

j=1

deg Vj).

Next we consider the case s = n + 1 . In this case Vs is a 0-dimensional variety and so

deg pn+1 = degx(n) pn+1 ≤ nd.

Let 1 ≤ i ≤ n − 1 . Then degx(i) pi+1 ≤ i d and, again we apply recursively the previous
inequality, and we get

deg pi+1 ≤ max
j≥i+2

deg pj + d + (n + 1 + i) d deg Vi

≤ nd +
n−1∑

j=i

(d + (n + 1 + j) d deg Vj)

= (2 n− i) d +
n−1∑

j=i

(n + 1 + j) d deg Vj .

We have also deg p1 ≤ deg b1 ≤ maxdegj≥2 deg pj + d . We conclude for all i :

deg pi ≤ 2 nd +
n−1∑

j=1

(n + 1 + j) d deg Vj ≤ 2 nd (1 +
n−1∑

j=1

deg Vj).

Finally we estimate the local height of these polynomials. In the rest of the proof we will make
repeated use of the following degree bounds:

degx(i−1) pi ≤ nd,

deg pi ≤ 2 nd (1 +
min{n,s}−1∑

j=i−1

deg Vj).

As usual, we concentrate in the case v ∈ M∞
K , the case v /∈ M∞

K can be treated analogously. We
apply the Division Lemma to As−1 := K[x1, . . . , xn−(s−1)] , g := 1 and f := fs and we obtain

hv(ps) ≤ s d hv(Vs−1) + (s hv + (n− (s− 1) + 6) (s + (s− 1)) log(n + 1) d) deg Vs−1 − log |ξs−1|v

for some ξs−1 ∈ K∗ .
Let 1 ≤ i ≤ s− 2 and set n0 := min{n, s} . Then there exists ξi ∈ K∗ such that

hv(pi+1) ≤ hv(bi+1) + (i d + max{d, degx(i) bi+1})hv(Vi)

+ ((i + 1) hv + (n− i + 6) log(n + 1) (i d + max{(i + 1) d, degx(i) bi+1})) deg Vi

+ 2 log(n− i + 1) deg bi+1 − log |ξi|v
≤ max

j≥i+2
hv(pj) + hv + log(n + 1) d + log(s− i) + (s + i) d hv(Vi) + (i + 1) hv deg Vi

+ (n− i + 6) (s + i) log(n + 1) d deg Vi + 2 log(n + 1) (2 nd (1 +
n0−1∑

j=i+1

deg Vj) + d)

− log |ξi|v.
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Applying the inductive hypothesis we obtain

hv(pi+1) ≤ s d hv(Vs−1) + d

s−2∑

j=i

(s + j)hv(Vj) + (s− i− 1)hv + hv

s−1∑

j=i

(j + 1) deg Vj

+ 4 (s− i− 1) (n + 1) log(n + 1) d + log(n + 1) d

s−1∑

j=i

(n− j + 6) (s + j) deg Vj

+ 4 n log(n + 1) d

n0−1∑

j=i+1

(j − i) deg Vj −
s−1∑

j=i

log |ξj |v.

For i = 0 we apply Remark 3.2: there exists ξ0 ∈ K∗ such that

hv(p1) ≤ hv(b1) + hv + 2 log(n + 1) deg b1 − log |ξ0|v

≤ max
j≥2

hv(pj) + 2 hv + log(n + 1) d + log s + 2 log(n + 1) (2 nd (1 +
n0−1∑

j=1

deg Vj) + d)

− log |ξ0|v.

We set ξ :=
∏s−1

j=0 ξj . As 2 ≤ s ≤ n + 1 we have

hv(p1) ≤ 2 nd

s−1∑

j=1

hv(Vj) + (n + 1) hv (1 +
s−1∑

j=1

deg Vj) + 4 n (n + 1) log(n + 1) d

+ log(n + 1) d

s−1∑

j=1

(n− j + 6) (n + 1 + j) deg Vj + 4 n log(n + 1) d

n0−1∑

j=1

j deg Vj − log |ξ|v

≤ 2 nd

s−1∑

j=1

h(Vj) + ((n + 1) hv + 2 n (2n + 5) log(n + 1) d) (1 +
s−1∑

j=1

deg Vj)− log |ξ|v.

This last inequality follows from the facts that 4n j + (n − j + 6) (j + s) ≤ 2 n (2n + 5) for
j ≤ n− 1, and 6 (2 n + 1) ≤ 2 n (2n + 5) as n ≥ 2 .
To conclude the proof, observe that for i = 1, . . . , s − 1 , inequality (3.5) guarantees that the
obtained estimate for pi differs from the one for pi+1 by a positive term. Thus, the same estimate
holds for hv(pi) , 1 ≤ i ≤ s .
The non-archimedean case is treated in exactly the same way. The conclusion of the proof comes
in this case from inequality (3.6). 2

By means of Bézout inequality, we can now estimate the degree and height of the varieties Vj .
In this way we obtain an estimate which only depends on the degree and height of the input
polynomials.

Corollary 3.4 Let notations and assumptions be as in Lemma 3.3, and assume n, d ≥ 2 . Then
there exist p1, . . . , ps ∈ K[x1, . . . , xn] and γ ∈ K∗ such that

• 1 = p1 f1 + · · ·+ ps fs ,

• deg pi ≤ 4n dn ,

• hv(pi) ≤ 4 n (n + 1) dn hv + 4 n (4n + 5) log(n + 1) dn+1 − log |γ|v for v ∈ M∞
K ,

• hv(pi) ≤ 4 n (n + 1) dn hv − log |γ|v for v /∈ M∞
K .
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Proof.– Let us first consider degrees. From the preceding result we obtain

deg(pi) ≤ 2 nd (1 +
min{n,s}−1∑

j=1

deg Vj) ≤ 2 nd (1 + · · ·+ dn−1) ≤ 4 ndn

Here we applied the inequality 1 + . . . + dn−1 ≤ 2 dn−1 to obtain the last estimate.
Next we consider the local height estimates. Let v ∈ M∞

K . We have

hv(pi) ≤ 2 nd

s−1∑

j=1

hv(Vj) + ((n + 1) hv + 2 n (2 n + 5) log(n + 1)d ) (1 +
s−1∑

j=1

deg Vj)− log |ξ|v

for some ξ ∈ K∗ . Applying Corollary 2.10, hv(Vj) ≤ j dj−1 hv + (n + j) log(n + 1) dj − log |λj |v
for some λj ∈ K∗ . Therefore

hv(pi) ≤ 2 nd

s−1∑

j=1

(j dj−1 hv + (n + j) log(n + 1) dj − log |λj |v)

+ ((n + 1) hv + 2 n (2n + 5) log(n + 1) d )
n∑

j=0

dj − log |ξ|v

≤ 4 n2 dn hv + 8 n2 log(n + 1) dn+1

+ 2 (n + 1) dn hv + 4 n (2 n + 5) log(n + 1) dn+1 − 2 nd

s−1∑

j=1

log |λj |v − log |ξ|v

≤ 4 n (n + 1) dn hv + 4 n (4n + 5) log(n + 1) dn+1 − log |γ|v,

where γ ∈ K∗ is defined as γ := ξ
∏s−1

j=1 λ2 n d
j .

The case v /∈ M∞
K follows analogously:

hv(pi) ≤ 2 nd

s−1∑

j=1

hv(Vj) + (n + 1) hv (1 +
s−1∑

j=1

deg Vj)− log |ξ|v.

We have hv(Vj) ≤ j dj−1 hv − log |λj |v , and therefore

hv(pi) ≤ 2 nd

s−1∑

j=1

(j dj−1 hv − log |λj |v) + (n + 1) hv

n∑

j=0

dj − log |ξ|v

≤ 4 n (n + 1) dn hv − log |γ|v,

2

3.2.2 Proof of Theorem 1

In order to prove Theorem 1, it only remains to put the general case into the hypothesis of
Corollary 3.4. This is accomplished by replacing the input polynomials and variables by generic
linear combinations. The coefficients of the linear combinations will be chosen to be roots of 1.
Amazingly enough, we do not need any control on the degree of the involved finite extension.

Let L be a finite extension of K , and let B := {e1, . . . , eN} be a basis of L as a K -linear space.
We recall that B∗ := {e∗1, . . . , e∗N} is the dual basis of B if TrL

K(ei e∗j ) = 1 for i = j and 0
otherwise.

Lemma 3.5 Let ω ∈ Q be a primitive p -root of 1 for some prime p . Then the basis B∗ :=
{ (ω−j − ω) / p : j = 0, . . . , p− 2 } of Q(ω) is dual to B := {ωi : i = 0, . . . , p− 2 } .
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Proof.– A direct computation shows that for i, j = 0, . . . , p− 2

Tr(ωi (ω−j − ω)) =
p−1∑

l=1

ωl i (ω−l j − ωl) =

{
p, for i = j,

0, for i 6= j.

2

We will use this result in the following way: let ω be a primitive p -root of 1 and set L := K(ω) . Let
us assume that Q(ω) and K are linearly independent and that p does not divide the discriminant
of K . Both conditions are satisfied by all but a finite number of p . Then [L : K] = p − 1 and
OL = OK [ω] [36, Ch. III, Prop. 17].
Now, let ν ∈ OL \ {0} . By the preceding lemma

ν =
1
p

Tr(ν (1− ω)) + · · ·+ 1
p

Tr(ν (ω2−p − ω)) ω2−p ∈ OK [ω] \ {0}

and so there exists 0 ≤ j ≤ p− 2 such that Tr(ν (ω−j − ω)) / p ∈ OK \ {0} .

Theorem 3.6 (Effective arithmetic Nullstellensatz)
Let K be a number field and let f1, . . . , fs ∈ OK [x1, . . . , xn] be polynomials without common zeros
in IAn . Set d := maxi deg fi and h := h(f1, . . . , fs) .
Then there exist a ∈ OK \ {0} and g1, . . . , gs ∈ OK [x1, . . . , xn] such that

• a = g1 f1 + · · ·+ gs fs ,

• deg gi ≤ 4 n dn ,

• h(a, g1, . . . , gs) ≤ 4 n (n + 1) dn (h + log s + (n + 7) log(n + 1) d).

Theorem 1 in the Introduction corresponds to the case K := Q .

The extremal cases n = 1 and d = 1 are both simple. We treat them directly in the following
lemmas:

Lemma 3.7 Let `1, . . . , `s ∈ OK [x1, . . . , xn] be polynomials of degree bounded by 1 without com-
mon zeros in IAn . Set h := h(`1, . . . , `s) .
Then there exist a ∈ OK \ {0} and a1, . . . , as ∈ OK such that

• a = a1 `1 + · · ·+ as `s ,

• h(a, a1, . . . , as) ≤ (n + 1) (h + log(n + 1)) .

Proof.– Equation a = a1 `1 + · · ·+ as `s is equivalent to a OK -linear system of n + 1 equations
in s unknowns. The height estimate follows then from application of Cramer rule.

2

Lemma 3.8 Let f1, . . . , fs ∈ OK [x] be polynomials without common zeros in IA1 . Set d :=
maxi deg fi and h := h(f1, . . . , fs) .
Then there exist a ∈ OK \ {0} and g1, . . . , gs ∈ OK [x] such that

• a = g1 f1 + · · ·+ gs fs ,

• deg gi ≤ d− 1 ,

• h(a, g1, . . . , gs) ≤ 2 d (h + d) .

41



Proof.– Let f :=
∑

i ai fi, g :=
∑

i bi fi ∈ K[x] be generic linear combinations of f1, . . . , fs .
Then f and g are coprime polynomials, and so there exist p, q ∈ K[x] with deg p < deg g and
deg q < deg f such that 1 = p f + q g.
Expanding this identity we see that there exist p1, . . . , ps ∈ K[x] with deg pi ≤ d− 1 such that

1 = p1 f1 + · · ·+ ps fs.

Thus the above Bézout identity translates to a consistent system of K -linear equations. The
number of equations and variables equal 2 d and s d respectively. This system can be solved by
Cramer rule. The integer a is the determinant of a non-singular 2 d×2 d− submatrix of the matrix
of the linear system. 2

Proof of Theorem 3.6.– We assume n, d ≥ 2 .
Let Gp ⊂ Q denote the group of p -roots of 1, for a prime p . For aij ∈ Gp and i = 1, . . . , min{n+
1, s} we set

qi := ai 1 f1 + . . . + ai s fs.

Also, for bkl ∈ Gp and k = 1, . . . , n we set

yk := bk 0 + bk 1 x1 + · · ·+ bk n xn.

We will assume that for a specific choice of p , aij and bkl there exists t ≤ min{n + 1, s}
such that (q1, . . . , qi) ⊂ K[x1, . . . , xn] is a radical ideal of dimension n − i for i = 1, . . . , t − 1
and 1 ∈ (q1, . . . , qt) . We also assume that y1, . . . , yn is a linear change of variables, and that
Vi := V (q1, . . . , qi) ⊂ IAn satisfies Assumption 1.5 for i = 1, . . . , t−1 with respect to y1, . . . , yn−i .
This is guaranteed by the fact that these conditions are generically satisfied: there exists a hy-
persurface H of the coefficient space such that (ai j , bk l) /∈ H implies that q1, . . . , qs satisfy the
stated conditions with respect to the variables y1, . . . , yn (see for instance [17, Thm. 3.5 and Thm.
3.7.2] [19, Section 3.2 ], [50, Prop. 18 and Proof of Thm. 19]). As ∪pGp is Zariski dense in IA1 , it
follows that these coefficients can be chosen to lie in Gp for some p . Moreover, p can be chosen
such that for ω a primitive p -root of 1 and L := K(ω) , Q(ω) and K are linearly independent
and p does not divide the discriminant of K .
We also refer the reader to Section 4.1, where we give a self-contained treatment of this topic.

Set b := (bk 0)k ∈ Gn
p and B := (bk l)k,l≥1 ∈ GLn(Q) , so that x = B−1(y− b) . For j = 1, . . . , t

set
Fj(y) := qj(B−1(y − b)) ∈ L[y1, . . . , yn].

Then F1, . . . , Ft satisfy the hypothesis of Corollary 3.4. Let γ ∈ L∗ and P1, . . . , Pt ∈ L[y1, . . . , yn]
be the non-zero element and the polynomials satisfying Bézout identity we obtain there.
Now, for i = 1, . . . , s , set

pi :=
t∑

j=1

ai j Pj(B x + b) ∈ L[x1, . . . , xn]

so that 1 = p1 f1 + · · ·+ ps fs holds.
Finally set µ := (det B)4 n (n+1) dn+1

γ ∈ L∗ . By Lemma 3.5 there exists 0 ≤ ` ≤ p − 2 such
that Tr(µ (ω−` − ω)) 6= 0 .
We define

a := Tr(µ (ω−` − ω))/p ∈ K∗ , gi := Tr(µ pi (ω−` − ω))/p ∈ K[x1, . . . , xn]

for i = 1, . . . , s .
Then

a = g1 f1 + · · ·+ gs fs
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as f1, . . . , fs ∈ K[x1, . . . , xn] and Tr is a K -linear map.
Aside from the degree and height bounds, we will show that since f1, . . . , fs ∈ OK [x1, . . . , xn] ,
a ∈ OK and gi ∈ OK [x1, . . . , xn] .

Let us first analyze degrees and local heights.
As deg Fj ≤ d , deg gi ≤ deg pi ≤ maxj deg Pj ≤ 4 ndn .
Now let v ∈ M∞

K and let w ∈ ML such that w | v . We have hw(B−1 (y − b)) ≤ n log n −
log | detB|w and so

hw(Fj) ≤ hw(qj) + (n log n− log |det B|w + 2 log(n + 1)) d

≤ hv + log s + (n + 2) log(n + 1) d− log |det B|w d

by Lemma 1.2(c). ¿From Corollary 3.4

hw(Pj) ≤ 4n (n + 1) dn max
k

hw(Fk) + 4n (4n + 5) log(n + 1) dn+1 − log |γ|w

≤ 4n (n + 1) dn(hv + log s + (n + 2) log(n + 1) d− log | detB|w d)

+ 4 n (4n + 5) log(n + 1) dn+1 − log |γ|w
= 4 n (n + 1) dn (hv + log s) + 4n (n2 + 7 n + 7) log(n + 1) dn+1 − log |µ|w.

Therefore

hw(µ pi) ≤ max
j

hw(Pj) + 2 log(n + 1) max
j

deg Pj + log t + log |µ|w
≤ 4 n (n + 1) dn (hv + log s) + 4 n (n2 + 7 n + 7) log(n + 1) dn+1

+8 n log(n + 1) dn + log(n + 1)

≤ 4 n (n + 1) dn (hv + log s + (n + 7) log(n + 1) d)− log 2 (3.7)

again by Lemma 1.2(c) and the fact d, n ≥ 2 . We have

gi =
1
p

Tr(µ pi (ω−` − ω)) =
1
p

∑

σ∈GalL/K

σ(µ pi (ω−` − ω))

and so

hv(gi) ≤ max
w | v

hw(µ pi) + log 2

≤ 4 n (n + 1) dn (hv + log s + (n + 7) log(n + 1) d).

We have hw(µ) ≤ 4 n (n+1) dn (hv +log s)+4 n (n2 +7n+7) log(n+1) dn+1 and so the previous
estimate also holds for hv(a) .
Now let v /∈ M∞

K and w | v . Analogously we have

hw(µ), hw(µ pi) ≤ 4 n (n + 1) dn hv = 0

as f1, . . . , fs ∈ OK [x1, . . . , xn] . Then µ ∈ OL \ {0} and µ pi ∈ OL[x1, . . . , xn] , which in term
implies that a ∈ OK \ {0} and gi ∈ OK [x1, . . . , xn] as desired.
The global height estimate follows then from the expression

h(a, g1, . . . , gs) =
1

[K : Q]

∑

v∈M∞
K

Nv max{hv(a), hv(g1), . . . , hv(gs)}.

2
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Remark 3.9 The fact that the bound (3.7) is uniform on w for w | v is the key that allows us
to get rid of the roots of 1. This will no longer be the case in our treatment of the more refined
arithmetic Nullstellensätze in Chapter 4.

The following example improves the lower bound for a general height estimate given in the intro-
duction, and thus shows that the term dnh is unavoidable.

Example 3.10 Set

f1 := x1 −H, f2 := x2 − xd
1, . . . , fn := xn − xd

n−1, fn+1 := xd
n

for any positive integers d, H . These are polynomials without common zeros in IAn of degree and
height bounded by d and h := log H respectively.
Let a ∈ ZZ \ {0} and g1, . . . , gn+1 ∈ ZZ[x1, . . . , xn] such that a = g1 f1 + · · · + gn+1 fn+1 . We
evaluate this identity in (H, Hd, · · · ,Hdn−1

) and we obtain

a = gn+1(H,Hd, · · · , Hdn−1
) Hdn

from where we deduce h(a) ≥ dn h .

4 Intrinsic type estimates

Theorem 1 is essentially optimal in the general case. There are however many particular instances
in which these estimates can be improved. Consider the following example:

f1 := x1 − 1, f2 := x2 − xd
1, . . . , fn := xn − xd

n−1, fn+1 := H − xd
n

for any positive integers d and H . These are polynomials without common zeros in IAn of degree
and height bounded by d and h := log H respectively. Theorem 1 says there exist a ∈ ZZ \ {0}
and g1, . . . , gn+1 ∈ ZZ[x1, . . . , xn] such that

a = g1 f1 + · · ·+ gn+1 fn+1

with deg gi ≤ 4 ndn and h(a), h(gi) ≤ 4 n (n + 1) dn (h + (n + 7) log(n + 1) d) . However the
following Bézout identity holds:

H − 1 =
xd

1 − 1
x1 − 1

· · · x
d
n − 1

xn − 1
f1 + · · ·+ xd

n − 1
xn − 1

fn + fn+1.

Note that the polynomials arising in this identity have degree and height bounded by n (d − 1)
and h respectively.
There is in this case an exponential gap between the a priori general estimates and the actual ones.
The explanation is somewhat simple: for i = 1, . . . , n , the varieties

Vi := V (f1, . . . , fi) = V (x1 − 1, x2 − 1, . . . , xi − 1) ⊂ IAn,

verify deg(Vi) = 1 and h(Vi) ≤ 2 n log(n + 1) . Namely, both the degree and the height of the
varieties successively cut out by the input polynomials are much smaller than the corresponding
Bézout estimate.
As the varieties Vi verify the assumptions of Lemma 3.3, a direct application together with Lemma
1.3 produces the more realistic estimates:

deg gi ≤ 2 n2 d , h(a), h(gi) ≤ (n + 1)2(h + 8 n log(n + 1) d).

Based on this idea, we devote this chapter to the study of more refined arithmetic Nullstellensätze
which can deal with such situations.
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4.1 Equations in general position

This section deals with the preparation of the input data. To apply Lemma 3.3, we need to prepare
the polynomials and the variables of the ambient space.
Let f1, . . . , fs ∈ K[x1, . . . , xn] be polynomials without common zeros in IAn . For i = 1, . . . , s
and ai j ∈ ZZ we set

qi := ai 1 f1 + · · ·+ ai s fs.

We will estimate the height of rational integers aij in order that there exists t ≤ min{n + 1, s}
such that (q1, . . . , qi) ⊂ K[x1, . . . , xn] is a radical ideal of dimension n− i for i = 1, . . . , t− 1 and
1 ∈ (q1, . . . , qt) .
Also we set

yk := bk 0 + bk 1 x1 + · · ·+ bk n xn

for k = 1, . . . , n and bk l ∈ ZZ . Again we want to estimate the height of rational integers bkl such
that Vi := V (q1, . . . , qi) ⊂ IAn satisfies Assumption 1.5 with respect to this set of variables for
i = 1, . . . , t− 1 . Namely, the projection

πi : Vi → IAn−i , x 7→ (y1, . . . , yn−i)

must verify #π−1
i (0) = deg Vi , that is # Vi ∩ V (y1, · · · , yn−i) = deg Vi for i = 1, . . . , t − 1 .

Lemma 2.14 implies that the variables y1, . . . , yn−i are in Noether normal position with respect
to Vi .
It is well-known that these conditions are satisfied by a generic election of aij and bkl , see for
instance [19, Section 3.2] and [50, Prop. 18 and Proof of Thm. 19]).
We have already applied such a preparation to obtain the classic style version of the effective
arithmetic Nullstellensatz presented in Theorem 3.6. There, we chose roots of 1 as coefficients of
the linear combinations since their existence was sufficient in our proof. However, technical reasons
(see Remark 3.9) prevent us to apply the same principle in this chapter, and we need to carry out
a more careful analysis.
We note that all aspects of this preparation were previously covered in the research papers [2,
Section 4], [19, Section 3.2], [32, Section 6], [22, Section 5.2]. However the bounds presented
therein are either non-explicit or not precise enough for our purposes. Here we chose to give a
self-contained presentation, which yields another proof of the existence of such linear combinations.
The obtained estimates substantially improve the previously known ones.

4.1.1 An effective Bertini theorem

This subsection is devoted to the preparation of the polynomials. We will first establish some
auxiliary results.
The following is a version of the so-called shape lemma representation of a 0-dimensional radical
ideal. The main difference here is that we choose a generic linear form — instead of a particular
one — as a primitive element.
For a polynomial f = cD tD + · · ·+c0 ∈ k[t] we denote its discriminant by discr(f) ∈ k . We recall
that discr (f) 6= 0 if and only if cD 6= 0 and f is squarefree, that is f has exactly D distinct
roots.

Lemma 4.1 (Shape Lemma)
Let V ⊂ IAn be a 0-dimensional variety defined over k . Let U := (U0, . . . , Un) be a group of
n + 1 variables, and set L := U0 + U1 x1 + · · ·+ Un xn for the associated generic linear form.
Let P := PV ∈ k[U ][T ] be a characteristic polynomial of V . Set P ′ := ∂P/∂T ∈ k[U ][T ] and
ρ := discrT P ∈ k[U ] \ {0} . Also set I for the extension of I(V ) to k[U ][x] .
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Then there exist v1, . . . , vn ∈ k[U ][T ] with deg vi ≤ deg V − 1 such that

Iρ = (P (L), P ′(L)x1 − v1(L), . . . , P ′(L) xn − vn(L))ρ ⊂ k[U ]ρ[x].

Here Iρ denotes the localization of I at ρ .

Proof.– We note first that I(V ) is a radical ideal, and so I = k[U ] ⊗k I(V ) is also radical. We
readily obtain from the definition of P := PV that I ∩ k[U ][L] = (P (L)) , and so P (L) ∈ I .
We can write P (L) =

∑
α aα(x)Uα with aα(x) ∈ I(V ) . Therefore ∂P (L)/∂Ui also lies in I for

all i . A direct computation shows that for i = 1, . . . , n

∂P (L)/∂Ui = P ′(L)xi − vi(L)

for some vi ∈ k[U ][T ] with deg vi ≤ deg P − 1 = deg V − 1 .
Set

J := (P (L), P ′(L) x1 − v1(L), . . . , P ′(L)xn − vn(L)) ⊂ k[U ][x].

The previous argument shows the inclusion I ⊃ J .

On the other hand, ρ = AP +B P ′ for some A, B ∈ k[U ][T ] . Set wi := B vi . Then xi ≡ wi(L)/ρ
(mod Jρ) and so for every f ∈ k[U ][x] we have that f ≡ f(U,w1(L)/ρ, . . . , wn(L)/ρ) modulo
Jρ , and hence modulo Iρ .
For f ∈ I ,

ρdeg f f(U,w1(L)/ρ, . . . , wn(L)/ρ) ∈ I ∩ k[U ][L] = (P (L))

which implies Iρ ⊂ Jρ as desired. 2

Let ν ∈ kn+1 such that ρ(ν) 6= 0 . It follows that I(V ) can be represented as

I(V ) = (P (L), P ′(L) x1 − v1(L), . . . , P ′(L)xn − vn(L))(ν) ⊂ k[x].

Now let f1, . . . , fs ∈ k[x1, . . . , xn] be polynomials without common zeros in IAn . For i = 1, . . . , s
we let Zi := (Zi1, . . . , Zis) denote a group of s variables, and we set

Qi := Zi1 f1 + · · ·+ Zis fs ∈ k[Z][x]

for the associated generic linear combination of f1, . . . , fs .

Lemma 4.2 For ` = 1, . . . , s , the ideal (Q1, . . . , Q`) is a complete intersection prime ideal of
k[Z][x] .

Proof.– Set I := (Q1, . . . , Q`) and V := V (I) ⊂ IAs` × IAn . First we observe that V is a linear
bundle over IAn : the projection

π : V → IAn , (z, x) 7→ x

is surjective, and the fibers are affine spaces of dimension (s−1) ` . This follows from the assumption
that the fj have no common zeros. This implies that

dim V = (s− 1) ` + n

because of the theorem of dimension of fibers. Namely Q1, . . . , Q` is a complete intersection, and
in particular the ideal I is unmixed.
Set I = I1 ∩ . . . ∩ Im for the primary decomposition of this ideal. We will show that Ij is prime
for all j , and then that m = 1 .
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First we have that Ifj = (Q1/fj , . . . , Q`/fj) = (Z1j + H1j , . . . , Z`j + H`j) where Hij ∈ k[Zi][x]fj

does not depend on Zij . Therefore

(k[IAs` × IAn]/I)fj
∼= k[IA(s−1)` × IAn]fj

is a domain, that is Ifj
is prime. We have Ifj

= (I1)fj
∩ . . . ∩ (Im)fj

, and so there exists
1 ≤ n(j) ≤ m such that

Ifj = (In(j))fj , V (Ii) ⊂ {fj = 0} for i 6= n(j).

In particular In(j) = Ifj
∩ k[IAs` × IAn] is prime. The fact that ∩j{fj = 0} = ∅ ensures that

n(j) runs over all 1 ≤ i ≤ m , and so I is radical.
The expression Ifj = (Z1j + H1j , . . . , Z`j + H`j) implies that π(V (Ifj )) ⊂ IAn contains the dense
open set {fj 6= 0} . In particular V (Ifj

) is not contained in any of the hypersurfaces {fi = 0}
and so n(j) = n(1) for all j . This implies that m = 1 , and so I = I1 is prime. 2

The following proposition shows that (Q1(a1), . . . , Q`(a`)) is a radical ideal for a generic election
of ai := (ai1, . . . , ais) . Unlike Lemmas 4.1 and 4.2, this result does note hold for arbitrary
characteristic. For instance let xp, 1− xp ∈ IFp[x] for some prime p . Then Q1(a1) = b + c xp for
some b, c ∈ IFp and so

Q1(a1) = (b1/p + c1/p x)p

is not squarefree.

Proposition 4.3 Let char (k) = 0 and set I := (Q1, . . . , Q`) ⊂ k[Z][x] .

• In case I ∩ k[Z] 6= {0} there exists F ∈ k[Z] \ {0} with deg F ≤ (d + 1)` such that
F (a1, . . . , a`) 6= 0 for a1, . . . , a` ∈ ks implies that 1 ∈ (Q1(a1), . . . , Q`(a`)) .

• In case I ∩ k[Z] = {0} there exists F ∈ k[Z] \ {0} with deg F ≤ 2 (d + 1)2 ` such that
F (a1, . . . , a`) 6= 0 for a1, . . . , a` ∈ ks implies that (Q1(a1), . . . , Q`(a`)) ⊂ k[x] is a radical
ideal of dimension n− ` .

Proof.– Set V := V (I) ⊂ IAs` × IAn . We have dimV = (s− 1) ` + n and deg V ≤ (d + 1)` .

First we consider the case I ∩ k[Z] 6= {0} . This occurs, for instance, when ` ≥ n + 1 , since then
dim I = s ` + n− ` < dim k[Z] = s ` .
Let π : IAs` × IAn → IAs` be the canonical projection. Then π(V ) is a proper subvariety of IAs` ,
and thus it is contained in a hypersurface of degree bounded by deg V . This can be seen by taking
a generic projection of this variety into an affine space of dimension s ` + n − ` + 1 [23, Remark
4]. Let F ∈ k[Z] be a defining equation of this hypersurface. Then F ∈ I as I is prime, and we
have deg F ≤ (d + 1)` . Thus

1 ∈ IF ⊂ k[Z]F [x],

and therefore 1 ∈ I(a) := (Q1(a1), . . . , Q`(a`)) for a ∈ ks` such that F (a) 6= 0 .

Next we consider the case I ∩ k[Z] = {0} .
We adopt the following convention: for an ideal J ⊂ k[x] and for ζ any new group of variables,
we denote by J [ζ] and J (ζ) the extension of J to the polynomial rings k[ζ][x] and k(ζ)[x]
respectively.
We assume for the moment ` = n . Then dim I = s ` and so the extended ideal I(Z) ⊂ k(Z)[x]
is a 0-dimensional prime ideal. We have then that k(Z) ⊗k I(Z) ⊂ k(Z)[x] is a radical ideal, as
char (k) = 0 [44, Thm. 26.3].
Our approach to this case is based on Shape Lemma 4.1. We will determine a polynomial F ∈ k[Z]
such that F (a) 6= 0 implies that the shape lemma representation of I(Z) can be transferred to a
shape lemma representation of I(a) .
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Let U be a group of n + 1 variables and set
L := U0 + U1 x1 + · · ·+ Un xn for the associated generic linear form. Consider the morphism

Ψ : IAn+1 × IAs` × IAn → IAn+1 × IAs` × IA1 , (u, z, x) 7→ (u, z, L(x)).

and let W be the variety defined by I in IAn+1× IAs`× IAn , that is W = IAn+1×V . The Zariski
closure Ψ(W ) is then an irreducible hypersurface. We set P ∈ k[U,Z][T ] for one of its defining
equations.
If I [U ](Z) is the extension of I(Z) to k[U ](Z)[x] , the polynomial P can be equivalently defined
through the condition that P (L) is a generator of the principal ideal I [U ](Z)∩k[U,Z][L] . Namely,
P is a characteristic polynomial of the 0−dimensional variety W0 defined by I(Z) in IAn(k(Z)) .
Let v1, . . . , vn ∈ k[U ](Z)[T ] denote the polynomials arising in Shape Lemma applied to W0 . From
the proof of this lemma we have that

∂P (L)/∂Ui = P ′(L)xi − vi(L) ∈ k[U,Z][L]

and so vi ∈ k[U,Z][T ] . Set J := (P (L), P ′(L) x1 − v1(L), . . . , P ′(L)xn − vn(L)) ⊂ k[U,Z][x] and
ρ := discrT P ∈ k[U,Z] \ {0} . Then

(I [U ](Z))ρ = (J [U ](Z))ρ ⊂ k[U ](Z)ρ[x].

We have that both I
[U,Z]
ρ and J

[U,Z]
ρ are prime ideals of k[U,Z]ρ[x] with trivial intersection with

the ring k[U,Z] . Thus they coincide with the contraction of I
[U ](Z)
ρ and J

[U ](Z)
ρ to k[U,Z]ρ[x]

respectively, and so
I [U,Z]
ρ = J [U,Z]

ρ ⊂ k[U,Z]ρ[x].

Define F ∈ k[Z] \ {0} as any of the non-zero coefficients of the monomial expansion of ρ with
respect to U . Let a ∈ ks` such that F (a) 6= 0 . Then ρ(U, a) 6= 0 and so P (U, a)[T ] is squarefree.
Then

(I(a)[U ])ρ(U,a) = (P (L), P ′(L) x1 − v1(L), . . . , P ′(L)xn − vn(L))(a) ⊂ k[U ][x]

is radical, which implies in turn that I(a) = (I(a)[U ])ρ(U,a) ∩ k[x] is a radical ideal of k[x] as
desired.
It remains to estimate the degree of F . To this end, it suffices to bound the degree of ρ with
respect to the group of variables Z . We recall that P was defined as a defining equation of the
hypersurface Ψ(W ) . The map Ψ is linear in the variables Z and x , and so

degZ P ≤ deg W = deg V ≤ (d + 1)n.

This implies that deg F ≤ degZ ρ ≤ degZ P (2 degZ P − 1) ≤ 2 (d + 1)2n .

Finally we consider the case ` < n for I ∩ k[Z] = {0} .
Let U1, . . . , Un−` be groups of n + 1 variables each, and set

Li := Ui 0 + Ui 1 x1 + · · ·+ Ui n xn.

for i = 1, . . . , n − ` . Set U := (U1, . . . , Un−`) , L := (L1, . . . , Ln−`) and k0 := k(U,L) . The
extended ideal I0 ⊂ k0[Z][x1, . . . , x`] verifies I0 ∩ k0[Z] = {0} and thus falls into the previously
considered case.
Thus there exists F0 ∈ k0[Z] \ {0} with deg F0 ≤ 2 (d + 1)2` such that F0(a) 6= 0 for a ∈ ks`

implies that I0(a) is a radical ideal of k0[Z][x1, . . . , x`] . This implies in turn that I(a) is a radical
ideal of k[x] , as

I(a) = I0(a) ∩ k[x].

We can assume without loss of generality that F0 lies in k[U,L][Z] . We conclude by taking F as
any non-zero coefficient of the monomial expansion of F0 with respect to the variables U and L .
2
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Corollary 4.4 Let char (k) = 0 , and let f1, . . . , fs ∈ k[x1, . . . , xn] be polynomials without com-
mon zeros in IAn . Set d := maxi deg fi .
Then there exist t ≤ min{n + 1, s} and a1, . . . , at ∈ ZZs such that

• (Q1(a1), . . . , Qi(ai)) is a radical ideal of dimension n− i for 1 ≤ i ≤ t− 1 ,

• 1 ∈ (Q1(a1), . . . , Qt(at)) ,

• h(ai) ≤ 2 (n + 1) log(d + 1) .

Proof.– Set t for the minimal i such that Ii := (Q1, . . . , Qi) ∩ k[Z] 6= {0} . Then t ≤ n + 1 , and
by the previous result there exists Ft ∈ k[Z] with deg Ft ≤ (d + 1)t such that Ft(a) 6= 0 implies
that 1 ∈ (Q1(a1), . . . , Qt(at)) .
On the other hand, for i < t we take a polynomial Fi ∈ k[Z] of degree bounded by 2 (d + 1)2 i

such that Fi(a) 6= 0 implies that (Q1(a1), . . . , Qi(ai)) is a radical ideal of dimension n− i . Then
we take F := F1 · · ·Ft and so

deg F ≤ 2 (d + 1)2 + · · ·+ 2 (d + 1)2(t−1) + (d + 1)t

≤ (d + 1)2n + 2 (d + 1)2n + (d + 1)n+1

≤ 4 (d + 1)2n.

Finally, F 6= 0 implies there exist a1, . . . , at ∈ ZZs such that h(ai) ≤ log(deg F ) and F (a) 6= 0 .
2

4.1.2 Effective Noether normal position

Now we devote to the preparation of the variables. For k = 0, . . . , n we let Uk := (Uk0, . . . , Ukn)
be a group of n + 1 variables and we set

Yk := Uk 0 + Uk 1 x1 + · · ·+ Uk n xn.

Proposition 4.5 Let V ⊂ IAn be an equidimensional variety of dimension r defined over k .
Then there exists G ∈ k[U1, . . . , Ur] \ {0} with degUk

G ≤ 2 (deg V )2 such that G(b1, . . . , br) 6= 0
for b1, . . . , br ∈ kn+1 implies that

# V ∩ V (Y1(b1), . . . , Yr(br)) = deg V.

Proof.– Let fV be a Chow form of V and PV ∈ k[U, T ] be the characteristic polynomial of V
associated to fV given by Lemma 2.13.
Set D := deg V and let PV = cD TD

0 + · · ·+ c0 be its expansion with respect to T0 . Also set

ρ := discrT0PV ∈ k[U0, . . . , Ur][T1, . . . , Tr] \ {0}

for the discriminant of PV with respect to T0 .
Observe that as PV is multihomogeneous of degree D in each group of variables Ui ∪ {Ti} , the
degree of ρ in each of these group of variables is bounded by D (2D − 1) .
Now let ν1, . . . , νr ∈ k

n+1
such that V (ν) := V ∩V (Y1(ν1), . . . , Yr(νr)) is a 0 -dimensional variety

of cardinality D , and fV (ν) be a Chow forms of V (ν) .
Set ζ0 := (T0 − U00, U01. . . . , U0n) . Then applying [47, Prop. 2.4], there exists λ ∈ k∗ such that:

PV (U0, ν1, . . . , νr)(T0, 0, . . . , 0) = fV (ζ0(U0, T0), ν1, . . . , νr) = λ fV (ν)(ζ0(U0, T0)) = λPV (ν)(U0)(T0)

where PV (ν) is a characteristic polynomial of V (ν) .
This implies PV (U)(T0, 0, . . . , 0) ∈ k[U ][T0] is a squarefree polynomial and so ρ(U)(0) 6= 0 .
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We take G ∈ k[U1, . . . , Ur] as any non-zero coefficient of the expansion of ρ(U)(0) with respect
to U0 . Therefore

deg G ≤ degUi
ρ(U)(0) ≤ D (2D − 1).

The condition G(b) 6= 0 implies that ρ(U0, b1, . . . , br)(0) 6= 0 , and so #V (b) = D . 2

As we noted before, this implies that the variables Y1(b1), . . . , Yr(br) are in Noether normal position
with respect to the variety V .

Corollary 4.6 Let char (k) = 0 and let q1, . . . , qt ∈ k[x1, . . . , xn] be polynomials without common
zeros in IAn which form a reduced weak regular sequence. Set d := maxi deg fi .
Then there exist b1, . . . , bn ∈ ZZn+1 such that V (q1, . . . , qi) satisfies Assumption 1.5 with respect
to the variables Y1(b1), . . . , Yn−i(bn−i) for i = 1, . . . , t , and

h(bk) ≤ 2 (n + 1) log(d + 1).

Proof.– This follows readily from the previous result. We take Gi as the polynomial corresponding
to the variety V (q1, . . . , qi) and we set G := G1 · · ·Gt−1 ∈ k[U1, . . . , Un] . We have degUj

Gi ≤
2 d2 i and so

degUj
G ≤ 2 d2 + · · ·+ 2 d2 (t−1) ≤ 4 d2 (t−1) ≤ 4 d2 n.

We conclude by taking b1, . . . , bn ∈ ZZn+1 such that h(bi) ≤ log(deg G) and G(b) 6= 0 . 2

4.2 An intrinsic arithmetic Nullstellensatz

In this section we introduce the notions of degree and height of a polynomial system defined over a
number field K . Modulo setting the input equations in general position, these parameters measure
the degree and height of the varieties successively cut out.
The resulting estimates for the arithmetic Nullstellensatz are linear in these parameters. As an
important particular case, we derive a sparse arithmetic Nullstellensatz.

4.2.1 Intrinsic parameters

Let f1, . . . , fs ∈ K[x1, . . . , xn] be polynomials of degree bounded by d without common zeros in
IAn . For i = 1, . . . , s we let Zi denote a group of s variables and we set

Qi(Z) := Zi1 f1 + · · ·+ Zis fs ∈ K[Z][x]

for the associated generic linear combination of f1, . . . , fs .
Let Γ be the set of integer s × s−matrices a = (aij)ij ∈ ZZs×s of height bounded by 2 (n +
1) log(d + 1) such that

Ii(a) := (Q1(a1), . . . , Qi(ai)) ⊂ K[x1, . . . , xn]

is a radical ideal of dimension n− i for i = 1, . . . , t− 1 and 1 ∈ It(a) for some t ≤ min{n+1, s} .
Corollary 4.4 implies that Γ 6= ∅ .
For a ∈ Γ we set

δ(a) := max {deg V (Ii(a)) ; 1 ≤ i ≤ min{t, n} − 1 },
η(a) := max {h(V (Ii(a))) ; 1 ≤ i ≤ t− 1 }.

We set Γmin ⊂ ZZs×s for the subset of matrices a ∈ Γ such that η(a) + d δ(a) is minimum.
Finally let amin ∈ Γmin be a matrix which attains the minimum of δ(a) for a ∈ Γmin .
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Definition 4.7 Let notations be as in the previous paragraph. Then we define the degree and the
height of the polynomial system f1, . . . , fs respectively as

δ(f1, . . . , fs) := δ(amin) , η(f1, . . . , fs) := η(amin).

We restrict ourselves to integer matrices of bounded height in order to keep control of the height
of Q1(a1), . . . , Qt(at) . The election of η(a)+ d δ(a) as the defining invariant comes from the need
of estimating the degree and height simultaneously.
We note that in case f1, . . . , fs is already a reduced weak regular sequence we have

η(f1, . . . , fs) + d δ(f1, . . . , fs) ≤ η(Id) + d δ(Id).

We can estimate this parameters through the arithmetic Bézout inequality:

Lemma 4.8 Let f1, . . . , fs ∈ K[x1, . . . , xn] be polynomials without common zeros in IAn . Set
di := deg fi and assume that d1 ≥ · · · ≥ ds holds. Set d := d1 = maxi deg fi and h :=
h(f1, . . . , fs) . Also set n0 := min{n, s} and n1 := min{n + 1, s} . Then

• δ(f1, . . . , fs) ≤
∏n0−1

j=1 dj ,

• η(f1, . . . , fs) ≤ n (h + log s + 3 n (n + 1) d)
∏n1−2

j=1 dj .

Proof.– Let a := amin = (aij)ij ∈ ZZs×s be a coefficient matrix such that δ(f1, . . . , fs) = δ(a) and
η(f1, . . . , fs) = η(a) , and set

qi := ai1 f1 + · · ·+ ais fs , 1 ≤ i ≤ s.

Let t ≤ n1 = min{n + 1, s} be minimum such that 1 ∈ (q1, . . . , qt) . Let ã ∈ ZZ(t−1)×s be the
matrix formed by the first t− 1 rows of a and let c ∈ ZZ(t−1)×s be a staircase matrix equivalent
to ã .
The polynomial system

q̃i := ci1 f1 + · · ·+ cis fs

is then equivalent to q1, . . . , qt−1 , that is (q̃1, . . . , q̃i) = (q1, . . . , qi) for i = 1, . . . , t − 1 . Also we
have deg q̃i ≤ di , and so

δ := max {deg Vi; 1 ≤ i ≤ min{n, t} − 1} ≤
n0−1∏

j=1

dj .

We have also that each coefficient of c is a subdeterminant of ã . Thus

h̃ := h(q̃1, . . . , q̃t−1) ≤ h + log s + h(c)

≤ h + log s + (t− 1) (2 (n + 1) log(d + 1) + log(t− 1))

≤ h + log s + n (3n + 1) d

and so, applying Corollary 2.11,

η ≤ max {h(Vi) : 1 ≤ i ≤ min{n + 1, t} − 1}

≤ (
n1−1∑

l=1

h̃/dl + (n + n1 − 1) log(n + 1))
n1−1∏

j=1

dj

≤ (n (h + log s + n (3n + 1) d) + 2 n log(n + 1))
n1−2∏

j=1

dj

≤ n (h + log s + 3 n (n + 1) d)
n1−2∏

j=1

dj .

2

51



We can also estimate these parameters through the arithmetic Bernstein-Kushnirenko inequality:

Lemma 4.9 Let f1, . . . , fs ∈ K[x1, . . . , xn] be polynomials without common zeros in IAn . Set
d := maxi deg fi and h := h(f1, . . . , fs) . Also let V denote the volume of 1, x1, . . . , xn, f1, . . . , fs .
Then

• δ(f1, . . . , fs) ≤ V ,

• η(f1, . . . , fs) ≤ nV (h + log s + 22 n+3 d) .

Proof.– Let a := amin = (ai j)i j ∈ ZZs×s and set qi := ai 1 f1 + · · ·+ ai s fs for i = 1, . . . , s .
Then Supp(qi) ⊂ Supp(f1, . . . , fs) and so V(1, x1, . . . xn, q1, . . . , qs) ≤ V .
Applying Proposition 2.12 we obtain δ ≤ V and

η ≤ (n max
i

h(qi) + 22 n+2 log(n + 1) d )V

≤ (n (h + log s + 2 (n + 1) log(d + 1)) + 22 n+2 log(n + 1) d )V
≤ nV (h + log s + 22 n+3 d ).

2

4.2.2 Proof of Theorem 2

Modulo the preparation of the input data, the proof of Theorem 2 follows the lines of the example
introduced at the beginning of Chapter 4.
The following is the general version of Theorem 2 over number fields:

Theorem 4.10 (Intrinsic arithmetic Nullstellensatz)
Let K be a number field and let f1, . . . , fs ∈ OK [x1, . . . , xn] be polynomials without common zeros
in IAn . Set d := maxi deg fi and h := h(f1, . . . , fs) . Also let δ and η denote the degree and the
height of the polynomial system f1, . . . , fs .
Then there exist a ∈ ZZ \ {0} and g1, . . . , gs ∈ OK [x1, . . . , xn] such that

• a = g1 f1 + · · ·+ gs fs ,

• deg gi ≤ 2 n2 d δ ,

• h(a, g1, . . . , gs) ≤ (n + 1)2 [K : Q] d (2 η + (h + log s) δ + 21 (n + 1)2 d log(d + 1) δ).

Proof.– Let amin = (aij)ij ∈ ZZs×s be a coefficient matrix such that δ = δ(amin) , η = η(amin)
and h(amin) ≤ 2 (n + 1) log(d + 1) . We set

qi := ai 1 f1 + · · ·+ ai s fs

for i = 1, . . . , s . Then (q1, . . . , qi) is a radical ideal of dimension n − i for i = 1, . . . , t − 1 and
1 ∈ (q1, . . . , qt) for some t ≤ min{n + 1, s} .
For 1 ≤ k ≤ n, 0 ≤ l ≤ n , we also let bkl ∈ ZZ be integers with h(bk l) ≤ 2 (n + 1) log(d + 1) such
that Vi := V (q1, . . . , qi) satisfies Assumption 1.5 with respect to the variables

yk := bk 0 + bk 1 x1 + · · ·+ bk n xn

for i = 1, . . . , t− 1 . Set b := (bk 0)k ∈ ZZn and B := (bk l)k,l≥1 ∈ GLn(Q) , and set ϕ : IAn → IAn

for the affine map ϕ(x) := B x + b . For j = 1, . . . , t we then set

Fj(y) := qj(x) = qj(ϕ−1(y)) ∈ K[y1, . . . , yn]
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Thus F1, . . . , Ft are in the hypothesis of Lemma 3.3 with respect to y1, . . . , yn and we let
P1, . . . , Pt ∈ K[x1, . . . , xn] be the polynomials satisfying Bézout identity we obtain there.
Finally, for i = 1, . . . , s , we set

pi :=
t∑

j=1

ai jPj(ϕ(x)) ∈ K[x1, . . . , xn].

We have 1 = p1 f1 + · · ·+ ps fs .

Now we analyze the degree and the height of these polynomials. We will assume n, d ≥ 2 as the
remaining cases have already been considered in Lemmas 3.7 and 3.8.
Set Wl := V (F1, . . . , Fl) ⊂ IAn for l = 1, . . . , t−1 . We have Wl = ϕ(Vl) and so deg Wl = deg Vl .
We have also deg Fj = deg qj ≤ d and so

deg pi ≤ max
j

deg Pj ≤ 2 nd (1 +
min{n,s}−1∑

l=1

deg Wl) ≤ 2 n2 d δ

as deg Wl ≤ δ for l ≤ n− 1 .
Now let v ∈ M∞

K . We have h∞(ϕ) ≤ 2 (n + 1) log(d + 1) and so

h∞(ϕ−1) ≤ n (h∞(ϕ) + log n)− log | detB|∞
≤ n (2 (n + 1) log(d + 1) + log n)− log | detB|∞
≤ 3 n (n + 1) log(d + 1)− log |det B|∞

Set hv := maxi hv(fi) . Then

hv(Fi) ≤ hv(qi) + (h∞(ϕ−1) + 2 log(n + 1)) deg qi

≤ hv + 2 (n + 1) log(d + 1) + log s + (3 n (n + 1) log(d + 1)− log |det B|∞ + 2 log(n + 1)) d

≤ hv + log s + (n + 1 + 3 n (n + 1) + 2 n) d log(d + 1)− log | detB|∞ d

≤ hv + log s + 3 (n + 1)2 d log(d + 1)− log |det B|∞ d.

by Lemma 1.2(c) and the facts that log(n + 1) ≤ n and log(d + 1) ≥ 1 for d ≥ 2 . Next, applying
Lemma 2.7, we obtain

h(Wl) ≤ h(Vl) + (n− l + 1)(h(ϕ) + 5 log(n + 1)) deg Vl

≤ h(Vl) + n (2 (n + 1) log(d + 1) + 5 log(n + 1)) deg Vl

≤ η + n (7n + 2) d log(d + 1) δ

as deg Wl = deg Vl ≤ d δ and h(Vl) ≤ η for l = 1, . . . , t− 1 . By Lemma 3.3 there exists ξ ∈ K∗

such that

hv(Pj) ≤ 2 nd

t−1∑

l=1

hv(Wl) + ((n + 1) max
l

hv(Fl) + 2 n (2n + 5) log(n + 1) d) (1 +
t−1∑

l=1

deg Wl)

− log |ξ|v

≤ 2 nd

t−1∑

l=1

hv(Wl) + (n + 1)2 (hv + log s) d δ

+ (3 (n + 1)4 + 2 n2 (2n + 5) (n + 1)) d2 log(d + 1) δ − log |µ|v
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with µ := (det B)(n+1)2 d2 δ ξ ∈ K∗ . From the previous estimates we deduce

hv(pi) ≤ max
j

hv(Pj) + (h∞(ϕ) + 2 log(n + 1))max
j

deg Pj + 2 (n + 1) log(d + 1) + log t

≤ 2 nd
∑

l

hv(Wl) + (n + 1)2 (hv + log s) d δ

+ (3 (n + 1)4 + 2 n2 (2 n + 5) (n + 1)) d2 log(d + 1) δ − log |µ|v
+ (2 (n + 1) log(d + 1) + 2 log(n + 1)) 2 n2 d δ + 2 (n + 1) log(d + 1) + log(n + 1)

≤ 2 nd
∑

l

hv(Wl) + (n + 1)2 (hv + log s) d δ + 7 (n + 1)3 (n + 2) d2 log(d + 1) δ − log |µ|v.

Analogously hv(pi) ≤ 2 nd
∑

l hv(Wl) + (n + 1)2 hv d δ − log |µ|v for v /∈ M∞
K .

Hence

h(p1, . . . , ps) ≤ 2 n d
∑

l

h(Wl) + (n + 1)2 (h + log s) d δ + 7 (n + 1)3 (n + 2) d2 log(d + 1) δ

≤ 2 n2 d η + 2 n3 (7n + 2) d2 log(d + 1) δ + (n + 1)2 (hv + log s) d δ

+ 7 (n + 1)3 (n + 2) d2 log(d + 1) δ

≤ 2 n2 d η + (n + 1)2 (h + log s) d δ + 21 (n + 1)4 d2 log(d + 1) δ.

Finally we apply Lemma 1.3 to obtain a ∈ ZZ \ {0} such that gi := a pi ∈ OK [x1, . . . , xn] . Thus

a = g1 f1 + · · ·+ gs fs

and the corresponding height estimates are multiplied by [K : Q] . 2

We derive from this result and Lemma 4.8 the following estimate in terms of the degree and the
height of the input polynomials:

Corollary 4.11 Let f1, . . . , fs ∈ OK [x1, . . . , xn] be polynomials without common zeros in IAn .
Set di := deg fi and assume that d1 ≥ · · · ≥ ds holds. Also set d := d1 = maxi deg fi , h :=
h(f1, . . . , fs) , and n0 := min{n, s} .
Then there exist a ∈ ZZ \ {0} and g1, . . . , gs ∈ OK [x1, . . . , xn] such that

• a = g1 f1 + · · ·+ gs fs ,

• deg gi ≤ 2 n2 d
∏n0−1

j=1 dj ,

• h(a, g1, . . . , gs) ≤ 2 (n + 1)3 [K : Q] (h + log s + 3 n(n + 7) d log(d + 1)) d
∏n0−1

j=1 dj .

4.2.3 Estimates for the sparse case

Our arithmetic Bernstein-Kushnirenko inequality (Proposition 2.12 and Lemma 4.9) shows that
both the degree and the height of a system are controlled by its volume. We then derive from
Theorem 4.10 the following arithmetic Nullstellensatz for sparse polynomial systems. Corollary 3
in the Introduction corresponds to the case K := Q .

Corollary 4.12 (Sparse arithmetic Nullstellensatz)
Let f1, . . . , fs ∈ OK [x1, . . . , xn] be polynomials without common zeros in IAn . Set d := maxi deg fi

and h := h(f1, . . . , fs) . Also let V denote the volume of the polynomial system 1, x1, . . . , xn, f1, . . . , fs .
Then there exist a ∈ ZZ \ {0} and g1, . . . , gs ∈ OK [x1, . . . , xn] such that
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• a = g1 f1 + · · ·+ gs fs

• deg gi ≤ 2 n2 d V ,

• h(a, g1, . . . , gs) ≤ 2 (n + 1)3 [K : Q] d V ( h + log s + 22n+3d log(d + 1)).

Example 4.13 For 1 ≤ i ≤ s we let

fi := ai 0 + ai 1x1 + · · ·+ ai nxn + bi 1x1 · · ·xn + · · ·+ bi d(x1 · · ·xn)d ∈ ZZ[x1, . . . , xn]

be polynomials of degree bounded by nd without common zeros in IAn . Set h := maxi h(fi) . Also
set Pd := Conv(0, e1, . . . , en, d (e1 + · · · + en)) ⊂ IRn , so that Pd contains the Newton polytope
of the polynomials 1, x1, . . . , xn, f1, . . . , fs . Then

V ≤ Vol(Pd) = n! d/(n− 1)! = nd.

We conclude that there exist a ∈ ZZ \ {0} and g1, . . . , gs ∈ ZZ[x1, . . . , xn] such that

• a = g1 f1 + · · ·+ gs fs ,

• deg gi ≤ 2 n4 d2 ,

• h(a), h(gi) ≤ 2 n2 (n + 1)3 d2 ( h + log s + n 22 n+3 d log(nd + 1)) .

This estimate is sharper than the one given by Theorem 1.
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[16] M. Giusti, K. Hägele, J. Heintz, J. L. Montaña, L. M. Pardo, J. E. Morais, Lower bounds
for diophantine approximation, J. Pure Appl. Algebra 117 & 118 (1997), pp. 277–317.
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