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Abstract. We present sharp estimates for the degree and the height of the polynomials in the Nullstel-
lensatz over the integer ring 7. The result improves previous work of Philippon, Berenstein-Yger and
Krick-Pardo.

We also present degree and height estimates of intrinsic type, which depend mainly on the degree and the
height of the input polynomial system. As an application, we derive an effective arithmetic Nullstellensatz
for sparse polynomial systems.

The proof of these results relies heavily on the notion of local height of an affine variety defined over a
number field. We introduce this notion and study its basic properties.
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Introduction

Hilbert Nullstellensatz is a cornerstone of algebraic geometry. Under a simplified form, its state-
ment is the following:

Let f1,...,fs € Z[xq,...,x,] be polynomials such that the equation system

filx)=0,..., fs(z) =0 (1)

has no solution in C". Then there exist a € Z \ {0} and ¢1,...,9s € Z[z1,...,xy)
satisfying the Bézout identity

a:glf1+"'+gsfs~ (2)

As for many central results in commutative algebra and algebraic geometry, it is an existential non-
effective statement. The estimation of both the degree and the height of polynomials satisfying
identity (2) became an important and widely considered question. Effective versions of Hilbert
Nullstellensatz apply to a wide range of situations in number theory and theoretical computer
science. In particular, they decide the consistency of a given polynomial system. In their arithmetic
presentation, they apply to Lojasiewicz inequalities [51], [26] and to the consistency problem over
finite fields [28], [22].

Let h(f) denote the height of an arbitrary polynomial f € Zi[z1,...,z,], defined as the logarithm
of the maximum modulus of its coefficients. The main result of this paper is the following effective
arithmetic Nullstellensatz:

Theorem 1 Let fi,...,[fs € Zlxy,...,x,] be polynomials without common zeros in C". Set
d := max; deg f; and h := max; h(f;).
Then there exist a € ZL\ {0} and g1,...,9s € Zx1,...,z,] such that

e a=gifi+--+gsfs,
e degg; <4nd"”,
o h(a),h(g;)) <4dn(n+1)d" (h+logs+ (n+7)log(n+1)d).

As we will see below, this result substantially improves all previously known estimates for the
arithmetic Nullstellensatz.



The following variant of a well-known example due to Masser and Philippon [6] yields a lower
bound for any general degree and height estimate. Set

o .d o d—1 d L d—1 d o d—1
fii=af, for=may —xy, ..., faori=Tp_2xy —Xh_q, fni=aa1,  —H

for any positive integers n, d and H . These are polynomials of degree d and height bounded by
h :=log H without common zeros in C". Let a € Z\ {0} and ¢1,...,9n € Z[21,...,2,] such
that

a=g1fi+-+Ggnfn
Specializing this identity at 21 = HY" “t4" "=l .z, 1 := Ht4"1 z, := 1/t we obtain
a=g (H" 44" =1 He 1) B

We conclude that degg; > d*—d and h(a
gives the improved lower bound h(a) > d"
essentially optimal.

> d"~ ! h. In fact, a modified version of this example
h (Example 3.10). This shows that our estimate is

The earlier work on the effective Nullstellensatz dealt with the degree bounds. Let k be a field
and k its algebraic closure, and let fi,..., fs € k[x1,...,7,] be polynomials of degree bounded
by d without common zeros in I

In 1926, Hermann [25] (see also [23], [43]) proved that there exist ¢1,...,9s € k[z1,...,2s] such
that

l=gifi+-+gsfs

with degg; f; < 2(2d)2" .

After a conjecture of Keller and Grobner, this estimate was dramatically improved by Brownawell
[6] to degg;f; < n?d" +nd in case char (k) = 0, while Caniglia, Galligo and Heintz [7] showed
that degg;f; < d™ holds in the general case.

These results were then independently refined by Kollar [29] and by Fitchas and Galligo [12] to

deg g; fi < max{3,d}",

which is optimal in case d > 3. For d = 2, Sombra [53] recently showed that the bound degg;f; <
2"+1 holds.

Now, let us consider the height aspect: assume that fi,..., fs € Z[z1,...,z,] are polynomials of
degree and height bounded by d and h, respectively. The previous degree bound reduces Bézout
identity (2) to a system of @ -linear equations. Applying Cramer rule to this linear system one
obtains an estimate for the height of a and the polynomials g; of type sd”’ (h+logs+d).

However, it was soon conjectured that the true height bound should be much smaller.
Philippon [48] obtained the following sharper estimate for the denominator @ in the Bézout equa-
tion:

degg; < (n+2)d" , h(a) < k(n)d"(h+d),

where k(n) depends exponentially on 7.
The first essential progress on height estimates for all the polynomials g; was achieved by Beren-
stein and Yger [2], who obtained

deggi <n(2n+1)d" , h(a),h(g;) < A(n)d®*3 (h+logs +d logd),

where A(n) is a (non-explicit) constant which depends exponentially on n. Their proof relies on
the previous work of Philippon and on techniques from complex analysis.
Later on, Krick and Pardo [31], [32] obtained

deggi < (nd)*™ ,  h(a),h(g;) < (nd)*"(h +logs +d),



where ¢ is a universal constant (¢ < 35). Their proof, based on duality theory for Gorenstein
algebras, is completely algebraic.

Finally, Berenstein and Yger [3] improved their height bound to A(n)d*"*2 (h +logs + d ), and
extended it to the case when 7 is replaced by an arbitrary diophantine ring. It should be said,
however, that the possibility of such an extension was already clear from the arguments of [32].

We refer the reader to the surveys [58], [1], [45] for a broad introduction to the history of the
effective Nullstellensatz, main results and open questions. Aside from degree and height estimates,
there is a strong current area of research on computational issues [19], [13], [32], [18], [16], [22].
There are other results in the recent research papers [50], [30], [10].

With respect to previous work, in this paper we improve in an almost optimal way the dependence
of the height estimate on d™ and we eliminate the extraneous exponential constants depending on
n. We remark that the polynomials arising in Theorem 1 are a slight variant of the polynomials
which appear in [32] and can thus be effectively computed by their algorithm.

Although the exponential behavior of the degree and height estimates is — in the worst-case —
unavoidable, it has been observed that there are many particular instances in which these estimates
can be essentially improved. This has motivated the introduction of parameters associated to
the input system which identify special families whose behavior with respect to our problem is
polynomial instead of exponential.

In this spirit, Giusti et al. [18] introduced the notion of degree of a polynomial system fi,..., fs.
Roughly speaking, this parameter measures the degree of the varieties cut out by fi,...,f; for
i=1,...,s—1. It was soon realized that the degrees in the Nullstellensatz can be controlled in
terms of this parameter, giving rise to the so-called “intrinsic Nullstellensétze” [18], [33], [16], [52].
Recently Hégele, Morais, Pardo and Sombra [22] (see also [21]) obtained an arithmetic analogue
of these intrinsic Nullstellensédtze. To this aim, they introduced the notion of height of a poly-
nomial system, the arithmetic analogue of the degree of the system. They obtained degree and
height estimates which depend polynomially on the number of variables and on the degree, height
and complexity of the input system. This result followed from their study of the computational
complexity of the Nullstellensatz.

In this paper we obtain a dramatical improvement over this result, bringing it to an (apparently)
almost optimal form. In particular, we show that the dependence on the degree and the height of
the system is linear, and we eliminate the influence of the complexity of the input.

Theorem 2 Let fi,...,fs € Zlxy,...,x,] be polynomials without common zeros in C". Set
d := max;deg f; and h := max; h(f;). Let 6 and n denote the degree and the height of the
polynomial system f1,..., fs.

Then there exist a € ZZ\ {0} and g1,...,9s € Zlx1,...,x,] such that

hd a:glf1+"'+g‘9f‘97
o degg; <2n2dS§,
e h(a),h(g:) < (n+1)2d(2n+ (h+logs)d+21(n+1)*dlog(d+1)4).

Since § <d" ! and n<nd*!'(h+logs+3n(n+1)d) (Lemma 4.8) one recovers from this
statement essentially the same estimates of Theorem 1. However, we remark that Theorem 2 is a
more flexible result, as there are many situations in which the degree and the height of the input
system are smaller than the Bézout bounds. When this is the case, it yields a much more accurate
estimate (Subsection 4.2.2).

A more general example of the situation when both the degree and the height of the system are
smaller than the expected worst-case bounds is the sparse case. To state the result, we first need
to introduce some standard notation.



The support Supp(fi,..., fs) of a polynomial system fi,..., fs C C[z1,...,z,] is defined as the
set of exponents of all the non-zero monomials of all f;’s, and the Newton polytope N (f1,..., fs)
is the convex hull of this support. The (normalized) volume of fi,..., fs equals n! times the
volume of the corresponding Newton polytope.

The notions of Newton polytope and volume of a polynomial system give a sharper characterization
of its monomial structure than the degree alone. These concepts were introduced in the context of
root counting by Bernstein [4] and Kushnirenko [35], and are now in the basis of sparse elimination
theory (see e.g. [56]).

As an application of Theorem 2 we derive the following arithmetic effective Nullstellensatz for
sparse polynomial systems:

Corollary 3 Let fi,...,fs € Zlx1,...,x,] be polynomials without common zeros in C". Set
d = max;deg f; and h := max; h(f;). Let V denote the volume of the polynomial system

17x17~"aznafl7"'af8'
Then there exist a € Z\ {0} and g1,...,9s € Zlx1,...,x,] such that

ca=gfit+-+9sfs,
o degg; <2n24dV,
o h(a),h(g;) <2(n+1)3dV (h+logs+22"+3d log(d + 1)).

The crucial observation here is that both the degree and the height of a polynomial system are
essentially controlled by the normalized volume. This follows from an adequate arithmetic version
of the Bernstein-Kushnirenko theorem (Proposition 2.12). Our result follows then from Theorem
2 in a straightforward way.

As before, we can apply the worst-case bound V < d" to recover from this result an estimate
similar to the one presented in Theorem 1. However, this result gives sharper estimates for both
the degree and the height when the input system is sparse (Example 4.13).

The sparse aspect in the Nullstellensatz was previously considered by Canny and Emiris [8, Thm.
8.2] for the case of n+ 1 n-variate Laurent polynomials without common roots at toric infinity.
Their result is the sparse analogue of Macaulay’s effective Nullstellensatz [40]. The first general
sparse Nullstellensatz was obtained by Sombra [53]. In both cases the authors give bounds for the
Newton polytopes of the output polynomials in terms of the Newton polytopes of the input ones.
We refer to the original papers for the exact statements.

It is quite difficult to make a definite comparison between these results and ours. The latter does
not give sharp bounds for Newton polytopes. But on the other hand, our degree estimate for the
general case is better, while the height estimate is completely new.

The key ingredient in our treatment of the arithmetic Nullstellensatz is the notion of local height
of a variety defined over a number field K .

Let V C A™(Q) be an equidimensional affine variety defined over K . For each absolute value
v over K, we introduce the local height h,(V) of V at v as a Mahler measure of a suitable
normalized Chow form of V. This is consistent with the Falting’s height h(V) of V| namely:

1
) 2}\; N, hy(V),

h(V) =

where Mk denotes the set of canonical absolute values of K, and N, the multiplicity of v.

We study the basic properties of this notion. In particular we are able to estimate the local height
of the trace and the norm of a polynomial f € K[x1,...,x,] with respect to an integral extension
K[A"] — K[V]. We also obtain local analogues of many of the global results of Bost, Gillet and
Soulé [5] and Philippon [49].



Our proof of the arithmetic Nullstellensatz is based on duality theory for Gorenstein algebras (trace
formula). This technique was introduced in the context of the effective Nullstellensatz in [19], [13].
Here, we follow mostly the lines of Sabia-Solerné [50] and Krick—Pardo [32].

The trace formula allows to perform division modulo complete intersection ideals, with good control
of the degree and height of the involved polynomials. The local arithmetic intersection theory plays,
with respect to the height estimates, the role of the classical intersection theory with respect to
the degree bounds.

Finally, we remark that all of our results are valid not just for @ but for arbitrary number fields.
In fact, the general analysis over number fields is necessary to obtain the sharpest estimates for the
case K := Q. We also remark that the estimates in the general version of Theorem 1 (Theorem
3.6) do not depend on the involved number field.

The outline of the paper is the following:

In Chapter 1, we recall the basic definitions and properties of the height of polynomials, and we
introduce the notion of local height of a variety defined over a number field.

In Chapter 2, we derive useful estimates for the local heights of the trace and the norm of a
polynomial in K[V], and we study the behavior of the local heights of the intersection of a variety
with a hypersurface.

In Chapter 3, we recall the basic facts of duality theory which will be useful in our context, and
we prove Theorem 1.

In Chapter 4, we focus on the intrinsic and sparse versions of the arithmetic Nullstellensatz.

1 Height of polynomials and varieties

Throughout this paper @ denotes the field of rational numbers, Z the ring of rational integers,
K a number field, and Op its ring of integers. We also denote by R the field of real numbers,
C the field of complex numbers, k an arbitrary field, and & an algebraic closure of k. As usual,
A" and PP™ will denote the affine and the projective space of n dimensions over k, respectively.

For every rational prime p we denote by |-, the p-adic absolute value over Q such that
Ipl, = p~!. We also denote the ordinary absolute value over @ by |- |« or simply by |-|. These
form a complete set of independent absolute values over Q : we identify the set Mg of these
absolute values with the set {oo,p; p prime}.

For v € Mg we denote by Q, the completion of @ with respect to the absolute value v. In case
v =00 we have Q. = IR, while in case p is prime, we have that Q, is the p-adic field. There
exists a unique extension of v to an absolute value over the algebraic closure Q,. We denote by
C, the completion of @, with respect to this absolute value. This field is algebraically closed
and complete with respect to the induced absolute value, which we also denote by v. We have

Csx =C.

1.1 Height of polynomials

In this section we introduce the different measures for the size of a multivariate polynomial, both
over C, and over a number field. We establish the link between the different notions and study
their basic properties.

1.1.1 Height of polynomials over C,

We fix an absolute value v € {oo,p; p prime} for the rest of this subsection. Let A C C, be
a finite set. We denote by |A|, := max{|al|,,a € A} its absolute value. Then we define the



(logarithmic) height of A as
hy(A) := max{ 0,log |A|, },
that is hy(A) =log|{1} UA|,.
For a polynomial f =73 aqaz* € Cylz1,...,2,], we define its absolute value |f|, as the absolute

value of its set of coefficients, that is |f|, := max,{|aql|, } . In the same way we define the height
hy(f) of f as the height of its set of coefficients:

ho(f) += max{ 0, log |1, }.

When v = 00, i.e. when f has complex coefficients, we will make use of the (logarithmic) Mahler
measure of f defined as

1 1
m(f) ::/O /0 log [f(e2™ 0, .. &2 )| dty ... dt,.

This integral is well-defined, as log|f| is a plurisubharmonic function on C" [39, Appendix IJ.
The Mahler measure was introduced by Lehmer [37] for the case of a univariate polynomial f :=

a4 H?Zl(a: — ;) € Clz] as

d
m(f) = log |ag| + Zmax{o, log || }.

i=1

The link between both expressions of m(f) is given by Jensen’s formula. The general case was
introduced and studied by Mahler [41].
The key property of the Mahler measure is its additivity:

m(fg) =m(f) +m(g).

We have the following relation between log|f| and m(f):
—log(n +1) deg f < m(f) —log|f[ < log(n+1) deg f. (1.1)

The right inequality follows from the definition of m and the fact that the number of monomials
of f is bounded by (”Jrieg f) < (n+1)48/ . For the left inequality, we refer to [47, Lem. 1.13]
and its proof.

When f has total degree bounded by 1, the inequality is refined to log|f| < m(f). Also, for any
degree, m(f(z1,...,2n-1,0)) <m(f).

We will make frequent use of the following more precise relation:

Lemma 1.1 Let f € C[Xy,...,X,] be a polynomial in r groups of n; variables each, for i =
1,...,r. Let d; denote the degree of f in the group of variables X;. Then

—Zlog(ni +1)d; <m(f) —log|f| < Zlog(ni +1)d;.

i=1 i=1

Proof.— The right inequality follows directly from the definition of m(f) and the fact that we can
bound by [],;(n; +1)% the number of monomials of f. Thus we only consider the left inequality.

Let fo,.a; € C[Xi41,...,X,] denote the coefficient of f with respect to the monomial X7 --- X .
Applying inequality (1.1) we obtain for all (£;41,...,&,) € QM+ T,

IOg |fa1"'ai—1<Xi)€i+17 s 767‘)' < m(fal”'ai—l(Xi7£i+17 s ’gr)) + log(ni + 1) dl



We have |fo; o ai_y (Xis&it1s---5 &) = maxq, |faya; (Eit1s---, &) We integrate both sides of

the last inequality on S?i+1+"'+nr and we deduce

max{m(foél'“ai) 3 € an} < m(fal“'ai—l) + log(ni + 1) d;

We apply this relation recursively and we obtain

log|f| = max{m(fa,..a,); 00 € L™, ..., 0, € Z""} <m(f) + Zlog(ni +1)d;.

i=1

O

Let f € C[Xy,...,X,] be a multihomogeneous polynomial in r groups of n; + 1 each, and set
f* for a deshomogenization of f with respect to these groups of variables. Then m(f*) = m(f),
log | f*| = log|f|. Thus the estimates of the preceding lemma also hold for f.

Next we introduce the (logarithmic) Sy -Mahler measure of a polynomial f € Clzy,...,x,] as

m(f: 5n) = /S log |£(2)] in(a),

n

where S, := {(z1,...,2n) € C" : |z1|> + - + |z,|*> = 1} is the unit sphere in C", and u,, is the
measure of total mass 1, invariant with respect to the unitary group U(n).

More generally, let f € C[Xy,...,X,] be a polynomial in r groups of n variables each. Its
Sy -Mahler measure is then defined as

m(7:53) = [ tog] ()] ().

with S} := S, x --- x S, . This alternative Mahler measure was introduced by Philippon [49, I].
With this notation, the ordinary Mahler measure m(f) of f € C[zy,...,z,] coincides with
m(f;S7). When f € C is a constant, we agree that m(f;S%) = log|f].

The S; -Mahler measure is related to the ordinary Mahler measure by the following inequalities
[38, Thm. 4]:

n—1
0<m(f)—m(f;S) <rd Y o (1:2)
i=1

where d is a bound for the degree of f in each group of variables.

Finally, we summarize in the following lemma the basic properties of the notion of height of
polynomials in C,[z1,...,z,].

Lemma 1.2 Let v e Mg and fi,...,fs € Cylz1,...,zy].

1. If v=o00 then

(@) hoo(D2; fi) < maxi{hoo(fi)} +logs .

(6) hoo(TTizy £1) < 05y hoo(fi) +log(n + 1) 32 deg fi -
hoo (f1 f2) < hoo(f1) + hoo(f2) + log(n + 1) min{deg f1, deg f2}

(c) Let g € Cly1,...,ys|. Set d:=max;{deg fi} and hoo = max;{hoo(f;)}. Then
hoo(g(f1s-- 3 fs)) < hoo(g) + deg g (hoo +log(s + 1) + log(n + 1) d).

(d) log|I]; filse 2 32;10g | filoe — 2 log(n 4 1) 3; deg fi .

2. If v=1p for some prime p then



(a) hp(32; fi) < maxi{hy(f:)} -

(b) hP(H'L fz) < Zz hp(fi) :

(c) Let g € Cplya,...,ys]. Set d:=max;{deg f;} and h, := max;{h,(fi)}. Then

hp(g(fla ceey fs)) < hp(g) + degghp-

(d) log|II; filp = >2;1og | filp -
Proof of Lemma 1.2.— The different behavior for v = 0o or v = p is simply due to the fact that
|- |p is non-archimedean, that is verifies the stronger inequality |a + b|, < max{|al,,|b|,} for any
a,bec Cp.
Inequalities (1.a), (1.b), (2.a) and (2.b) are now immediate from the definition of h,, .
(1.c) and (2.¢):
Let us consider the case v = o00. Set ¢(n) :=log(n+1).

First we compute h,(fi™* --- f&) for the exponent (ai,...,as) of a monomial of ¢g. Applying
(1.b) we obtain

hoo (1™ -+ f5) < (e(n) d + heo Z%_ n)d+ heo) degg.

The polynomial g has at most (s + 1)9°¢9 monomials and so

hoo(g(f15- -5 f5)) < hoo(g) + (¢(n) d + hoo) deg g + ¢(s) deg g.

The case v # oo follows in a similar way.
(1.d) and (2.d):
In case v = oo, we apply directly Inequality (1.1):

Zlogm\oo < Z(m(fi)+c(n)degfi)
m(H fi) +c(n)Zdegf,—
10g|Hfi|oo +26(n)Zdegﬁ.

IN

In case v = p, Gauss Lemma implies that ), log|f;|, = log|]], filp - O

We will make frequent use of the following particular case of the previous lemma:
Let (fij)ij be a s x s-matrix of polynomials in C,[z1,...,x,] of degrees and heights bounded by
d and h, respectively. From Lemma 1.2(a,b) we obtain:

o hoo(det(fij)ij) < 8 (hoo +logs+dlog(n+1)) ,
o hy(det(fij)ij) < shyp

1.1.2 Height of polynomials over a number field

The set My of absolute values over K which extend the absolute values in Mg is called the
canonical set. We denote by Mz the set of archimedean absolute values in M , i.e. the absolute
values extending oo .

If v € Mg extends an absolute value vy € Mg (which is denoted by v|vg) there exists a (non
necessarily unique) embedding o, : K < C,, corresponding to v, i.e. such that |al, = |oy(a)|y,
for every a € K .



In the p-adic case, there is a one-to-one correspondence P — v(P) between prime ideals of O
which divide p, and absolute values extending p, defined by

|a|v(73) — p—ordP(a)/EP — N('P)_Ord'p(a)/e»p fr

for a € K*. Here ordp(a) denotes the order of P in the factorization of a, and N(P) the norm
of the ideal P. Also ep := ordp(p) denotes the ramification index, and fp := [Og /P : Z/(p)]
the residual degree of the prime ideal P.

Note that a € Ok if and only if log|al, <0 for every v € Mg \ M5 .

We denote by K, the completion of K in C,,. The local degree of K at v is defined as:
N, = [Kv : Q’UQ]J

and it coincides with the number of different embeddings o : K — C,, which correspond to v.
When v is archimedean, K, is either R or C, and N, equals 1 or 2 accordingly. When v is
non-archimedean, N, = ep fp, where P is the prime ideal which corresponds to v.

In any case

[K:Q]=)_ N,

v | vo
for vg € Mg . The canonical set Mg satisfies the product formula with multiplicities N, :

Il 1o

vEMEK

1])\71, :17 VCLEK* (13)

Let A C K be a finite set. Let v € Mg be an absolute value which extends vy € Mg, and let
o, be an embedding corresponding to v. The local absolute value of A at v is defined as

Al := |ow(A)]y, = max{|oy(a)]v,, a € A}
Then we define the local height of A as
hy(A) :== max{0,log|A|,} = hy, (0, (A)).

We note that this notion behaves well with respect to extensions: let K < L be a finite extension,
and let w € My, be an absolute value extending v. Then h,(A) = h,(A).

For a polynomial f = Y aqz® € K[z1,...,2,], we define the local absolute value of f at v
(denoted by |f|,) as the absolute value at v of its set of coefficients, and the local height of f at
v (denoted by h,(f)) as the local height at v of its set of coefficients.

Finally we define the (global) height of a finite set A C K as

h(A) ;:ﬁ S Ny hu(A).

vEMK

In classical terms, this is the affine height of A: if we set A := {ay,...,an} then h(A) equals
the Weil absolute height of the point (1:ay:---:ay) € PV.

Because of the imposed normalization, this quantity does not depend on the field K in which we
consider the set A. This allows us to extend the definition of h to subsets of @ .

We also define the (global) height of f1,..., fs € K[z1,...,2z,] as the global height of its set of

coefficients, that is
1
h(fe ) = g > Ny maxhy(fi). (1.4)
: VvEMK

10



We have hy(a) < h,(A) for every a € A and every v € Mg, and so
< .
max h(a) < h(A)

In case A C Ok, we have that h,(A) = 0 for every v € Mg \ M and so h(A) = (1/[K
Q) ZUGM? Ny hy(A). We also have hy(A) < [K : Q] maxgea h(a) for all v € My and hence

M) < [K : Q) maxh(a).

Both inequalities are sharp. Equality is attained in the first one when, for instance, A has only
one element.

For the second ome, set A = {1 + 2,1 — 2} € Q[v2]. Then h(A) = log(l + v/2) while
h(14v2) = h(1 —v/2) = (1/2) log(1 + v/2). Hence h(A) = 2 max,e 4 h(a).

More generally, if a € C is a Pisot number, namely an algebraic integer such that |a| > 1 and
all its conjugates lie inside the unit disk, and K := Q[a] is Galois, then, for A := {o(a) : 0 €
Gal(K/Q)} c K, we have h(A) = [K : Q] h(a).

Let a = m/n € Q* be a rational number, where m € Z and n € IN are coprime. Then
h(a) = max{|m|,n}, that is, the height of a controls both the size of the minimal numerator
and denominator of a. More generally, let A C Q be a finite set, and let b € IN be a minimal
common denominator for all the elements of A. Then h(A) = logmax{|b.A|,b}. The following
is the analogous statement for the general case:

Lemma 1.3 Let AC K be a finite set. Then there exist b€ Z\ {0} and B C Ok such that
bA=B , h(A) < h({b}UB) < [K : Q] h(A).

Proof.— Let v € Mg \ M5?, and set P for the corresponding prime ideal of O . Let a, € A
such that h,(A) = h,(a,) and set

¢(P) = max{0, —ordp(a,)}.
Then ordp(a) > —c(P) for every a € A, and h,(A) = ¢(P) logN(P)/ep fp. Set
b= ][NP Bi={ba;ac A},

where P runs over all prime ideals of Ok . Clearly b € IN \ {0}. We have ordp(b) = ep fp c(P)
and so ordp(ba) > ep fpc(P)—c(P) >0 for every a € A. Hence B C Ok .

For v € M3? we have h,({b} UB) = h,(A) +logb and so

h({b}UB Ny h, ({0} UB Ny hy( + loghb.
(b} UB) = o Qhe%m (b} UB) = o lee%m (4) + log
‘We have
logb:Z ¢(P) logN(P Z Nyhy(
P vg M2
and therefore:
h({b} UB) = ZNh + D Nyhy(A) < [K : Q] h(A).
veEM® vgMpe

On the other hand we have h,(A)+log |b|, < h,({b} U B) for all v € Mg . Applying the product
formula (1.3) to b we obtain:

BA) = gy 0 Mo () + 108 [B) < s 57N (0} UB) = h({B} UB),

11



Finally, let a € Q" be a non-zero algebraic number, and set p, € Z[t] for its primitive minimal
polynomial. We have h(a) = m(p,)/dega. More generally, the height of a finite set can be seen
as the height of the minimal polynomial of a generic linear combination of its elements. This gives
a partial motivation for the notion of global height of a finite set.

Lemma 1.4 Let A:={a1,...,an} C K be a finite set and set

P4 = H(uo +o(ar)ur +---+o(an)un) € Quo, ..., un),

where the product is taken over all Q -embeddings o : K — Q. Then
—log(N +1) < h(A) = h(pa)/[K : Q] < log(N +1).

Proof.— Set L(u) :=ug+ aju; + -+ ayuy € Ku] so that
pa=[]eo@).

For vy € Mg we choose an inclusion Q— C,, . Then for each v € My such that v|vy there are N,
embeddings o : K — @ which correspond to it. We note that for each such o, log|o(L)| = h,(A)
holds. Applying Lemma 1.2(b) we obtain

hoo(pa) <Y _loglo(L)| + [K : Q) log(N +1) = > Nyhy(A) + [K : Q] log(N +1).

veEMp®

In the same way we obtain hy(pa) <>, Ny hy(A) for p prime and hence

vlp

hpa) < S Noho(A)+ K : Q] log(N +1) = [K : Q] (h(A) + log(N + 1)),
vEMp

On the other hand log|o(L)| < m(o(L)) for every o, as L has total degree 1. Thus
(K :QIWA) = Xeny Noho(A)

> oo loglo(L)]e + 32,2, loglo(L)lp

m(pa) + >, hp(pa)

< h(pa) +[K: Q] log(N +1)

IN

by application of Lemma 1.2(d) and inequality (1.1), and the definition of the height. O

1.2 Height of varieties

In this section we introduce the notions of local and global height of an affine variety defined over
a number field. For this aim, we recall the basic facts of the degree and Chow form of varieties.
As an important particular case, we study the height of an affine toric variety.

1.2.1 Degree of varieties

Let k& be an arbitrary field and V' C JA™ be an affine equidimensional variety of dimension 7.
We recall that the degree of V' is defined as the number of points in the intersection of V' with a
generic linear space of dimension n—r. This coincides with the sum of the degrees of its irreducible
components.

12



For an arbitrary variety V C A™ we set V = U; V; for its decomposition into equidimensional
varieties. Following Heintz [23], we define the degree of V as

degV := ZdegVi.

For V = we agree degV :=1.

This is a positive integer, and we have degV =1 if and only V is a linear variety.

The degree of a hypersurface equals the degree of any generator of its defining ideal. The degree
of a finite variety equals its cardinal. L

For a linear morphism ¢ : A™ — JA™ and a variety V C A" we have degp(V) < degV , where
©(V) denotes the Zariski closure of (V) in A™.

The basic aspect of this notion of degree is its behavior with respect to intersections. It verifies
the Bézout inequality:

deg(VNW) <degV degW

for V,WW C A™, without any restriction on the intersection type of V' and W [23, Thm. 1], [14,
Example 8.4.6].

1.2.2 Normalization of Chow forms

Let V C A™ be an affine equidimensional variety of dimension r defined over a field k. Let Fy
be a Chow form of V', that is a Chow form of its projective closure V' C P™. This is a squarefree
polynomial over k in r+ 1 groups Up,...,U, of n+ 1 variables each. It is multihomogeneous
of degree D := degV in each group of variables, and is uniquely determined up to a scalar
factor. In case V is irreducible, Fy is an irreducible polynomial, and in the general case of an
equidimensional variety, the product of Chow forms of its irreducible components is a Chow form
of V.

In order to avoid this indeterminacy of Fy , we are going to fix one of its coefficients under a
technical assumption on the variety V. For purpose of reference, we resume it in the following;:

Assumption 1.5 We assume that the projection my : V. — A" defined by = — (x1,...,2,)
verifies #m;,*(0) = deg V.

This assumption implies that wy : V' — A" is a dominant map of degree deg V', by the theorem of
dimension of fibers. Later on, we will prove that in fact this assumption implies that the projection
my is finite, that is, the variables x1,...,x, are in Noether normal position with respect to V'
(Lemma 2.14). We remark that the previous condition is satisfied by any variety under a generic
linear change of variables.

Each group of variables U, is associated to the coefficients of a generic linear form L,(U;) :=
Uio+U;1 21+ -+ U;nx, . The main feature of a Chow form is that

Fy(vo,...,vn) =0 VN {L" () =0 n...n {L",) =0} #0

holds for v; € Enﬂ . Here L? =U;oxg+ -+ U;nx, stands for the homogenization of L;.

Assumption 1.5 implies that V' N {z; = 0} N...N {z,, = 0} is a zero-dimensional variety of P"
lying in the affine space {xo # 0}. Set e; for the (i 4+ 1)-vector of the canonical basis of k"*t.

Then Fy (e, ...,e,) — that is, the coefficient of the monomial UL ---UF.

We then define the (normalized) Chow form Chy of V' by fixing the election of Fy, through the
condition

— is non-zero.

Chyv(eg,...,er) = 1.

Under this normalization, Chy equals the product of the normalized Chow forms of the irreducible
components of V.

13



1.2.3 Height of varieties over C,

Let v € {oco,p; p prime} be an absolute value over Q , and V C A™(C,) an equidimensional
variety of dimension r which satisfies Assumption 1.5. We introduce the height of V' as a Mahler
measure of its normalized Chow form:

Definition 1.6 The height of the affine variety V. .C A™(C,) is defined as

n

ho(V) :=m(Chy; Spt1) + (r+1) () 1/24) degV

=1

in case v =00, and as
hy(V) := hy(Chy)

in case v =p for some prime p.

This definition coincides in the non-archimedean cases with the local height of V C P" with
respect to the divisors div(zg),...,div(x,) € Div(IP™) as it is introduced in [20, Section 9]. In
general, it is also closely related to Philippon’s local height of a projective variety [49, IT].

Let us consider some examples:

e We have that ho(AA™(C)) equals the Stoll number Y, 22:1 1/2j, while h,(A™(C,)) =
0. This follows from [5, Lem. 3.3.1] and [55, Thm. 3], [49, I, Thm. 2], and the fact that
Chun = det(Us, ..., Uy).

e Let V C A™(C,) be a hypersurface verifying Assumption 1.5, defined by a squarefree poly-

nomial f € C,[z1,...,2,]. Then the coefficient of the monomial x4 " is non-zero, and we
can suppose without loss of generality that it equals 1. Let f* denote the homogenization
of f. Then

n—1 1

ho(V) = m(f" Snia) + (O D 1/25) degV,

i=1 j=1
in case v = 0o, while in case v = p for some prime p, h,(V) = h,(f). [49, I, Cor. 4].

o In case V = {£} for some & € A™, we have (see e.g. [49, I, Prop. 4])

>
&
S

I

Sloa(L+ 61?6,
(V) = hy(©)

1.2.4 Height of varieties over a number field

Let V C A™(Q) be an equidimensional variety of dimension r defined over a number field K .
We define the (global) height h(V) of V as the Faltings’ height [11] of its projective closure
V c IP". It verifies the identity

n

h(V) = 1 ( > Nom(oo(Fv)iSpth) + Y. Nylog|Fvly) + (r+1) (Y 1/2i) degV,
K- Q] vEME vEMEE i=1

where Fy denotes any Chow form of V' [55, Thm. 3], [49, I, Thm. 2]. Following Philippon [49,
ITI], we introduce h through this identity, without appealing to Arakelov theory.

For an arbitrary affine variety, we define its (global) height as the sum of the heights of its
equidimensional components. It coincides with the sum of the heights of its equidimensional
components. We agree that h(() :=0.
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We also introduce the local counterpart of this notion. Let v € Mg be an absolute value over K,
and suppose that V' satisfies Assumption 1.5. Let vy € Mg such that v|vg, and let o, : K, — C,,
be an embedding corresponding to v. We define the local height of V' at v as

hy (V) = hyy (04,(V)).
This is consistent with the global height:

1
(K : Q]

WV) = > Ny hy(V).

vEMEK

The global height h is related to the height hpggs of Bost, Gillet and Soulé by the formula [5,
Prop. 4.1.2 (i)]:

(V) = hsas(V) + (D) 1/25) degV.

i=1 j=1

It is also related to the height h introduced by Giusti et al. [16] in terms of the so-called geometric
solution of a variety. They are polynomially equivalent [54, Thm. 1.3.26], namely

h(V) < (n degVh(V))* , h(V) < (n deg Vh(V))S,

for some constant ¢ > 0.
We have h(V) > (37_, Zj.:l 1/2j) deg V', with equality only in case V' is defined by the vanishing

of n —r standard coordinates. [5, Thm. 5.2.3]. For instance h(A") = Y7 | ;:1 1/25. In
particular A(V) > 0.

This notion of height satisfies the arithmetic Bézout inequality [5, Thm. 5.5.1 (iii)], [49, III, Thm.
3):
Ah(VAW) < h(V) degW +degV h(W) + ¢ degV deg W,

for V,W c A"(Q), with c¢:= (305" 200" 1/2(i+j + 1))+ (n—(dim V + dim ) /2 ) log 2.

1.2.5 Height of affine toric varieties

Now we consider the case of affine toric varieties. The obtained height estimate is crucial in our
treatment of the sparse arithmetic Nullstellensatz (Corollary 4.12).

In what follows we recall some basic notation and results of affine toric varieties and sparse resul-
tants. References are [15], [57].

Let A = {a1,...,an} C Z" be a finite set of integer vectors. Let r := dim.A denote the
dimension of A, that is, the dimension of the free Z-module Z.A. We normalize the volume form
of RA in order that any elementary simplex of the lattice ZZ.4 has volume 1. The (normalized)
volume Vol(A) of A is defined as the volume of the convex hull Conv({0} U.A) with respect to
this volume form. In case ZA = Z" , then Vol(A) equals n! times the volume of Conv({0} U.A)
with respect to the Euclidean volume form of R™ .

We associate to the set A a map (Q)" — QN defined by & — (€*1,...,£%N). The Zariski
closure of the image of this map is the affine toric variety X4 C AN . This is an irreducible
variety of dimension r and degree Vol(A).

For ¢ =0,...,r, we denote by U; a group of variables indexed by the elements of A and we set
Fi = Z Uia ¢
acA

15



—%

for the generic Laurent polynomial with support contained in A. Let W c (P11 x (Q
be the incidence variety of Fy,...,F, in (Q*)” , that is

W ={(vo,...,vm:&); Fi(rs)(§) =0 Vi},

and let 7 : (PY 1) x (@)™ — (PY~1)™*! be the canonical projection. Then (W) is an
irreducible variety of codimension 1. Any of its defining polynomial R4 C Q[Uy,...,U,] is called
the A -resultant or sparse resultant, and it coincides with a Chow form of the affine toric variety
X4 [27]. Tt is a multihomogeneous polynomial of degree Vol(A) in each group of variables, and
it is uniquely defined up to its sign, if we assume it to be a primitive polynomial with integer
coefficients.

)TL

We obtain the following bound for the height of X 4. Our argument relies on the Canny-Emiris
determinantal formula for the sparse resultant [8].

Proposition 1.7 Let A C Z" be a finite set of dimension r and cardinality #A > 2. Then
h(X 4) < 227+2 log(#.A) Vol(A) .

Proof.— Let R4 denote the A—resultant, which we assume to be primitive with integer coeffi-

cients. Thus
N

h(Xa) = m(Ra; SN + (r +1) (Y 1/24) Vol(A)

i=1
and so it suffices to estimate the S}“Vtrll -Mahler measure of R4 .

Let M be the Canny-Emiris matrix associated to the generic polynomial system Fy, ..., F,.. This
is a non-singular square matrix of order M , where M denotes the cardinality of the set

E=((r+1)Q+¢e) NZ".

Here @ := Conv({0} UA), and ¢ € R™ is any vector such that each point in &£ is contained in
the interior of a cell in a given triangulation of the polytope (r + 1)@ . In particular £ can be
arbitrarily chosen in a non empty open set of R™.

Every non-zero entry of M is a variable U;,. In fact, each row has exactly N non-zero en-
tries, which consist of the variables in some group U;. We refer to [8, Section 4] for the precise
construction.

Thus det M € Z[Uy,...,U,] is a multihomogeneous polynomial of total degree M and height
bounded by M log N . This polynomial is a non-zero multiple of the sparse resultant R4 [8, Thm.
5.2]. The assumption that R4 is primitive implies that det M/R4 lies in Z[Uy,...,U,|, and so
m(R4) < m(det M).

Let {T}}je; be a unimodular triangulation of @, so that {(r + 1)7}},es is a triangulation of
(r+1) Q. For every ¢ € R™, the set of integer points contained in (r+1) T+« is in correspondence
with a subset of those of (r 4 1)7;. Moreover, for a generic choice of ¢ we loose — at least —
the set of integer points in a facet of codimension 1. Thus

#((r+D)Tj+e)NL" < H#rT;NL" = <2rr> < 22r1

and so
M < #((r+ 1) Ty +e) NZ* < 227~ 44] = 227" Vol(A).
jeJ
Applying Lemma 1.1 we obtain

m(RA) log | det M| + deg(det M) log N
2 M log N

227 log N Vol(A).

INIACIA
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‘We conclude

hMX4) = m(RaSEL) +(r+1) (ZN: 1/214) Vol(A)
< m(Ra)+2(r+1)log Nl\;;l(A)
< 2271 Jog N Vol(A),
as N=#A>2. m]
In case A C (Z>p)" — that is, when Fp,...,F, are polynomials — we set d := max{|a|: a €

A} = deg Fy. We have then N = (dTL”) < (n+1)? and so

h(X4) <227 log(n + 1) d Vol(A).

2 Estimates for local and global heights

In this chapter we study the basic properties of local and global heights that we will need for our
purposes. The key result is a precise estimate for the local height of the trace and the norm of a
polynomial f € K([z1,...,x,] with respect to an integral extension K[A"] — K[V].

We also study some of the basic properties of the height of a variety, in particular its behavior
under intersection with hypersurfaces and under affine maps.

2.1 Estimates for Chow forms

In this section we recall the notion of generalized Chow form of a variety in the sense of Philippon
[47], and we prove a technical estimate for its local height.

2.1.1 Generalized Chow forms

Let V C IA™ be an affine equidimensional variety of dimension r and degree D defined over a
field k.

For d € N we denote by U(d)g a group of ( j;
a group of n + 1 variables, and we set U(d) :=

) variables. Also, for 1 <i <r we denote by U;
{U( )07U17-~-,U}.Set

F = ZU(d)0a$a ; Li=Uo+Uirz1+ -+ Unzy,

loe|<d
for the generic polynomial in n variables of degree d and 1 associated to U(d)g and U; respec-
tively.

Set N := (d:") +7(n+1) and let W C AN x V be the incidence variety of F, Ly,..., L, with
respect to V', that is

W= {(w(d)o,v1,..., ;&) 5 €€V, Fw(d)o)(§) =0, Li(ri)(§) =0, 1 <i<r}.

Let m: AN x A" — AN denote the canonical projection. Then ﬂ'( ) C AN is a hypersurface
[47, Prop. 1.5] and any of its defining equations F4 € k[U(d)] is called a generalized Chow form
or a d-Chow form of V.

A d-Chow form is uniquely defined up to a scalar factor. It shares many properties with the usual
Chow form, which corresponds to the case d =1. We have

Favw(d)o,vi,...,vp) =0V N {F"(v(d)o) =0} N {Liw) =0y n---n {LMw,) =0} #0
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d+n

for v(d)o € E( +) and v; € Enﬂ . Here V. C P™ denotes the projective closure of V', while F"
and L! stand for the homogenization of F' and L; respectively.

A d-Chow form Fyy € k[U(d)] is a multihomogeneous polynomial of degree D in the group of
variables U(d)o and of degree d D in each group U; [47, Lem. 1.8]. When V is an irreducible
variety, Fqv is an irreducible polynomial of k[U(d)]. When V is equidimensional, it coincides
with the product of d-Chow forms of its irreducible components.

Now, let Uy be another group of n 4 1 variables, and consider the morphism
Qd : k[U(d)] - k[U07 Ula cee Ur]

defined by 4(F) = L& and 04(L;) = L; for i =1,...,r, where Ly stands for the generic
linear form associated to Uy .
In other terms

A\, d—lal 17 o d d!
— ... n h =
04(U(d)oa) ( )Uoo Uni Uon where (a) d—|a])

« lag! - !

for || <d, and p4(U;;) =U;; for i=1,...,7 and j=0,...,n.
This morphism gives the following relation between a d-Chow form F4y and the usual one [47,
Proof of Prop. 2.8]:

Lemma 2.1 Let V C A" be an equidimensional variety. Then o4(Fayv) = /\.7-"”} for some
Aek*.

Proof. Tt is enough to consider the case when V is irreducible. Set r :=dimV .

The polynomials oq(F4v) and Fy have both the same zero locus: let v; € A™! for i =
0,...,7. As 0a(Fav) = Fav((0a(U(d)o))a,Ui,-..,U), then o4(Fav)(vo,...,v) = 0 if and
only if V' N {04(F")(vo) =0} N {L¥ (1) =0} N---N {L(v,) =0} #0, that is if and only if

V N {Lg(ro)? =0} N {LY (1) =0} NN {LY (1) =0} #0,

which is clearly equivalent to Fy (vg,...,v.) =0.

On the other hand, as V is irreducible, Fy is an irreducible polynomial, and thus g4(Fqv)
is a power of Fy (modulo a constant A). Since degFy = (r + 1) degV and degoq(Fav) =
(r+1)d degV , we derive that gq(Fgv) = AFE for some A € k*. O

Now assume that V satisfies Assumption 1.5. Then VN {zg = 0}n{z; =0} N...Nn{x, =0} = 0.
Setting e(d), and e; for the a-vector and the (i4 1)-vector of the canonical bases of k(2" and
k"1 respectively, we infer that Fu v (e(d)o,e1,...,e,) — that is, the coefficient of the monomial
U(d)& ULP ---ULP — is non-zero.

We define the (normalized) d-Chow form Chgy of V' by fixing the election of Fyy with the
condition Chy (e(d)o,e1,...,e,) =1.

In the previous construction, U(d)& ULP ... ULP is the only monomial of k[U(d)] which maps
through g4 to UL ---UZP . The imposed normalizations imply then

.Qd(Chd,v) = Ch?/

2.1.2 An estimate for generalized Chow forms

The following technical result is crucial to our local height estimates for the trace and the norm of
a polynomial (Subsection 2.3.2), as well as for the intersection of a variety with an hypersurface
(Subsection 2.2.2). The proof follows the lines of [47, Prop. 2.8].

We adopt the following convention:

Let f € k[z1,...,2,] be a polynomial of degree d. We denote by Fyv(f) and Chqy(f) the
specialization of U(d)o into the coefficients of f in F4y and Chgy respectively.
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Lemma 2.2 Let V C A™(C,) be an equidimensional variety of dimension r which satisfies
Assumption 1.5. Let f € Cylz1,...,2,]. Then

o m(Chdcg f,V(f); S:H—l) +r (Z?:l 1/2 Z) degf dEg V

< deg fhy(V) + hy(f) degV +1og(n + 1) deg f degV
for v=o0,

o hy(Chaeg r,v (f)) < deg fhy(V)+ hy(f) degV  for v=p for some prime p.
We will need the following lemma in order to treat the non-archimedean case:
Lemma 2.3 Let g € Cplyr, ..., Ym], and let Q@ C A™(C,) be a Zariski open set. Then
lglp = max{[g(v)]p; veQ, v, =1}

Proof.— For ¢ € N we denote by G, the set of g-roots of 1 in Q — C,. Let a=(a1,...,am) €
Z™ such that |a;| < ¢. Then

Z co = 0 if a#0,
] g™ if a=0.
ceam

Set g = Y ,aax*. Let ¢ > degg such that |q[, = 1, that is p J¢. Then for any w =
(Wi,...,wm) € (€)™ we have

Qo = walqm Z g(w 6) gia'

¢egm

From the previous expression we derive that for each w € S := {w; |wi|, = 1} there exists &, € G
such that |g|, < max¢|g(w&)|p = |g(wéu)|p. But on the other hand |g(w&,)|, < maxy |aalp =
l9lp - Thus [gl, = [g(w&u)lp -
The set S is Zariski dense in A™(C,), and as G7" is finite, the set {wé,; w € S} N Q is also
dense, and in particular it is non empty. For any 1y in this set we have |g|, = |g(v)], and
therefore:

9l < max{lg(v)|p; v eQ, v], =1}

The other inequality is straightforward. |

Proof of Lemma 2.2.— First we consider the case when V is a O-dimensional variety. We may
assume without loss of generality that V' is irreducible, that is V' = {£} for some & = (&1,...,&,) €
Cy.

Set d:=deg f. Then

Chy =L(&) :=Up+ &+ +Un&n ,  Chay =F(&):=> Uat,

where L and F' denote generic polynomials in n variables of degree 1 and d respectively. Then

hoo (F'(€)) log lmax{lé“"l}

al<d
log max{1, €|}

d hoo (L(£)) :
dm(L(&); Sny1) +d () 1/2i).

i=1

IN
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This last line follows from inequality (1.2). Now, a direct computation shows that

oo (Cha v () < hoo(F(€)) + hoo(f) + log(n + 1) d.
In this case Chqv(f) € C and so

m(Cha,yv(f)) = heo(Chav(f))
< dm(L(€); Sny1) +d (D 1/24) + hoo(f) +log(n +1)d

i=1
dhoo(V) 4+ hoo(f) +1og(n+ 1) d.

n

IN

Analogously, hy,(F(£)) < dhy(L(§)) and so hy(Chav(f)) < dhy(V) + hp(f).

Now we consider the general case. Set v = (v,...,vp) € €LY | L) := vig + v a1 4 - +
Vin T, and

V() :=VnV(L(),...,L)) C A™(C,).
Then V(v) is a O-dimensional variety of degree deg V' for v in a Zariski open set €, of A" (D (C,).
Let v € Q. By [47, Prop. 2.4] there exist A,,0, € C; such that

Chy ) (Uo) = Ay Chy (Uo, v) , Chqv)(U(d)o) = 0, Chayv(U(d)o,v), (2.1)

where Chy (Uy,v),Chqyv(U(d)o,v) stand for the specialization of Us,...,U, into vq,...,v,. Ap-
plying the morphism gy linking the d-Chow form with the usual one we obtain

Chir () = 0a(Chayv () = 0 0a(Cha,v (v)) = 0, Ch, (V)

and so, 0, = A\? in identities (2.1).

We consider the case v = co. Any Zariski closed set of A™("+1)(C) intersects ST, in a set of
Hy, 41 -measure 0, and so the previous relation holds for almost every v € S, |, which means that
for those v, Chav (f,v) =Chyy ) (f)/AL. Therefore

m(Chay (f):S],1) = /S log [Chay (f. )|

T
n+1

/S (log |Chd,V(u)(f)‘ —d log|A,]) MZ-H

-
n+1

IN

/ (dheo(V(¥)) + hoo(f) deg Vi(») + log(n + 1) d deg V(1) — d log | Au]) 41

1

= [ @ U0 S0ir) g s + (/200 degV el ) eV
+ log(ln +1)d degV -

= d /T m(Chv (Uo, v); Snt1) pny1 + (z": 1/24)d degV + hoo(f) deg V'
+ 101;(171 +1)d degV -

= dhoo(V) + hoo(f) degV +1log(n+1)d degV — r(i 1/24)d degV.

i=1

The case v = p follows analogously from the previous lemma, identities (2.1) and the 0-dimensional
case:
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As before, let Q, ¢ A" (™TD(C,) be a Zariski open set such that v € Q, implies that V() is a
0-dimensional variety of degree degV . By Lemma 2.3 we can take v € Q, such that log|v|, =1
and

ICha,v (f)lp = [Cha,v (f;V)lp-
Thus

log |Chd,V(f)|p log |Chd,v(u)(f)‘p —d log |>‘u|p

< dlog|Chyu)lp + hy(f) degV —d log|A|p
= dlog|Chy(Uo,v)|p + hp(f) degV/
< dlog|Chy|p + hy(f) degV.

O

The hypothesis that V' satisfies Assumption 1.5 is essential in order to properly normalize the
involved Chow forms and to define the local height of V. If we disregard normalization, we obtain
altogether the following global result:

Lemma 2.4 Let V C IA™ be an equidimensional variety of dimension r defined over a number
field K, and let Fqy be a d-Chow form of V. Let f € Klx1,...,z,] be a polynomial of degree
d. Then

[K1~Q]( > Nom(ow(Fay ()i Sh)+ Y. Nolog|Fav(£)lo) + r(XiL, 1/2i)d degV
’ veEM® v M2

< dh(V)+ h(f) degV + log(n+1)d degV.

Proof.— Note first that the product formula implies that the left hand side of the inequality does
not depend on the choice of the d-Chow form Fg v .

In case V is O-dimensional, it satisfies Assumption 1.5 trivially. Thus the result follows from direct
application of the previous lemma.

For the general case, we let F4 1 be an arbitrary d— Chow form of V' and we choose Fy so that
od(Fav) = .7:5 holds.

Fix an absolute value v € My . Following the notation in the proof of the previous lemma, for
any v € Q, there exists A\, € €} such that

Chyu)(Uo) = Ay Fy(Uo,v) Cha,v () (U(d)o) = AL Fav (U(d)o, v).

We then proceed as in the previous lemma, and we obtain the corresponding estimate for v.
Adding up these estimates we derive the estimate in terms of the height of the variety. a

2.2 Basic properties of the height

We derive some of the basic properties of the notion of height of a variety. In particular, we study
the behavior of the height of a variety under intersection with a hypersurface and under an affine
map.

We also obtain an arithmetic version of the Bernstein-Kushnirenko theorem.

2.2.1 Height of varieties under affine maps

Let ¢ : A™ — IA™ be a regular map defined by polynomials ¢1,...,¢0m € K[z1,...,z,]. We
recall that the height of ¢ is defined as h(yp) := h(p1,...,Pm)-

We obtain the following estimate for the height of the image of a variety under an affine map:
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Proposition 2.5 Let V C A" be a variety of dimension r, and let ¢ : A" — AN be an affine
map. Then
he(V)) <h(V)+ (r+1) (h(p) + 8 log(n + N + 1)) deg V.

The proof of this result follows from the study of the particular cases of a linear projection and an
injective affine map.

The following estimate for the height of a linear projection of a variety generalizes [11, Prop. 2.10]
and [5, 3.3.2]. Tts proof is essentially based on the description of the Chow form of such projection
variety, due to Pedersen and Sturmfels [46, Prop. 4.1].

Lemma 2.6 Let V C A" x IA™ be a variety of dimension v, and let w: A™ x A™ — IA™ denote
the projection (z,y) v x. Then

h(n(V)) < (V) +3(r+1) log(n+m+ 1) deg V.
Proof. We assume without loss of generality that V is irreducible. Set W := m C A™ and
s:=dimW.
The case s = r follows directly from [46, Prop. 4.1]: in this case, there exists a partial monomial
order < such that
Fw | initFy,

where initFy denotes the initial polynomial of Fy with respect to <. In particular initFy is
the sum of some of the terms in the monomial expansion of Fy .

The general case s < r reduces to the previous one: we choose standard coordinates zg41,..., 2,
of JA™ such that the projection
w: A" x A" — A" x A"? , (z,y) — (z,2)

verifies dim Z = r for Z := w(V).
Let o : A™ x A" — JA™ denote the canonical projection. Then Fy |initFy, m = pow and

W = o(Z). We have that o=(§) = {¢} x A"=% for £ € o(Z) by the theorem of dimension of
fibers. Thus Z =W x JA"~%, and in particular
i(W)=2ZNV(zs41,y--.,2-) C A" x A",
where ¢ denotes the canonical inclusion A™ — A™ x A""°. We have degW = degZ and so
Fw = Fz(2s41,..-,2-) is a Chow form of W [47, Prop. 2.4].
Now we estimate the height of Fy . Let K be a number field of definition of V', and set
initFy = Q Fyz

for some polynomial @ . From the proof of [47, Lem. 1.12(v)], there is a non-zero coefficient A of
Q@ such that log|A|, < m(o,(Q)) for all v € M. Clearly log|\|, < log|Q|, also holds for all
v ¢ Mz2. Thus

m(oy(Fz)) < m(o,(initFy)) — log |Al,
for v € Mg, while log|Fz|, < log|initFy|, —log|\|, for v & M.
Let v € M3?. From [47, Lem. 1.13] we obtain m(o,(Fw)) < m(o,(Fz)). Hence

m(oy(Fw)i Spt1) < mlow(Fw))
< m(o,(initFy)) — log|Aly
< logl|initFy |, + (r +1) log(n +m + 1) degV — log |\,
< log|Fv|y + (r+1) log(n +m+1) degV — log|Al,
n+m
<m0y (Fv )i Splpury) + (r+1) (D 1/2i) degV
i=1

+2(r+1) log(n+m+1) degV —log|Al,
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by application of Lemma 1.1 and inequality (1.2). In case v ¢ M3® we have analogously log |Fy |, <
log |Fv |y — log |\l , and so

h(V) + (s+1) (i 1/24) degV +2(r+1) log(n +m + 1) deg V'

R(V)+3(r+1)log(n+m+1) degV.

h(W)

IN

IN

The following is a variant of [49, I, Prop. 7]:

Lemma 2.7 Let V C IA™ be a variety of dimension r, and let ) : A™ — IA™ be an injective
affine map. Then

h((V)) < h(V) 4 (r+1) (h(¥) + 5 log(n + 1)) deg V.

Proof.— We assume again without loss of generality that V is irreducible. Let K be a number
field of definition of both V' and 1, and set ¢ (z) = a+ A x for some m xn— matrix A of maximal
rank and @ € K™. Then let ¢* : A" — A™F! be the linear map y +— (a, A)'y defined by
the transpose of the matrix associated to .

Set W := o(V), and let V C P™, W C P"™ denote the projective closures of V and W
respectively.

. —n+1
For i =0,...,r welet v; € QnJr ,and we set L'(v;) :== vioxo + ...+ Vinx, for the homoge-
nization of the associated linear form. Then Fy (vp,...,v,) = 0 if and only if there exists £ € V
such that 1(€) lies in the linear space determined by vy, ..., v, . Equivalently ¢ lies in the linear

space determined by ¥*(vp),...,¥*(v). We conclude that
Fw = Fyo ()Tl

Let v € Mz?. Then

m(oy(Fw), S;ii) < log|Fwly + (r+1) log(n + 1) deg V'
< log|Fvle + (r+1) (he(¥) + 2 log(n+1)) degV + (r + 1) log(n + 1) deg V'
< m(ou(Fv))+ (r+1) log(m+1) degV + (r +1) (hy(¢) + 3 log(n + 1)) degV/
< m(o(Fv), Spih) + (O 1/20) (r+1) degV

=1
+ (r 4 1) (hy () + 4 log(n + 1)) deg V.

Here we have applied Lemma 1.1, inequality (1.2) and the proof of Lemma 1.2(c), using the fact
that the number of monomials of Fy is bounded by (n + 1)("+1) degV",

In case v & M7® we obtain analogously log|Fw |, < log|Fy |y, + (r + 1) hy(¢) deg V', and hence

R((V)) < h(V) 4 (r 4+ 1) (h(¥) + 5 log(n + 1)) deg V.

O

Proof of Proposition 2.5.— Let ¢ : A" — AN x JA™ be the injective map = — (¢(z),z). Then ¢
decomposes as
p=moy,
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where 7 : AN x A" — AN denotes the canonical projection. Thus

h(p(V))

IN

h(p(V))+3(r+1) log(n+ N +1) deg)(V)

R(V)+ (r+1)(h(¢)) +5log(n+ N +1)) degV +3(r+1) log(n+ N + 1) deg V'

IN

h(V) 4+ (r+1) (h(p) +8log(n+ N + 1)) deg V.

2.2.2 Local height of the intersection of varieties

We obtain the following estimate for the local height of the intersection of a variety with an
hypersurface. This is a consequence of our previous estimate for generalized Chow forms. This
result can be seen as the local analogue of [47, Prop. 2.8], and its proof closely follows it.

Proposition 2.8 Let V C A" be an equidimensional variety of dimension r defined over a
number field K . Let f € K[z1,...,2zy] be a polynomial which is not a zero-divisor in K[V]. We
assume that both V. and VNV (f) satisfy Assumption 1.5.

Then there exists A € K* such that

o h,(VNV(f)) <degfhy(V)+hy,(f) degV+log(n+1) deg f degV —log|A|, for ve Mp?,
o h,(VNV(f)) <degfhy(V)+hy(f) degV —log |, for ve¢ M.

Proof.— Set d := degf and W := VN V(f) C A™. By [47, Prop. 2.4] there exists @ €
K[Ui,...,U; ]\ {0} such that Chqv(f) = QChw . Then — as in the proof of Lemma 2.6 —
there exists a non-zero coefficient A\ of @ such that log |\, < m(c,(Q)) for all v € M3® and
log |Aly <log|Q|, for all v ¢ M.

Now let v € Mz? . From inequality (1.2) we obtain

n

log [\l < m(04(Q)) < m(0y(Q); Spyr) +7 (D 1/2i) (d deg V — deg W)

i=1
since @@ has degree d degV — deg W in each group of variables. Then

hy(W) = m(UU(ChW);SZL+1)+r(Zl/2i) deg W
= m(0u(Chay (f)); Spar) +7(D_1/2i)d degV

i=1
n

= m(ou(Q); Spyn) =7 (D_1/21) (d deg V' — deg W)

< dhy(V)+ hy(f) degV +log(n+1)d degV — log |Al,.
by straightforward application of Lemma 2.2. The case v ¢ M follows in an analogous way. O
Proposition 2.8 can be immediately generalized to families of polynomials:

Corollary 2.9 Let V C IA™ be an equidimensional variety of dimension r defined over K . Let
fiyooo, fs € Klxq,...,2,] be polynomials which form a complete intersection in V. We assume
that VNV (f1,...,f;) satisfies Assumption 1.5 for i =0,...,s. Set d; :=deg f; .

Then there exists A € K* such that
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o h(VNV(fi,..o, fs)) < (ho(V)+ (32, ho(fi)/di) degV + s log(n+1) deg V) [1,; di —log |\,
for ve My,

o hy(VOV(fi,.. s fs) < (ho(V) + (32 ho(fi) /di) deg V) TI; di —log A, for v & Mg .

Proof.— We just consider the case when v is archimedean, as the other one follows similarly. From
the preceding result we obtain

hU(V n ‘/r(fl7 RN fz)) < d; hv(V N V(fl, ceey fifl)) + hv(fl) deg(V N V(fl, RN fi71>)
+ log(n +1)d; deg(V NV (f1,..., fi-1)) —log|Ail,

for some \; € K*. For the final estimate we apply iteratively this inequality and we set X\ :=
H::1 )\?7‘,+1"'ds ' -

Corollary 2.10 Let f1,...,fs € K[x1,...,2,] be polynomials which form a complete intersection
in ™. We assume that V(f1,...,f;) satisfies Assumption 1.5 for i =1,...,s. Set d; :== deg f; .
Then there exists A\ € K* such that:

ho(V(fi,..o, fs) < (O ho(fi)/di + (n+s) log(n+ 1)) [[, di —log |, for ve Mg,

ho(V(f1,.., fs)) < (Zz hy(fi)/d:) Hz di —log |Aly for v ¢ M2

Proof.— We apply the previous result to V := A" | using the fact that

A™) :iil/zj < nlog(n+1) ) hy(A™) = 0.

i=1 j=1

O

The following is the global counterpart of the previous results. It can be seen as an arithmetic
analogue of [24, Prop. 2.3].

We remark that in the global situation, we do not need to assume Assumption 1.5 for the inter-
mediate varieties. In particular fi,..., fs do not need to be a complete intersection in V.

Corollary 2.11 Let V. C A" be a variety of dimension v, and let fi,...,fs € Qlz1,..., 7).
Set d; :=deg f;, h:=h(f1,...,fs) and ng := min{r,s}. We assume that d; > ... > ds holds.
Then:

MV OV (fi, ..., fs) < (h(V)+ (Zl/di)hdegV—i—no log(n + 1) degV)Hdi.

Proof.— We proceed by induction on (r,s) with respect to the product order on IN x IN defined
by (r,s) > (r',8) < r>r" and s > ¢ .

The case when r = 0 or s = 0 are both trivial. Now let r,s > 1, and we assume that the
statement holds for all (/,s’) < (r,s) such that (+/,s") # (r,s).

Let V = Ug C be the decomposition of V' into irreducible components. In case C' C V(fs) we
have that C NV (f1,...,fs) =CNV(f1,...,fs—1) and by the inductive hypothesis:

MC OV (fi,.... fs) < (R(C) + (Zl/di)hdegC—f—mo log(n +1) degC)Hdi

with mg := min{r,s — 1}.
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In case C' ¢ V(fs) we have either CNV(fs) =0 or dim(C NV (fs)) <r —1. The first case is
trivial. For the second case, we proceed as in the proof of Lemma 2.8 applying Lemma 2.4 instead
of Lemma 2.2, and we obtain

hCNV(fs)) <dsh(C)+ h degC +log(n+1)d degC.

Since then dim(CNV(fs)) = r—1, we can apply the inductive hypothesis to the variety CNV(f;)
and we obtain

71,071 ’I’Lofl

WCOV(fi,. o f) < (WCAV(£))+ (D 1di)h deg(CnV(fo) [] di

=1 i=1

+ (no — 1) log(n + 1) deg(C NV (fs)))

A

no

(h(C) + (Z 1/d;) h deg C' + ng log(n + 1) deg C') ﬁdi.

=1 i=1

IN

Finally

MVAV(in--Nf) < D WCAV(fin---nf))
C

no no

D (W(C) + (D 1/di) h deg C +ng log(n + 1) deg C) [ di

C i=1 =1

IN

no o

= (M(V)+(>_1/d;) h degV +ng log(n + 1) deg V) [ [ d.

i=1 =1

With the same notations of Corollary 2.11, for V := JA™ we obtain

no

MOV (Fae oo ) < (32 1/ bt (0 -+ mo) Tog(n + 1)) T[ s

i=1 i=1

2.2.3 An arithmetic Bernstein-Kushnirenko theorem

From our estimate for the height of an affine toric variety (Proposition 1.7) and the previous results
of this section we derive the following arithmetic version of the Bernstein-Kushnirenko theorem.
We refer to Subsection 1.2.5 for the notation.

Proposition 2.12 Let fi,...,fs € K[z1,...,z,], and set A := Supp(l,z1,...,Zn, f1,...,fs) C
(Z>o)™. Also set d:=max;deg f; and h:=h(f1,...,fs). Then

o degV(f1,...,fs) < Vol(A),
o W(V(f1,...sfs)) < (nh+ 22+ log(n + 1) d) Vol(A) .

Proof.— Set A :={ai,...,an}. The case N =1 is trivial, and so we assume N > 2. We also
assume that «q,...,q, are the vectors of the canonical basis of R".

The map ¢4 : A" — AY induces an isomorphism between A" and the affine toric variety
X4 C AN . The projection map 74 : AY — A" defined by y — (y1,...,yn) restricted to X 4
is the inverse map of ¢ 4.
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. N .
For i=1,...,s weset f; =3 ,_;a;;x* and we let

N

gi = Zaijyj GK[yl,...,yN]
j=1

be the associated linear form. Set V := V(f1,...,fs) C A™ and W := XNV (ly,...,ls) C AN .
We have (V) =W and so V =m4(W). Then

degV < degW < deg X 4 = Vol(A)

and

=
S
A

h(W)+3(n+1) log(N +1) degW
MX4)+nhdeg(Xa)+4(n+1)log(N +1) deg(X4)
< (nh+ (22" log N +4(n+1) log(N + 1)) Vol(A).

IN

by successive application of Lemma 2.6, Corollary 2.11 and Proposition 1.7. Finally N < (di")

and so h(V) < (nh + 22+ log(n + 1) d) Vol(A) . o

It seems that the factor 22" in the estimate of h(X4) is superfluous. If this is the case, the above
estimate can be considerably improved. Maillot has recently obtained another estimate for the
height of the isolated points of V'(f1,..., fs), which is more precise in some particular cases [42,
Cor. 8.2.3].

2.3 Local height of norms and traces

Let V C JA™ be an equidimensional variety of dimension r and degree D defined over a field &
which satisfies Assumption 1.5. As we will see below, this implies that the projection my : V' — A"
defined by x + (x1,...,7,) is finite (Lemma 2.14). Set L := k(A") and M := L @ pr k[V], so
that M is a finite L-algebra of dimension D .

Let f € k[zy,...,z,]. We identify f € k[V] with the multiplication map M — M defined by
g — fq. ;From Hamilton-Cayley theorem, we derive that the characteristic polynomial Xy € L[t]
of this map verifies X;(f) =0.

The fact that the inclusion 7} : kK[A"] — k[V] is integral implies that the minimal polynomial
my of this map lies in k[A"][t]. We have that X | m? in L[t], and so Gauss lemma implies that
Xy lies in fact in k[A"][t].

Moreover the natural map k[V] — M is an inclusion, as V is an equidimensional variety, and so
X (f) =0 in k[V].

Set Xp =tP +bp_1tP~1 +---+by € k[A"][t]. Then the norm Ny (f) and the trace Try (f) of
f are defined as

Ny (f) := (=1)P by € kK[AT] Try (f) := —bp_1 € k[A"].

They equal the determinant and the trace of the L-linear map f: M — M respectively. We also
define the adjoint polynomial f* of f as

= ()P (P by P4 b)) € K[, 1)

From the identity X;(f) =0 we obtain that f*f = Ny (f) in k[V].

The key result of this subsection is a precise bound for the height of the norm and the trace of a
polynomial in case k is a number field.
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2.3.1 Characteristic polynomials

Let V C A™ be an equidimensional variety of dimension r and degree D defined over k. We
keep notations as in Subsection 2.1.1: for d € IN we denote by F := 37 ,;U(d)oaz® and
L; :=Ujo+Uj1x1+ -+ U;,z, the generic polynomial of degree d and 1 associated to the
group of variables U(d)y and U; respectively.

As before, we set U(d) := {U(d)o,Us,...,U,} and N := (d+”) +7r(n+1). Also we introduce an

n
additional group T := {Ty,...,T;} of r+1 variables which correspond to the coordinate functions

of A"t1. We consider the map

Y AN x A" — AN x WY (v(d), €) — (v(d), F(v(d)o)(€), Li(v1)(€),..., L.(1,.)(€)).

where v(d) := (v(d)o,v1,...,v,) € AN and £ € A™.

Then the Zariski closure (AN x V) ¢ AN x A" is a hypersurface, and any of its defining
equations Pqy € k[U(d)][T] is called a d-characteristic polynomial of V. Also we define the
characteristic polynomial of V' by Py =Py .

A d-characteristic polynomial is uniquely defined up to a scalar factor. In case V is irreducible,
(AN x V) is an irreducible hypersurface and thus P4y is an irreducible polynomial. When V/
is equidimensional, it coincides with the product of d-characteristic polynomials of its irreducible
components.

The following construction links the characteristic polynomial of a variety with its generalized
Chow form. Set

U(d)oo - TO fora=0

U(d)oa for a # 0.
Analogously, for i =1,...,r we set (jo := U;jo —T; and (;; := U;; for j # 0. Finally we set
C(d) = (C(d)o, Cy-ees <T> :

Lemma 2.13 Let V C IA™ be an equidimensional variety of dimension r and degree D . Let
Fav be a d-Chow form of V.. Then Fqv o((d) is a d-characteristic polynomial of V .

Proof.— It is enough to consider the case when V is irreducible.
Let P4y be a d-characteristic polynomial of V. For (v(d),&) € AN x V we set

0= (F(v(d)o)(€), Li(n)(€),. .-, Ln(v:)(€)) € A™,
so that Py v (v(d))(¥) = 0. We observe that
eV N {Fw(d)o)(z) =7Do} N{L1(n)(z) =D} O--- 0 {Lr(v,)(2) = Jr)} C A"

In particular, this variety is non-empty, and so we infer that F4y o((d)(v(d),9) = 0. This implies
that Py v|Fav o ((d) as Pqy is an irreducible polynomial.

On the other hand Fy v o((d) is also irreducible, as it is multihomogeneous and Fy v o((d)(U(d),0) =
Fav(U(d)). We conclude that Py and Fyy o ((d) coincide up to a factor in k*. O

The previous construction shows that a d-characteristic polynomial of V' is multihomogeneous of
degree D in the group of variables U(d)o U {Tp} and of degree d D in each group U; U {T;}.

Set kq :=k(U(d)), and set
¢ A" (kg) — A" (kg) , x— (F(x),Li(x),..., L.(x)).

Then Pyv € kq[T] is also a minimal equation for the hypersurface ¢(V'), and by Bézout inequality
we have also deg;Pq v < dD (see e.g. [50, Prop.1]).
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We assume from now on that V' satisfies Assumption 1.5, that is #W;l(()) = degV . In order to
avoid the indeterminacy of the d-characteristic polynomial, we fix it as

Pav = (—1)P Chay o ¢(d).

In particular, we set Py := (—1)” Chy o ((1) for the characteristic polynomial of V.

Set Py := ap TOD 4+ -+ 4+ ag for the expansion of Py with respect to Ty. We have that Py
is multihomogeneous of degree D in each group U; U {T;}. This implies that ap lies in fact in
k[Uy,...,U,] and is multihomogeneous of degree D in each U; for i =1,...,r.
Moreover, ap coincides with the coefficient of UZ in Chy , and the imposed normalization on
Chy implies that

ap(ei,...,e.) =Chy(ep,e1,...,6.) = 1.
We extend the morphism g4 of Subsection 2.1.1 to a morphism k[U(d)][T] — k[Uo,...,U:][T]
defining 04(U(d)oo — To) := (Ugo — Tp)¢ and 04(T;) :=T; for 1 <i < r. In other terms

d
ouly) =31 () Ui .

j=1
From the previous lemma we obtain
0a(Pay) = 0a((—=1)"Cha,v o ((d)) = (-1)P(Chv 0 ((1))* = (-1){"*VPPY.
Now set
Pav =aap T +-- +aqo
for the expansion of Py with respect to Ty . The previous remark implies that a4 p = ga(aq,p) =
a%, . In particular aqp € k[Ui,...,U,] and agp(er,...,e.) =1.
The following lemma allows us to obtain a characteristic polynomial of f € k[x1,...,z,] from the

d-characteristic polynomial of the variety V.

We introduce the following convention:

Given a polynomial f € k[z1,...,z,] of degree d and linear forms f¢1,...,¢, € k[x1,...,2,], we
denote by Pyv(f,l1,...,¢) the specialization of the variables in U(d) into the coefficients of
fola, .o by

Lemma 2.14 Let V C IA™ be an equidimensional variety of dimension r and degree D which
satisfies Assumption 1.5. Then the projection wy : V — IA" is finite.
Moreover, for a polynomial f € k[xy,...,x,] of degree d, the characteristic polynomial of f is
given by

Xf = Pd,V(fv €15, er)(ta Ty 71'7“) € k“‘AT][t]

Proof.— We have that Py (U, ...,U.)(Lo,...,L,) =0 in k[U] ® k[V] and so
Py (ej er,... ex)(t,x1,...,z,) € k[A"][t]

is a monic equation for x; in k[V], for j =r+1,...,n. Thus the projection my is finite.

For the second assertion, set
Prp(t) :==Pav(U(d)o, €1, er)(t, T1,...,2r) € k[U(d)o][AT][t].

This is a polynomial of degree D. It is monic with respect to ¢, as aqp € k[U1,...,U;] and
ag.p(e1,...,e.) =1. We have Pp(F) =0 in k[U(d)o] ® k[V].

Now let mp be the monic minimal polynomial of F. Let U’(d)o be a group of (
and set Fy for the generic polynomial of degree d in the variables x,41,..., T, .

d+n—r

) variables
n—r
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Then
mp(U'(d)o,0) € k[U'(d)o][t]

is an equation for Fyy over 7' (0). Since 7,'(0) is a O-dimensional variety of degree D and Fy
separates its points, we infer that degy;, mr = D, and so Pr = mp.
Finally we obtain

Xf = Xp(f) = PF(f) = ’de(ﬁel, .. .,er)(t,ml, P ,.’L'T).

2.3.2 Estimates for norms and traces

Finally we prove the announced estimates for the height of the norm and the trace of a polynomial.

Lemma 2.15 Let V C A™ be an equidimensional variety of dimension r defined over K which
satisfies Assumption 1.5. Let f € K[x1,...,x,]. Then

e degNy(f) < degf degV,
o hu(Ny(f)) < deg £ ho(V) + ho(f) degV + (r + 1) log(n + 1) deg f deg V' for v e M,
o ho(Ny(f) < deg fhu(V) + ho(f) deg V. for v ¢ M.
Proof.— We keep notations as in Subsection 2.3.1. Set d :=deg f and D := degV . We have then
Ny (f) = (—1)D77d,v(f,el7 coer)(0,21, .., x) =Chav(f,e1 —eo 1, ..., 60 — €0 Ty)
by Lemmas 2.14 and 2.13. Then
degNy (f) < degyPayv < dD.

From the previous expression we also obtain that the coefficients of Ny (f) are some of the coeffi-
cients of Chqv(f), and so [Ny (f)]y <|Chav(f)|s for every absolute value v of K.

Let v € Mz . Then
log [Nv(f)ls < log|Cha,v(f))lv
< m(oy(Chay (£)); Spy) +7 (O 1/2i)dD +r log(n +1)d D
=1

< dhy(V) +hy(f) D+ (r+ 1) log(n +1)d D

by inequalities (1.1) and (1.2), and Lemma 2.2. In a similar way we obtain h,(Ny (f)) < dh,(V)+
ho(f) D for v ¢ Mz®. O

The proof of the following lemma follows closely that of [50, Lem. 9]. We slightly improve the
degree estimate obtained therein, and we get the corresponding height estimate.

Lemma 2.16 Let V € A" be an equidimensional variety of dimension v defined over K which
satisfies Assumption 1.5. Let f,g € Klx1,...,x,] such that f is not a zero-divisor in K[V]. Set
d := max{deg f,deg g} and h, := max{h,(f), h,(g)} for v € Mg . Then

o degTry(f*g) <ddegV,

o hy(Try(f*g)) < dhy(V)+ (hy +1og2) degV + (r +1) log(n +1)d degV for ve MY,
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o hy(Try(f*g)) <dh,(V)+h, degV  for v ¢ M¥.

Proof.— Let D := degV , and let t be a new variable. Then Klxq,...,2,,t] — K[V x Al]
is again an integral inclusion and Ny, p1(t — f*g) = Xpy(t). Set Q(t) := Ny pni1(tf —g) €
Klxy,...,z.,t]. Since f* f = Ny(f) we have that Ny (f*) = Ny (f)P~!, and so

Ny (£)P7'Q =Ny (f*)Q = Xpg(Ny (f)t).

Set Q =cptP +---+co with ¢; € K[IA"]. The last identity implies then Try(f*g) = —cp_1.
Set ¢ > D, and let G denote the group of g-roots of 1. Then Q(w) = Ny (w f —g) for w € G,
and so

Ty (£'g) ==, 3 Nl f—g)u! .
welGy

From Lemma 2.15 we get deg Try (f*g) <dD.
For v € Mg, we then obtain

ho(Try (f*g)) < ul}é%x ho(Ny(wf—9)) <dh,(V)+ (hy +log2) D+ (r +1) log(n+1)dD.

Analogously, for v ¢ M we take ¢ > D such that |¢|, = 1, and we obtain h,(Try(f*g))

<
dhy(V)+hy D. O

3 An effective arithmetic Nullstellensatz

In this chapter we obtain the announced estimates for the arithmetic Nullstellensatz over the ring
of integers of a number field K . Theorem 1 in the Introduction corresponds to the case K := Q.
These estimates depend on the number of variables and on the degree and height of the input
polynomials.

3.1 Division modulo complete intersection ideals

A crucial tool in our treatment of the arithmetic Nullstellensatz is the trace formula. One of its
outstanding features is that it performs effective division modulo complete intersection ideals [19],
[13], [32], [50], [16], [22]. In this section we apply the trace formula to obtain sharp height estimates
in the division procedure.

3.1.1 Trace formula

We describe in what follows the basic aspects of duality theory for complete intersection algebras
that we will need in the sequel. We refer to Kunz [34, Appendix F] for a more complete presentation
of this theory.

Let k be a perfect field, and set A := k[t1,...,t,] and Alz] := Alxy,...,x,]. Let F :=
{Fy,...,F,} C Alz] be a reduced complete intersection which defines a radical ideal (F') of
dimension 7.

We consider the A-algebra

B := Alz]/(F) = Alz1, ..., xn)/(F1,..., Fp).

We assume that the inclusion A — B is finite, that is the variables t¢1,...,t. are in Noether
normal position with respect to the variety V := V(F) C A"™™. This is the case, for instance,
if V satisfies Assumption 1.5. Thus B is a projective A-module, which turns to be free of rank
bounded by deg V' by the Quillen-Suslin theorem.
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The dual A-module B* := Hom4(B, A) can be seen as a B-module with scalar multiplication
defined by f-7(g) :=7(fg) for f,g € B and 7 € B*. It is a free B-module of rank 1 and any
of its generators is called a trace of B.

The following construction yields a trace ¢ canonically associated to the complete intersection F'.
We take new variables y := {y1,...,yn}, and we set Fl-(m) = Fi(z) € Alx] and Fi(y) = F;(y) €
Aly]. Then Fi(y) - Fi(m) belongs to the ideal (y3 —x1,...,Yyn —x,) and so there exist (non unique)
P;; € Alz,y] such that

FY —F" =3 Py(e,y) (4 — ;).
j=1
for i =1,...,n. We consider the determinant A € Afz,y] of the square matrix (P;;);;, and we

write it as
A= Z A b,
m

with a,, € A[z] and b, € Aly]. Again, the polynomials a,,,b,, are not uniquely defined. The
polynomial A € A[z,y] is called a pseudo-Jacobian determinant of the complete intersection F .

Set ¢y, := b (x) € Alz]. Then there exists a unique trace o € B* such that for g € Afz]

g=> 0(gan)en

m

where the bar denotes class modulo (F'). This identity is known as the trace formula.

Let J := det(0F;/0z;);; be the Jacobian determinant of the complete intersection F with respect
to the variables z1,...,z,. Then the following identity —which justifies the name of pseudo-
Jacobian for A— holds

J= Z @ Com-

The standard trace Try is related to o by the equality
Try () = o(J9)

for all g € Alx].

3.1.2 A division lemma

Throughout this subsection we keep notations and assumptions as in the previous one, but we
replace k by a number field K. Set d := max; deg F; and h, := max; h,(F;) for v € Mg . Here
deg F; denotes the total degree of F; as an element of K[t1,...,t.][T1,...,25].

We will choose concrete polynomials a,,, ¢, which satisfy the trace formula, and we will estimate
their degree and local height.

First we choose the polynomials P;; . Remarking that
n
Fz(y) - Fz(m) = ZFi(xlv"wxjflvij"‘vyn) _Fi(xlw"7mj7yj+17"’7yn)7
j=1

we set
Py = (Fi(mlw"axjfhyja"wyn) _Fz<x17ax]ayj+1aayn))/(yj _'rj)
Here we perform the division through the formula
(yf - ?)/(yj —xj) = yffl +yF a4ty :cf*z + mffl.
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We set A := det(P;;);;. Finally we choose b,, € Aly] as the monomials in the expansion of A
with respect to y, a,, € Alz] as the corresponding coefficient, and we set ¢, := by, ().

Set F; =3 Aijqz® with A;, € A. Then

Py = ZAm M xfi’fyj’ﬁl ~~yf{"(y§“"_1 +-- 4 x?j_l) € Alz,y|.
We deduce that deg Pj; < d—1 and hy(P;;) < h, for every v € Mg . Then degA <n(d—1)
and so
deg a,, +degey, <n(d-—1).

We have also hy(cp,) =0 and hy(am) < hy(A).
Finally we can write

Pij = C() + - +Cd71 y}ifl,

where each Cy € Alz1,...,%j,¥j+1,.-.,Yn] Is a polynomial in n + r variables of total degree
bounded by deg P;; < d — 1. This implies that the number of monomials of F;; is bounded by

d(n-‘r:;if—l) S d(n+7‘+ 1)d—1 .

Therefore, for v € Mz® we have

hylam) < hy(A)
< nhy+(n—1)(logd+ (d—1) log(n+r+1)) +n logn
< n(hy+dlog(n—+r+1)+logd). (3.1)

Analogously we have h,(a,;,) <nh, for v ¢ M.

The following is a sharp estimate for the degree and local height of the polynomials in the division
procedure. It is a substantial improvement over [32, Thm. 29].

We introduce the notation deg, f and deg, f for the degree of a polynomial f € A[z] with respect
to the group of variables ¢t and x, respectively.

Main Lemma 3.1 (Division Lemma)
Set A := K[t1,...,t,] and Alx] :== Alxy,...,x,]. Let F :={F,...,F,} C Alx] be a reduced
complete intersection defining a variety V := V(F) C A" which satisfies Assumption 1.5. Set
B:=K[V] = Alz]/(F) . _ _
Let f,g € Alx] be polynomials such that f € B is a non-zero divisor and f|g in B. Set
d := max{deg f,deg F1,...,deg F,,} and h, := max{h,(f), ho(F1),..., hy(Fp)} for ve Mk .
Then there exist q € Alz] and £ € K* such that

*if=3

e deg, g <nd,

o degqg <deg,g+ (nd+ max{(n+1)d,deg, g})degV,

* hy(q) < hy(g) + (nd +max{d, deg, g}) hys(V)

+ ((n4+1)hy + (r+6) log(n+r+1) (nd + max{(n + 1) d,deg, g})) degV’
+ 2 log(r + 1) deg, g —log [£],

for ve Mg,

o 1,(q) < hy(g) + (nd + max{d,deg, g}) h(V) + (n+ 1) hy, degV — log ||,
for v¢ M.

33



Proof.— Set L := K(ty,...,t,) for the quotient field of A and M := L®4 B. Then M is a finite
L -algebra of dimension degV and o can be uniquely extended to a L-linear map o : M — M .
The fact that B is a torsion-free A -algebra implies that the canonical map B — M is an inclusion.

We will only consider the case n > 1. For the case n = 0 we refer to Remark 3.2. Whenever it
is clear from the context, we will avoid explicit reference to the ring in which we are considering a
given element of Alx].

Let go € Alz] be any polynomial such that ¢o f = ¢ in B. We have that f is a non-zero divisor in
B, and so it is invertible in M. Then ¢y = f~'g in M and therefore o(f~'gp)=o0o(gp) € A
for all p € A[z]. Then we set

q:= Za(f_l gam) cm € Alz].

m

Trace formula implies that ¢ = ¢9 (mod (F)),and so ¢f =g in B.

Let J € A[x] denote the Jacobian determinant of the complete intersection F' with respect to the
group of variables x. This is a non-zero divisor because of the Jacobian criterion (see for instance
[9, Thm. 18.15]), and so it is also invertible in M .

Let (J f)* be the adjoint polynomial of J f and set

A i=Try ((J f)*gam) € A.
We have J f (J f)* =N(J f) € A\ {0}, and so
A /NI ) = TH((J ) gam) = o(f " gam) € A

In particular N(J f)|A,, in A, and we have the expression

1
1= X 2 mem

In the sequel, £ € K* will be any non-zero coefficient of N(J f).

Let us consider degrees. Clearly deg, ¢ < max,, degc,, < n(d—1) <nd.

Next we analyze the total degree of ¢. Let g:=)"_ po2® be the monomial expansion of g with
respect to x. Then

Am =Y pa Te((Jf) 2 ap), (3.2)
«
as Tr is a A-linear map. We have the estimates deg(J f) < n(d—1)+d < (n+1)d and
deg(x® ap,) < deg, g + dega,, , from where we get
deg Tr((Jf) 2% am) < max{(n + 1) d,deg, g + deg a,, } deg V'
by Lemma 2.16. Thus

degg < deg, g+ max{max{(n+1)d,deg, g+ dega,,} degV + degc,,}

< deg, g + max{max{(n + 1) d + deg ¢, deg, g + dega,, + dege,, }} degV
< deg,g+max{(n+1)d+nd,deg, g+ nd}degV
< deg,g+ (nd+max{(n+1)d,deg, g})degV.

For the rest of the proof, we will use several times the following basic estimates:
max{deg(J f),deg(z a;n,)} < nd+ max{d,deg, g},
deg Tr((Jf)*z% am)

A

(nd + max{d, deg, g}) deg V.



Finally we estimate the local height of ¢. Let v € Mz®. We have h,(0F;/0z;) < h, +logd and
0

ho(J) <n(hy, +1logd) + (n—1) log(n+r+1)(d—1)+nlogn < n(h, +log(n+r+1)d+logd).
Therefore

ho(Jf) < n(hy, +log(n+r+1)d+logd) + hy, +log(n+r+1)d
(n+Dhy+(n+1)log(n+r+1)d+nlogd (3.3)

A

by Lemma 1.2(b). We recall that h,(z*am) < n(h, +log(n +r+ 1)d +logd) by inequality
(3.1) and so

max{h,(J f), ho(@® am)} < (n+1)hy + (n+1) log(n+r +1)d + n logd.

Then
ho(Te((J f)"2%am)) < (nd+ max{d,deg, g}) hv(V)
+ ((n+1hy + (n+1) log(n+7r+1)d+nlogd +log2) degV’
+ (r+1) log(n+r +1)(nd+ max{d,deg, g}) degV
< (nd+ max{d,deg, g}) ho(V) 4+ (n+1) hy + (2n+1) log(n+7r+1)d) degV'

+ (r+1)log(n+r+1)(nd+ max{d,deg, g}) degV

by Lemma 2.16.
By considering separately the cases deg, g < (n+1)d and deg, g > (n+ 1) d we obtain

@2n+1)d+ (r+1)(nd+deg,g) <deg,g+nd+ (r+1)(nd+deg,g) < (r+2)(nd+deg,g).
We conclude:

ho(Tr((J f)"2%am)) < (nd+ max{d,deg, g}) hu(V)
+ ((n+1D)hy+ (r+2)log(n+7r+1)(nd+ max{(n+1)d,deg, g})) deg V.

Hence

IN

ho(A) < max{hy(po Te(J )20} + log(n + 1) deg, g

IN

h(9) + max{hy, (Te((J ) 2%am))}
+ log(r+ 1) (nd + max{d, deg, g}) degV +log(n + 1) deg, ¢

ho(9) + (nd + max{d, deg, g})h, (V)
+ ((n+Dhy+ (r+2)log(n+r+1)(nd+max{(n+1)d,deg, g})) degV

IN

+ log(r + 1) (nd + max{d,deg, g}) deg V +log(n + 1) deg, g

ho(g) + (nd + max{d, deg, g}) hv(V)
+ ((n+1)hy + (r+4)log(n+7r+1)(nd+ max{(n+ 1)d,deg, g})) degV'

IN

by application of identity (3.2) and Lemma 1.2(a,b). We have

hola) < max {hy (A /N( 1))
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as each c¢,, is a different monomial in x. Thus it only remains to estimate the local height of each
Ap/N(J f).
Recall that £ € K* is any non-zero coefficient of N(J f). Then

log [Am /N(J f)lo < ho(Am) + 2 log(r + 1) (deg, g + (nd + max{d, deg, g}) deg V') — log IN(J f)l.
< hy(g) + (nd + max{d,deg, g}) h,(V)
+ ((n4+ 1) hy + (r+6) log(n+r+ 1) (nd + max{(n + 1)d,deg, g})) degV’
+ 2 log(r + 1) deg, g — log ||, (3.4)

by Lemma 1.2(d) and the fact that log |¢], < log |N(J f)],. From Lemma 2.15 and inequality (3.3)
we obtain

log ¢y < ho(N(J f))
< (n4+1)dh,(V)+((n+1)hy+ (n+1) log(n+r+1)d+nlogd)degV
+ (r+1)(n+1)log(n+r+1)d degV
< (n+1)dh,(V)+((n+1Dhy+(r+3)(n+1)log(n+r+1)d) degV  (3.5)

This implies that the right hand side of inequality (3.4) is non-negative. So the inequality also
holds for h, (A, /N(J f)), and thus for h,(q).

The case v ¢ Mz? is treated exactly in the same way. The obtained estimates do not involve any
constant terms with respect to h,, h,(g) and h,(V), in particular deg, g does not appear in the
estimate. This follows simply from 1.2.

In this case, inequality (3.5) reads as follows:

log|ély < (n4+1)dhy(V)+ (n+ 1) h, degV. (3.6)

We remark that the election of ¢ is independent of v, and so it can be done uniformly.
O

Remark 3.2 Let notations be as in the previous lemma. In case n = 0 we have the sharper
estimates

e degg <degg,
o hy(q) < hy(g) + hy +2log(r +1) degg —logl|é|, for ve M,
o h’u(‘]) < hv(g) + hy _10g|§lv for v ¢ Mg .

Here € € K* denotes any non-zero coefficient of f. The local height estimates follow from Lemma
1.2(d) and the fact that h, —log|&|, > 0.

3.2 An effective arithmetic Nullstellensatz

3.2.1 Estimates for the complete intersection case

The following result gives estimates for the degree and local height of the polynomials arising in
the Nullstellensatz over a number field K in case the input is a reduced weak regular sequence. It
is a direct consequence of the division lemma above.

These estimates depend mainly on the degree and height of the varieties successively cut out by
the input polynomials. They are quite flexible, and they apply to other situations as well, as we
will see in Chapter 4.

We recall that fi,...,fs € K[x1,...,2,] is a weak reqular sequence if f;11 is not a zero-divisor
modulo the ideal (f1,..., fi—1) for i =0,...,s — 1. Furthermore, it is called reduced when all
these ideals are radical.
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Lemma 3.3 Let fi,...,[fs € K[x1,...,x,] be polynomials without common zeros in IA™ which
form a reduced weak reqular sequence. Assume that V; =V (f1,...,f;) satisfies Assumption 1.5
for 5 =1,...,s—1. Set d := max;deg f; and h, := max; h,(f;) for v € Mg . Assume also
n,d>2.

Then there exist p1,...,ps € K[x1,...,2,] and £ € K* such that

b 1:p1f1+"'+psfs;

o degp; <2nd(1+ X" deg V),

o hu(pi) < 2nd 32 (V) + (n41) hy+2n (2045) log(n+1) d) (143321 deg V) ~log [¢],
for ve Mg,

o hy(pi) <2nd Y521 ho(Vy) + (n+ 1) hy (1+ 521 deg V) —log €], for v ¢ M.

Proof.— Set I, :=I(V;) = (f1,...,fi) for i=1,...,8 = 1. Alsoset fo:=0, Vp:=V(fp) = A"
and Iy :=I(Vp) = (0). Finally set A; := K[z1,...,2p—;] and B;:= K[Vi] = K[z1,..., 2]/
for 0 <7< s—1. The fact that V; satisfies Assumption 1.5 implies that the inclusion A; — B;
is integral.
We note that the sets of free and dependent variables of B; have cardinality n —¢ and ¢ respec-
tively. Also the set of dependent variables of B; is contained in that of B; for ¢ < j.
For f € Klz1,...,2,] we denote by deg,(; /' the degree of f in the dependent variables
Tp—itly .-, &y Of B; with respect to the integral inclusion A; — B;. For i < j, the previ-
ous observation implies that deg, ;) [ < deg, ¢ f-
Applying the Division Lemma 3.1, we will construct inductively polynomials pi,...,ps: first we
take ps such that

psfs =1 (mod Is_q).

For 0 <i < s—2 we assume that p;1o,...,ps are already constructed and we set

biv1:=1— (piya fixa + - +ps fs)
Then f;+1 is a non-zero divisor and f;+1|b;+1 in B;. We apply again Division Lemma to obtain
pi+1 such that

Pit1 fir1 =biy1 (mod I;),

Continuing this procedure until i =0, we get 1 =p; f1 + - +ps fs in Klx1,...,2,].
Let us analyze degrees.
First we consider the case s < n. Again we proceed by induction.
The estimates from the Division Lemma for A,_; := K[z1,...,2,_(s—1)], g := 1 and f := f,
give deg,(,_yps < (s—1)d<(n—1)d and degps < (2s—1)d degV;s_1.
Now let 1 <7< s—2. Then degz(i) Pi+1 <id and

degpi+1 < degbit1 + (id + max{(i + 1) d,deg, ;) bi+1}) deg V;.

where
deg, ;) bit1 < jgij{z{degx(i) p; +deg f;} < jgliafz deg,;_1ypj +d < sd.

Applying recursively the previous inequality we obtain

degpiy1 < %degpj+d+(s+i)ddegvi

j>
5—2
< (2s—1)ddegVi1+ Y (d+ (s+j)d degV;)
j=i
s—1
= (s—i—l)d+Z(s+j)ddeg%.
j=i
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For ¢ =0 we have p; |b1 and therefore degp; < degby < max;>2degp; +d. Then for all i:

s—1 s—1
degpi < (s—1)d+> (s+j)ddegV; <2nd(1+ > degV)).

=1 j=1
Next we consider the case s =mn+ 1. In this case V; is a 0-dimensional variety and so

degppy1 = deg,(p) Pnt1 < nd.

Let 1 < i <n-—1. Then degw(i) pi+1 < id and, again we apply recursively the previous
inequality, and we get

degpiy1 < g%degpj +d+(n+1+i)ddegV;
J=0
n—1

nd+> (d+ (n+1+j)d degV;)

j=i

IN

n—1
= (2n—14)d+ Z(n+1+j)d deg V.

j=i
We have also degp; < degb; < maxdeg;-,degp; +d. We conclude for all i:

n—1 n—1

degp; < 2nd+ Z(n—i—l—i—j)d degV; < 2nd(1+Zdeng).

J=1 Jj=1

Finally we estimate the local height of these polynomials. In the rest of the proof we will make
repeated use of the following degree bounds:

deg,;—1)pi < nd,

min{n,s}—1

degp; < 2nd(1+ Z degV}).

j=i—1

As usual, we concentrate in the case v € M, the case v ¢ M7 can be treated analogously. We
apply the Division Lemma to Ay 1 := K|[x1,...,7y_(s—1)], g:=1 and f:= f; and we obtain

ho(ps) < sdhy(Vsc1)+ (shy+(n—(s=1)+6)(s+ (s—1)) log(n+1)d) deg Vi1 —log |Es—1]v

for some £, € K*.
Let 1 <i<s—2 and set ng := min{n,s}. Then there exists & € K* such that

hy(Pit1) < ho(big1) + (i d + max{d, deg, ;) bi+1}) hy (Vi)
+ (((+ 1) hy+ (n—i+6)log(n+1) (id +max{(i + 1) d, deg,;) bi+1})) degV;
+ 2 log(n —i+1) degbiy1 — log|&ilo

< max hy(pj) + ho +log(n +1)d+1log(s — i) + (s + i) d hy(V;) + (i + 1) by degVj
J=0
’ngfl
+(n—i+6)(s+1) log(n+1)d degV; +2 log(n+1) (2nd(1+ Z degV;) + d)
j=it1

*10g|§i‘v~
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Applying the inductive hypothesis we obtain

s—2 s—1

j=i =i
s—1

+4(s—i—1)(n+1)log(n+1)d+log(n+1)d » (n—j+6)(s+j) degV;

j=i
no—1 s—1

+4nlog(n+1)d Z (j —1) degV; — Zlog|§j|v.
j=i+1 J=t

For i =0 we apply Remark 3.2: there exists £y € K* such that
hy(p1) < hy(b1) + hy + 2 log(n + 1) deg by — log|€olv
'n.()—l

m>a§<hv(pj) +2h, +log(n+1)d+1logs+2log(n+1)(2nd(1+ Z degV;) +d)
i>

Jj=1

IN

— log [0l
We set §::H;;é§j. As 2<s<n+1 we have

s—1 s—1
ho(1) < 2nd Y hy(Vi)+ (n+1)hy (14 degVj) +4n(n+1) log(n+1)d
j=1 j=1
s—1 no—1
+ log(n+1)d Z(n—j—i—G)(n—i—l—i—j) degV; +4nlog(n+1)d Zjdeng—logmv
j=1 j=1
s—1 s—1
< 2ndZh(Vj)+((n+1)hU+2n(2n+5)log(nJrl)d)(lJereng)710g|§|v.
j=1

J=1

This last inequality follows from the facts that 4nj+ (n—j5+6)(j+s) < 2n(2n+5) for
j<n-—1,and 6(2n+1)<2n(2n+5) as n>2.

To conclude the proof, observe that for ¢ = 1,...,s — 1, inequality (3.5) guarantees that the
obtained estimate for p; differs from the one for p;;1 by a positive term. Thus, the same estimate
holds for h,(p;), 1 <i<s.

The non-archimedean case is treated in exactly the same way. The conclusion of the proof comes
in this case from inequality (3.6). a

By means of Bézout inequality, we can now estimate the degree and height of the varieties V.
In this way we obtain an estimate which only depends on the degree and height of the input
polynomials.

Corollary 3.4 Let notations and assumptions be as in Lemma 3.3, and assume n,d > 2. Then
there exist p1,...,ps € K[z1,...,2,] and v € K* such that

e l=pifit+-+psfs,

e degp; <4nd”,

o hy(pi) <4n(n+1)d"h, +4n(4n+5)log(n+1)d"* —log|y|, for ve M,
o hy(pi)) <4dn(n+1)d™h, —log|y|l, for v¢ MP.
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Proof.— Let us first consider degrees. From the preceding result we obtain

min{n,s}—1
deg(p;) <2nd(1+ Z degV;) <2nd(1+---+d" ') <4nd"

j=1

Here we applied the inequality 14 ...+ d? ! <2d""! to obtain the last estimate.
Next we consider the local height estimates. Let v € Mz . We have

s—1 s—1
hv(pi) <2nd Zhv(vj) + ((n+ 1) hy + 2”(2’” + 5) log(n + 1)d) (1 + Zdeg‘/]) - log ‘§|v
j=1 j=1

for some ¢ € K*. Applying Corollary 2.10, h,(V;) <jd’~'h, + (n+j)log(n+ 1) d —log|\;l,
for some A; € K*. Therefore
s—1 ) )
ho(pi) < 2nd Z(] "V hy + (n+ ) log(n + 1) & —log|Al,)

Jj=1

+ ((n+1)hy+2n2n+5)log(n+1)d) > d —logEl
j=0

< 4n?d™h, +8n? log(n + 1) d"**
s—1
+2(n+1)d" hy +4n(2n+5) log(n +1)d"' = 2nd Y log|A;l, — logl¢ls
j=1

< 4n(n+1)d"hy, +4n(4n+5) log(n +1)d" ™ —log |7]s,

where v € K* is defined as v :=¢ Hj;} Aznd,
The case v ¢ M5® follows analogously:

s—1 s—1
ho(pi) <2nd Y ho(Vi) + (n+1) by (14 degV;) —log [¢].
j=1 j=1

We have h,(V;) < jd’~'h, —log|\;|, , and therefore

s—1 n
ho(pi) < 2nd ) (Gd& " hy —log|\sly) + (n+ 1) hy > d —log €],
j=1 7=0

< 4n(n+1)d" h, —log|vly,

3.2.2 Proof of Theorem 1

In order to prove Theorem 1, it only remains to put the general case into the hypothesis of
Corollary 3.4. This is accomplished by replacing the input polynomials and variables by generic
linear combinations. The coefficients of the linear combinations will be chosen to be roots of 1.
Amazingly enough, we do not need any control on the degree of the involved finite extension.

Let L be a finite extension of K, and let B :={e1,...,en} be a basis of L as a K -linear space.
We recall that B* := {e},...,eN} is the dual basis of B if Trk(e; e;)=1 for i =j and 0
otherwise.

Lemma 3.5 Let w € Q be a primitive p-root of 1 for some prime p. Then the basis B* :=
{(w7—w)/p:j=0,....p—2} of Qw) isdualto B:={w' :i=0,...,p—2}.
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Proof.— A direct computation shows that for 7,5 =0,...,p—2

p—1 . .
. , , , for i=j
Tr(w? —-J _ _ li -ty 1 _ b, ’

W “)) lzzlw w w) 0, for iz#j.

O

We will use this result in the following way: let w be a primitive p-root of 1 and set L := K(w). Let
us assume that Q(w) and K are linearly independent and that p does not divide the discriminant
of K. Both conditions are satisfied by all but a finite number of p. Then [L: K] =p—1 and
Or, = Oklw] [36, Ch. III, Prop. 17].

Now, let v € Or, \ {0}. By the preceding lemma

Y= %Tr(y (1= w) -+ %Tr(u (@7 — W) WP € Oxlw]\ {0}

and so there exists 0 < j <p— 2 such that Tr(v(w™7 —w))/p € Ok \ {0}.

Theorem 3.6 (Effective arithmetic Nullstellensatz)

Let K be a number field and let f1,...,fs € Oklz1,...,x,] be polynomials without common zeros
in A™. Set d:=max;deg f; and h:=h(f1,...,[s).

Then there exist a € O \ {0} and g1,...,9s € Oklz1,..., 2, such that

ca=gfit+- 495 fs,

o degg; <4nd",

o h(a,g1,-..,9s) <4n(n+1)d" (h+logs+ (n+7) log(n+1)d).
Theorem 1 in the Introduction corresponds to the case K := Q.

The extremal cases n =1 and d = 1 are both simple. We treat them directly in the following
lemmas:

Lemma 3.7 Let ¢1,...,0s € Oklz1,...,2,] be polynomials of degree bounded by 1 without com-
mon zeros in IA™. Set h:=h(ly,...,Ls).
Then there exist a € O \ {0} and aq,...,as € O such that

e a=arli+--+asls,
o h(a,ay,...,as) < (n+1)(h+log(n+1)).

Proof.— Equation a =a1f;+---+asls is equivalent to a Ok -linear system of n+ 1 equations
in s unknowns. The height estimate follows then from application of Cramer rule.
O

Lemma 3.8 Let fi,...,fs € Oglx] be polynomials without common zeros in IA'. Set d =
max; deg f; and h:=h(f1,...,fs).
Then there exist a € O \ {0} and ¢1,...,9s € Ok|x] such that

e a=g1fi+ - +9gsfs,
d degg’bgd_17
o h(a,g1,...,9s) <2d(h+d).
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Proof.— Let f :=>.a;fi, g := 7 ,bifi € K[z] be generic linear combinations of fi,..., f,.
Then f and g are coprime polynomials, and so there exist p,q € K[x] with degp < degg and
deggq < deg f such that 1=pf+qg.

Expanding this identity we see that there exist py,...,ps € K[z] with degp; < d—1 such that

l=pifi+-+psfs.

Thus the above Bézout identity translates to a consistent system of K -linear equations. The
number of equations and variables equal 2d and sd respectively. This system can be solved by
Cramer rule. The integer a is the determinant of a non-singular 2 d x 2 d— submatrix of the matrix
of the linear system. o

Proof of Theorem 3.6.— We assume n,d > 2.
Let G, C Q denote the group of p-roots of 1, for a prime p. For a;; € Gp and ¢ =1,..., min{n+
1,s} we set

¢ = a1 fi+...+a;is fs.

Also, for by € G, and k=1,...,n we set
Yk = bro+bp1z1 4+ + b T

We will assume that for a specific choice of p, a;; and by there exists ¢ < min{n + 1,s}
such that (q1,...,q;) C Klx1,...,2,] is a radical ideal of dimension n —i for ¢ = 1,...,t — 1
and 1 € (q1,-..,q:). We also assume that yi,...,y, is a linear change of variables, and that
Vi:=V(q,...,q) C IA™ satisfies Assumption 1.5 for ¢ = 1,...,t—1 with respect to y1,...,Yn—; -

This is guaranteed by the fact that these conditions are generically satisfied: there exists a hy-
persurface H of the coefficient space such that (a;;,br;) ¢ H implies that ¢i,...,qs satisfy the
stated conditions with respect to the variables y1,...,y, (see for instance [17, Thm. 3.5 and Thm.
3.7.2] [19, Section 3.2 ], [50, Prop. 18 and Proof of Thm. 19]). As U,G, is Zariski dense in A!, it
follows that these coefficients can be chosen to lie in G, for some p. Moreover, p can be chosen
such that for w a primitive p-root of 1 and L := K(w), Q(w) and K are linearly independent
and p does not divide the discriminant of K .

We also refer the reader to Section 4.1, where we give a self-contained treatment of this topic.
Set b:= (bro)x € G and B := (bgi)ri>1 € GL,(Q), so that z = B~Y(y—b). For j =1,...,t
set

Then Fi,..., F; satisfy the hypothesis of Corollary 3.4. Let v € L* and Py,..., P € L[y, ..., yn]
be the non-zero element and the polynomials satisfying Bézout identity we obtain there.
Now, for i =1,...,s, set

t
pi = Za1]P](3$+b) EL[ml,...,xn]
j=1

sothat 1=pi fi+ - +psfs holdsi.
Finally set pu := (det B)‘“‘(”“)dwr v € L* . By Lemma 3.5 there exists 0 < £ < p — 2 such
that Tr(p(w™—w)) #0.

We define

a:=Tr(u(w**—w))/p € K* , gi = Tr(upi (W —w)/p € K[z1,...,,]
fori=1,...,s.
Then

a=g1fi+- - +gsfs
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as f1,...,fs € Klx1,...,2,] and Tr is a K -linear map.
Aside from the degree and height bounds, we will show that since f1,...,fs € Oklz1,...,2n],
a €Ok and g; € Oklz1,...,2,].

Let us first analyze degrees and local heights.
As deg F; < d, degg; < degp; < maxjdegP; <4nd".
Now let v € M3 and let w € M such that w|v. We have h,(B~!(y —b)) < nlogn —
log | det BJ,, and so
ho(Fj) < hy(gj)+ (nlogn —log|det B, + 2 log(n+1))d
< hy+logs+ (n+2) log(n+1)d — log|det By, d
by Lemma 1.2(c). jFrom Corollary 3.4

hw(P;) < 4n(n+1)d" max how(Fy) +4n (4n + 5) log(n + 1) d" ™ —log |v|w

IN

dn(n+1)d"(hy, +logs+ (n+2) log(n + 1) d — log | det B, d)
+ 4n (4n 4+ 5) log(n +1)d" ™ —log |v|w

= 4n(n+1)d" (hy, +logs) +4n(n*+7n+7) log(n +1)d" ™ —log |-

Therefore

AN

ho(ppi) < maxhy(P;) + 2 log(n + 1) max deg P; +log ¢ + log |u]w
J J

IN

4n(n+1)d" (hy +logs) +4n(n? +7n+7) log(n +1)d"*
+8n log(n +1)d" + log(n + 1)
dn(n+1)d" (hy +logs+ (n+7) log(n + 1) d) —log 2 (3.7)

IN

again by Lemma 1.2(c) and the fact d,n > 2. We have

1 _ 1 -
gi = Ti(ppi (@ —w) == > olupi(@ —w)
p oeGal
L/K
and so
ho(g:) < I;l?f;{ hy (i) + log 2
< 4dn(n+1)d" (hy, +logs+ (n+7) log(n +1)d).

We have h, (1) <4n(n+1)d" (hy,+logs)+4n (n?+7n+7) log(n+1)d*™! and so the previous
estimate also holds for h,(a).

Now let v ¢ Mz® and w|v. Analogously we have
how (1), how(ppi) <4n(n+1)d" h, =0

as fi,...,fs € Oglz1,...,xy). Then pe€ Op\{0} and pup; € Oplxy,...,x,] , which in term
implies that a € Og \ {0} and g¢; € Ok[z1,...,2,] as desired.

The global height estimate follows then from the expression

1
(K : Q]

> N, max{hy(a), ho(g1), .. hu(gs)}-

veMpe

h<a7gla" '798) =
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Remark 3.9 The fact that the bound (3.7) is uniform on w for w|v is the key that allows us
to get rid of the roots of 1. This will no longer be the case in our treatment of the more refined
arithmetic Nullstellensdtze in Chapter 4.

The following example improves the lower bound for a general height estimate given in the intro-
duction, and thus shows that the term d™h is unavoidable.

Example 3.10 Set
fir=a1—H, fo:=ux _l'llia"-v fn =2y _:L'zflv fn+1 = xz

for any positive integers d, H . These are polynomials without common zeros in IA™ of degree and
height bounded by d and h :=log H respectively.

Let a € Z\ {0} and g1,...,9n+1 € Z[x1,...,x,] such that a = g1 f1 + -+ gnt1 fr1- We
evaluate this identity in (H,H?,- - ,Hdnil) and we obtain

a :gn—i—l(HaHdv"'7Hdn_1)Hdn

from where we deduce h(a) > d™h.

4 Intrinsic type estimates

Theorem 1 is essentially optimal in the general case. There are however many particular instances
in which these estimates can be improved. Consider the following example:

fi=x1— 1, fgzzarg—xil,..., fn::xn—xi_l, fn_H::H—aci

for any positive integers d and H . These are polynomials without common zeros in A™ of degree
and height bounded by d and h :=log H respectively. Theorem 1 says there exist a € Z \ {0}
and g1,...,9n4+1 € Z[z1,...,x,] such that

a=g1 fi+-+gnst fat1

with degg; < 4nd® and h(a),h(g;)) < 4n(n+1)d"(h+ (n+ 7) log(n + 1)d). However the
following Bézout identity holds:

d d d

¢ —1 zd —1 ¢ —1
H-1=2 Lo In fid o o fara

1 — 1 T, — 1 Ty, — 1

Note that the polynomials arising in this identity have degree and height bounded by n(d — 1)
and h respectively.

There is in this case an exponential gap between the a priori general estimates and the actual ones.
The explanation is somewhat simple: for ¢ =1,...,n, the varieties

V;IZV(fl,...,fi):V(xl—l,fz—].,...,iti—l) C]An,

verify deg(V;) =1 and h(V;) < 2nlog(n + 1). Namely, both the degree and the height of the
varieties successively cut out by the input polynomials are much smaller than the corresponding
Bézout estimate.

As the varieties V; verify the assumptions of Lemma 3.3, a direct application together with Lemma
1.3 produces the more realistic estimates:

degg; <2n%d h(a),h(g;) < (n+ 1)2(h+ 8n log(n + 1)d).

Based on this idea, we devote this chapter to the study of more refined arithmetic Nullstellensétze
which can deal with such situations.
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4.1 Equations in general position

This section deals with the preparation of the input data. To apply Lemma 3.3, we need to prepare
the polynomials and the variables of the ambient space.

Let fi,...,fs € K[z1,...,2,] be polynomials without common zeros in A™. For i = 1,...,s
and a;; € Z we set
¢ = ai1 fi+- +ais fs.

We will estimate the height of rational integers a;; in order that there exists ¢ < min{n + 1, s}
such that (q1,...,¢;) C K[x1,...,x,] is a radical ideal of dimension n—i for i =1,...,t—1 and
le(q,--yq)-
Also we set

Yk :=bgo +bg1x1+ - +benTy

for k=1,...,n and by; € Z. Again we want to estimate the height of rational integers by; such
that V; .= V(q1,...,¢;) C A™ satisfies Assumption 1.5 with respect to this set of variables for
i=1,...,t—1. Namely, the projection

Vi — A" , = (Y1y ey Yn—i)
must verify #ﬂ'i_l(()) = degV;, that is #V,NV(y1, - ,yn—) = degV; for i =1,...,t —1.
Lemma 2.14 implies that the variables y,...,y,—; are in Noether normal position with respect
to V.

It is well-known that these conditions are satisfied by a generic election of a;; and by, see for
instance [19, Section 3.2] and [50, Prop. 18 and Proof of Thm. 19]).

We have already applied such a preparation to obtain the classic style version of the effective
arithmetic Nullstellensatz presented in Theorem 3.6. There, we chose roots of 1 as coefficients of
the linear combinations since their existence was sufficient in our proof. However, technical reasons
(see Remark 3.9) prevent us to apply the same principle in this chapter, and we need to carry out
a more careful analysis.

We note that all aspects of this preparation were previously covered in the research papers [2,
Section 4], [19, Section 3.2], [32, Section 6], [22, Section 5.2]. However the bounds presented
therein are either non-explicit or not precise enough for our purposes. Here we chose to give a
self-contained presentation, which yields another proof of the existence of such linear combinations.
The obtained estimates substantially improve the previously known ones.

4.1.1 An effective Bertini theorem

This subsection is devoted to the preparation of the polynomials. We will first establish some
auxiliary results.

The following is a version of the so-called shape lemma representation of a O-dimensional radical
ideal. The main difference here is that we choose a generic linear form — instead of a particular
one — as a primitive element.

For a polynomial f = cptP+---+cg € k[t] we denote its discriminant by discr(f) € k. We recall

that discr (f) # 0 if and only if ¢p # 0 and f is squarefree, that is f has exactly D distinct
roots.

Lemma 4.1 (Shape Lemma,)

Let V. .C IA™ be a 0-dimensional variety defined over k. Let U := (Uyp,...,U,) be a group of
n + 1 wvariables, and set L :=Uy~+ Uy x1 + -+ + U, x,, for the associated generic linear form.
Let P := Py € k[U][T] be a characteristic polynomial of V. Set P’ := OP/0T € k[U|[T] and
p:=discrr P € k[U]\ {0} . Also set I for the extension of I(V) to k[U][z].
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Then there exist vy, ...,v, € k[U][T] with degv; < degV — 1 such that
I, =(P(L),P'"(L)z1 — vi(L),...,P(L) zy, —vn(L)), Ck[U],[z].
Here 1, denotes the localization of I at p.

Proof.— We note first that I(V) is a radical ideal, and so I = k[U] @ I(V) is also radical. We
readily obtain from the definition of P := Py that I Nk[U][L] = (P(L)), and so P(L) € I.

We can write P(L) =), aq(x) U with an(z) € I(V). Therefore OP(L)/0U; also lies in I for
all ¢. A direct computation shows that for i =1,...,n

dP(L)/0U; = P'(L) z; — vi(L)

for some v; € k[U][T] with degv; <degP —1=degV —1.
Set
J:=(P(L),P'(L)zy —vi(L),..., P (L) x, — v,(L)) C k[U][z].

The previous argument shows the inclusion I D J.

On the other hand, p = AP+ B P’ for some A, B € k[U][T]. Set w; :== Bv;. Then z; = w;(L)/p
(mod J,) and so for every f € k[U][z] we have that f = f(U,wi(L)/p,...,wn(L)/p) modulo

J, , and hence modulo I,.

For fel,
L F(Uwn(D)/p, .., wn(L)/p) € TAKU]IL] = (P(L))

which implies I, C J, as desired. O
Let v € k"1 such that p(v) # 0. It follows that I(V) can be represented as

I(V)=(P(L),P(L)x1 —vi(L),...,P'(L) zy — vn(L))(v) C klx].

Now let fi,...,fs € k[z1,...,2z,] be polynomials without common zeros in A™. For i =1,...,s
we let Z; :=(Z;1,...,Z;s) denote a group of s variables, and we set

Qi=Zin fr+-+Zys fs € k[ Z][z]

for the associated generic linear combination of fi,..., fs.
Lemma 4.2 For ¢ = 1,...,s, the ideal (Q1,...,Q¢) is a complete intersection prime ideal of

Proof.— Set I :=(Q1,...,Q¢) and V := V(I) C A% x A™. First we observe that V is a linear
bundle over A™: the projection

m: V- A" , (z,2) — x

is surjective, and the fibers are affine spaces of dimension (s—1) ¢. This follows from the assumption
that the f; have no common zeros. This implies that

dmV =(s=1)¢+n

because of the theorem of dimension of fibers. Namely @1,...,Q is a complete intersection, and
in particular the ideal I is unmixed.

Set I =1, N...N1I, for the primary decomposition of this ideal. We will show that I; is prime
for all j, and then that m =1.
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First we have that Ifj = (Ql/fja ceey Qg/f]) = (le +Hyj, .o, Zy + ng) where H;; € k[ Z;] [:E]fj
does not depend on Z;; . Therefore

(K[A** x A"]/1)y, = K[AGDE x "],

is a domain, that is Iy, is prime. We have Iy, = (I1)y; N...N (I;m)y,, and so there exists
1 < n(j) <m such that

Ity = Tni))y,  » VL) C{fj =0} fori#n(j).

In particular I,,(;y = Iy, N k[A®* x A"] is prime. The fact that N;{f; = 0} = 0 ensures that
n(y) runs over all 1 <i<m, and so I is radical.

The expression Iy, = (Z1; + Hyjy,. .., Zgj + Hyj) implies that 7(V(Iy,)) C A™ contains the dense
open set {f; # 0}. In particular V(Iy,) is not contained in any of the hypersurfaces {f; = 0}
and so n(j) =n(l) for all j. This implies that m =1, and so I = I; is prime. O

The following proposition shows that (Q1(a1),...,Q¢(ar)) is a radical ideal for a generic election
of a; := (as1,...,a;s). Unlike Lemmas 4.1 and 4.2, this result does note hold for arbitrary
characteristic. For instance let a?,1— 2P € IF,[z] for some prime p. Then Qi(a1) =b+ca? for
some b, c € E and so

Qi(ar) = (bl/p + /P )P

is not squarefree.

Proposition 4.3 Let char (k) =0 and set I :=(Q1,...,Q¢) C k[Z][z].

o In case I NKk[Z] # {0} there exists F € k[Z]\ {0} with degF < (d + 1)* such that
F(ai,...,ap) #0 for ay,...,ap € k% implies that 1€ (Q1(a1),...,Qe(ar)) .

o In case I Nk[Z] = {0} there exists F € k[Z]\ {0} with degF < 2(d + 1)2¢ such that
F(ay,...,ap) #0 for ay,...,ap € k° implies that (Q1(a1),...,Qe(ar)) C klx] is a radical
ideal of dimension n — (.

Proof.— Set V :=V(I) C A% x A™. We have dimV = (s —1)£+n and degV < (d +1)*.

First we consider the case I Nk[Z] # {0}. This occurs, for instance, when ¢ > n 4+ 1, since then
dimlI=sl+n—{¢<dimk[Z]=s/. -

Let 7: A% x A" — A% be the canonical projection. Then 7(V) is a proper subvariety of A%’
and thus it is contained in a hypersurface of degree bounded by degV'. This can be seen by taking
a generic projection of this variety into an affine space of dimension s¢+n — ¢+ 1 [23, Remark
4]. Let F € k[Z] be a defining equation of this hypersurface. Then F € I as I is prime, and we
have deg F' < (d + 1)*. Thus

lelp C k[Z]F[.’E],

and therefore 1 € I(a) := (Q1(a1),...,Qe(ap)) for a € k% such that F(a) # 0.

Next we consider the case I N k[Z] = {0}.

We adopt the following convention: for an ideal J C k[z] and for { any new group of variables,
we denote by J and J(©) the extension of J to the polynomial rings k[¢][z] and k(¢)[x]
respectively.

We assume for the moment £ = n. Then dimI = s/ and so the extended ideal %) C k(Z)|x]
is a 0-dimensional prime ideal. We have then that k(Z) @, I%) C k(Z)[x] is a radical ideal, as
char (k) = 0 [44, Thm. 26.3].

Our approach to this case is based on Shape Lemma 4.1. We will determine a polynomial F € k[Z]
such that F(a) # 0 implies that the shape lemma representation of %) can be transferred to a
shape lemma representation of I(a).
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Let U be a group of n+ 1 variables and set
L:=Uy+Uz1+ -+ U,x, forthe associated generic linear form. Consider the morphism

T: A" x A% x A" — AT x A% x A! , (u,z,2) — (u,z, L(x)).

and let W be the variety defined by I in A"t x AS¢ x A", that is W = A" x V. The Zariski
closure (W) is then an irreducible hypersurface. We set P € k[U, Z][T] for one of its defining
equations.

If 1VI(2) is the extension of I%) to k[U](Z)[z], the polynomial P can be equivalently defined
through the condition that P(L) is a generator of the principal ideal T'V1(4) NE[U, Z][L]. Namely,
P is a characteristic polynomial of the 0— dimensional variety Wy defined by 1(%) in A™(k(Z)).

Let v1,...,v, € k[U|(Z)[T] denote the polynomials arising in Shape Lemma applied to W . From
the proof of this lemma we have that

OP(L)/dU; = P'(L) x; — v;(L) € k[U, Z][L]

and so v; € k[U, Z][T]. Set J := (P(L), P (L)xy —v1(L),..., P'(L)xy, — vn(L)) C k[U, Z][x] and
p:=discrr P € k[U, Z] \ {0} . Then

(I[U](Z))p = (J[U](Z))p C k[UJ(2),]x].

We have that both [ LU’Z] and J£U’Z] are prime ideals of k[U, Z],[z] with trivial intersection with
the ring k[U, Z]. Thus they coincide with the contraction of I,[,U](Z) and Jf[;U](Z) to k[U, Z],[z]

respectively, and so
102 = J02 U, Z),[a).

Define F € k[Z] \ {0} as any of the non-zero coefficients of the monomial expansion of p with
respect to U . Let a € k¢ such that F(a) # 0. Then p(U,a) # 0 and so P(U, a)[T] is squarefree.
Then

(1(@)!) v,y = (P(L), P'(L) 21 = v1(L), ..., P'(L) 2 — va(L))(a) C k[U][z]
is radical, which implies in turn that I(a) = (I(a)Y)) ) N k[z] is a radical ideal of k[z] as
desired.
It remains to estimate the degree of F'. To this end, it suffices to bound the degree of p with

respect to the group of variables Z . We recall that P was defined as a defining equation of the
hypersurface ¥(WW). The map ¥ is linear in the variables Z and z, and so

deg, P <degW =degV < (d+1)".
This implies that deg F' < deg, p < deg, P (2 deg, P —1) <2(d+1)?".

Finally we consider the case £ < n for I Nk[Z] = {0}.
Let Uy,...,Up—¢ be groups of n+ 1 variables each, and set

L =Uig+ U114+ +Uipxy.

for i =1,....,n—¢. Set U := (U1,...,Upn—p), L :== (L1,...,Lp—¢) and ko := k(U,L). The
extended ideal Iy C ko[Z][x1, ..., 2] verifies Io N ko[Z] = {0} and thus falls into the previously
considered case.

Thus there exists Fy € ko[Z] \ {0} with deg Fy < 2(d + 1)?* such that Fy(a) # 0 for a € k**
implies that Ip(a) is a radical ideal of ko[Z][z1,...,x¢|. This implies in turn that I(a) is a radical
ideal of k[x], as

I(a) = Ip(a) Nk[z].

We can assume without loss of generality that Fy lies in k[U, L][Z]. We conclude by taking F' as
any non-zero coefficient of the monomial expansion of Fj with respect to the variables U and L.
]
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Corollary 4.4 Let char (k) =0, and let f1,...,fs € k[z1,...,z,] be polynomials without com-
mon zeros in A™. Set d:= max;deg f; .
Then there exist t < min{n + 1,s} and ai,...,a; € Z* such that

o (Qi(a1),...,Qi(a;)) is a radical ideal of dimension n—1i for 1 <i<t—1,

o 1 S (Q]_(Cll),...,Qt<at)),
o Nh(a;) <2(n+1)log(d+1).

Proof.— Set t for the minimal ¢ such that I; := (Q1,...,Q;) Nk[Z] # {0}. Then t <n+1, and
by the previous result there exists F; € k[Z] with deg F; < (d+ 1)" such that Fj(a) # 0 implies

that 1€ (Ql(al)v s aQt(at)) :
On the other hand, for i < ¢t we take a polynomial F; € k[Z] of degree bounded by 2 (d + 1)2?
such that F;(a) # 0 implies that (Q1(a1),...,Q:i(a;)) is a radical ideal of dimension n —i. Then
we take F := F;---F; and so

degF < 2(d+ 1%+ +2(d+1)** D 4 (d+1)
< @+ D) 4+2(d+ 1)+ (d+ 1)

< 4(d+1)*.
Finally, F' # 0 implies there exist aq,...,a; € Z° such that h(a;) <log(deg F) and F(a) #0.
O

4.1.2 Effective Noether normal position

Now we devote to the preparation of the variables. For k =0,...,n we let Uy := (Ugo, ..., Ugn)
be a group of n + 1 variables and we set

Y =Uko+ U121+ -+ Uknxp.

Proposition 4.5 Let V C IA™ be an equidimensional variety of dimension r defined over k.
Then there exists G € k[Uy,..., U]\ {0} with degy, G < 2(degV)? such that G(b1,...,b;) # 0
for by,...,b. € k"1 implies that

£ VAVXi(br),....Y, (b)) = deg V.

Proof.— Let fy be a Chow form of V and Py € k[U,T] be the characteristic polynomial of V'
associated to fy given by Lemma 2.13.
Set D:=degV andlet Py =cp TOD +---4+ ¢y be its expansion with respect to Tp. Also set

p = discrp, Py € k[Uy, ..., U ][T1,...,T:]\ {0}

for the discriminant of Py with respect to Tj.

Observe that as Py is multihomogeneous of degree D in each group of variables U; U {T;}, the
degree of p in each of these group of variables is bounded by D (2D —1).

Now let vq,... v, € " such that V() =VnV(Yi(»1),...,Yr(v)) is a 0-dimensional variety
of cardinality D, and fy(,) be a Chow forms of V(v).

Set (o := (To — Uoo, Uo1- - - -, Uon) - Then applying [47, Prop. 2.4], there exists A € k* such that:

Py (Uo,v1, ..., vp)(T0,0,...,0) = fy(Co(Uo, To), v1, - ., vr) = A frw)(Co(Uo, To)) = A Py () (Uo)(To)

where Py (,) is a characteristic polynomial of V(v).
This implies Py (U)(T0,0,...,0) € k[U][Ty] is a squarefree polynomial and so p(U)(0) # 0.
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We take G € Ek[Uy,...,U,] as any non-zero coefficient of the expansion of p(U)(0) with respect
to Up. Therefore
deg G < degy, p(U)(0) <D (2D —1).

The condition G(b) # 0 implies that p(Up,b1,...,b,.)(0) #0, and so #V(b) = D. O

As we noted before, this implies that the variables Y;(b1),...,Y,(b.) are in Noether normal position
with respect to the variety V.

Corollary 4.6 Let char (k) =0 andlet q1,...,q € k[x1,...,2,] be polynomials without common
zeros in IA™ which form a reduced weak regular sequence. Set d := max;deg f; .

Then there exist by, ... b, € Z"™ such that V(q,...,qi) satisfies Assumption 1.5 with respect
to the variables Y1(b1),...,Yn—i(bp—;) for i=1,...,t, and

h(bk) < 2(n+1) log(d+1).

Proof.— This follows readily from the previous result. We take G; as the polynomial corresponding
to the variety V(q1,...,¢;) and we set G := Gy---Gy—1 € k[Uy,...,U,]. We have deng G; <
2d?" and so

degy, G < 2d° +--- +2d*7) <47 <4gm.

We conclude by taking by, ...,b, € Z" such that h(b;) <log(degG) and G(b) #0. O

4.2 An intrinsic arithmetic Nullstellensatz

In this section we introduce the notions of degree and height of a polynomial system defined over a
number field K. Modulo setting the input equations in general position, these parameters measure
the degree and height of the varieties successively cut out.

The resulting estimates for the arithmetic Nullstellensatz are linear in these parameters. As an
important particular case, we derive a sparse arithmetic Nullstellensatz.

4.2.1 Intrinsic parameters

Let fi1,...,fs € K[z1,...,2,] be polynomials of degree bounded by d without common zeros in
A™. For i=1,...,s we let Z; denote a group of s variables and we set

Qi(2):=Zin L + -+ Zis fs € K[Z][x]

for the associated generic linear combination of fi,..., fs.

Let T' be the set of integer s x s—matrices a = (ai;)i; € Z°*° of height bounded by 2(n +
1) log(d + 1) such that

Iz(a) = (Ql(al), .. '7Qi(a’i)) C K[Il, e 71‘77,]

is a radical ideal of dimension n—4 for i =1,...,t—1 and 1 € I;(a) for some ¢ < min{n+1,s}.
Corollary 4.4 implies that T # ().

For a € I' we set

d(a) = max {degV(l;(a));1<i<min{t,n} -1},
n(a) = max {h(V([;i(a)));1<i<t—-1}

We set Tpin C Z°*° for the subset of matrices a € T' such that 7n(a) + dd(a) is minimum.
Finally let @in € Dimin be a matrix which attains the minimum of d(a) for a € Tpp
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Definition 4.7 Let notations be as in the previous paragraph. Then we define the degree and the
height of the polynomial system f1,..., fs respectively as

§(f17~~'afs) ::5(amin) ) n(fla"'afs) = n(amin)-

We restrict ourselves to integer matrices of bounded height in order to keep control of the height
of Q1(a1),...,Q¢(ar). The election of n(a)+dd(a) as the defining invariant comes from the need
of estimating the degree and height simultaneously.

We note that in case fi,..., fs is already a reduced weak regular sequence we have

We can estimate this parameters through the arithmetic Bézout inequality:

Lemma 4.8 Let fi,...,fs € K[z1,...,z,] be polynomials without common zeros in IA™. Set
d; := deg f; and assume that di > --- > ds holds. Set d := di = max;deg f; and h :=
h(f1,...,fs). Also set ng := min{n, s} and ny := min{n + 1,s}. Then

® 6(f17'-'afs)<nn0 1 ’

-7Khw.wﬂ)§7wh+k%8+3n0r+nd)HﬁQQ%-

Proof.— Let a := amin = (aij)i; € Z°*° be a coefficient matrix such that §(fi,..., fs) = d(a) and
n(fla s afs) = n(a’) ) and set
gii=an fi+-+aisfs 1<i<s.

Let ¢ < ny = min{n + 1,s} be minimum such that 1 € (¢1,...,¢:). Let a € Z~D* he the
matrix formed by the first ¢ — 1 rows of a and let ¢ € Z~V*5 be a staircase matrix equivalent
to a.
The polynomial system
gi=cifi+- -+ fs

is then equivalent to qi,...,q—1, that is (q1,...,¢) = (q1,-..,¢;) for i =1,...,t — 1. Also we
have deggq; < d;, and so

no—1

§:=max{degV;; 1 <i<min{n,t} —1} < H d;.

j=1

We have also that each coefficient of ¢ is a subdeterminant of a. Thus
hi=h(@,....q-1) < h+logs+h(c)

h+logs+ (t—1)(2(n+1) log(d+ 1) +log(t — 1))
h+logs+n(Bn+1)d

IN

IN

and so, applying Corollary 2.11,
n < max{h(V;):1<i<min{n+1,t} —1}

ni—1 ni—1

< Zh/dl—l—(n—l—nl—l log(n + 1) Hd

=1

ny— 2

< (n(h+logs+n(Bn+1)d)+2nlog(n+1)) Hd
ny— 2
< n(h+logs+3n(n+1)d Hd
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We can also estimate these parameters through the arithmetic Bernstein-Kushnirenko inequality:

Lemma 4.9 Let fi,...,fs € K[z1,...,2,] be polynomials without common zeros in ™. Set
d:=max;deg f; and h:=h(f1,...,[fs). Alsolet V denote the volume of 1,x1,...,%n, f1,---, fs-
Then

o (f,.. f) SV,
° 77(f17"'7fs)SnV(h+log5+22n+3d)'

Proof.— Let @ := amin = (a;;)i; € Z°*° and set ¢ :=a;1fi+ - +a;sfs for i=1,...,s.
Then Supp(q;) C Supp(fi,...,fs) and so V(1,21,...Zn,q1,.--,qs) < V.
Applying Proposition 2.12 we obtain 6 <V and

n < (nmaxh(q)+ 22" log(n+1)d)V

IN

(n(h+logs+2(n+1)log(d+ 1)) +22" 2 log(n + 1)d) V

< nV(h+logs+22"134).

4.2.2 Proof of Theorem 2

Modulo the preparation of the input data, the proof of Theorem 2 follows the lines of the example
introduced at the beginning of Chapter 4.
The following is the general version of Theorem 2 over number fields:

Theorem 4.10 (Intrinsic arithmetic Nullstellensatz)

Let K be a number field and let fi,..., fs € Oklx1,...,2,] be polynomials without common zeros
in A™. Set d:=max;deg f; and h:=h(f1,...,fs). Alsolet § and n denote the degree and the
height of the polynomial system fq,..., fs.

Then there exist a € Z\ {0} and ¢1,...,9s € Oklz1,...,2,] such that

e a=gifit - +9gsfs
o degg; <2n2d6 ,
o h(a,g1,--.,9s) < (n+1)?[K:Q]d(2n+ (h+1ogs)d+ 21 (n+1)2d log(d + 1) J).

Proof.— Let amin = (a;j)ij € Z°™° be a coefficient matrix such that 6 = 6(amin), 7 = 7(Amin)
and  A(amin) <2(n+1) log(d +1). We set

gii=ai1 fi + - Fais fs

for i=1,...,s. Then (q1,...,¢;) is a radical ideal of dimension n —i for ¢ =1,...,t —1 and
1€ (q,...,q) for some ¢t <min{n +1,s}.

For 1 <k<n, 0<I1<n,wealsolet by € Z be integers with h(by;) <2(n+1) log(d+ 1) such
that V; :==V(q,...,q) satisfies Assumption 1.5 with respect to the variables

Yk = bro+ b1 a1+ + bppny

for i = 1,...,t—1. Set b:= (ka)lc € Z" and B := (bkl)k,ZZI S GLn(Q)7 and set @ A™ — A"
for the affine map @(z) ;== Bz +b. For j =1,...,t we then set

Fi(y) = qj(z) = 4;(¢™"(v)) € Kly1,.--,yn]
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Thus Fi,...,F; are in the hypothesis of Lemma 3.3 with respect to y1,...,y, and we let
Py,...,P, € K[z1,...,2,] be the polynomials satisfying Bézout identity we obtain there.
Finally, for i =1,...,s, we set

pi = Zaijpj(ga(x)) € Kla,... 2]

We have 1=p1fi+-+psfs.
Now we analyze the degree and the height of these polynomials. We will assume n,d > 2 as the
remaining cases have already been considered in Lemmas 3.7 and 3.8.

Set W;:=V(Fy,....,F;) CA™ for I=1,...,t—1. We have W; = ¢(V}) and so degW; = degV].
We have also deg F; = degq; < d and so

min{n,s}—1
degp; < maxdegP; <2nd(1+ Z degW)) < 2n%d6
J
=1

as degW; < for I<n-—1.
Now let v € M52 . We have hoo(p) <2(n+1) log(d+ 1) and so

hm(¢71)

IN

n (hoo () + logn) — log | det Bl
< n(2n+1)log(d+1)+logn)—log|det B|s

< 3n(n+1)log(d+1)—log|det Bl

Set h, := max; hy(f;). Then

ho(Fi) < ho(@i) + (heo(9™") + 2 log(n + 1)) deg g;
< hy+2(n+1)log(d+1)+logs+ (3n(n+1) log(d+ 1) —log|det B|o +2 log(n+1))d
< hy+logs+(n+1+3n(n+1)+2n)dlog(d+1)—log|det Bloo d
< hy+logs+3(n+1)%dlog(d+ 1) — log | det Bl d.

by Lemma 1.2(c) and the facts that log(n+1) <n and log(d+1) > 1 for d > 2. Next, applying
Lemma 2.7, we obtain

h(W))

IN

hV) + (n—1+1)(h(p) + 5 log(n + 1)) degV,

IN

hVi) +n(2(n+1) log(d+ 1) + 5 log(n + 1)) degV,

IN

n+n(7n+2)dlog(d+1)d

as degW; =degV, <dd and h(V;) <n for [ =1,...,t — 1. By Lemma 3.3 there exists £ € K*
such that

t—1 t—1
hy(P;) < Qnthv(Wl)—i—((n—i—l) mlaxhv(Fl)—F 2n(2n+5) 10g(n+1)d)(1+2deng)
=1 =1
— log ¢y
t—1
< 2nd Y hy(Wh) + (n+1)% (hy +logs) d

=1

+ Bn+D*+ 20 (2n+5) (n+ 1)) d* log(d + 1) § — log |,
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with g := (det B)("*D*4*0 ¢ ¢ K*  From the previous estimates we deduce

ho(p;) < maxhy(P;) + (hoo (@) + 2 log(n + 1)) maxdeg P; + 2 (n+ 1) log(d + 1) + log ¢
j j

< 2nd Y hy(Wi) + (n+1)% (hy +logs) d
l
+ Bm+D*+ 20 (2n+5) (n+ 1)) d? log(d + 1) § — log ||,
+ (2(n+1) log(d+1) + 2 log(n +1))2n?dd + 2 (n + 1) log(d + 1) + log(n + 1)
< 2nd Y hy(Wi) + (n+1)% (hy +logs)d6 + 7 (n+1)* (n + 2) d® log(d + 1) 6 — log ||,
l

Analogously h,(p;) <2nd Y, hy(W)) 4+ (n4+ 1) hy d6 —log ||, for v ¢ MP.
Hence

h(pr,-.,ps) < 2nd Y h(Wy)+ (n+1)* (h+logs)dd + T (n+1)% (n+2)d* log(d + 1) §
l
2n%dn+2n® (Tn+2) d® log(d +1) 5 + (n+ 1) (h, +logs)dé

+7(m+1)*(n+2)d* log(d+1)6

IN

< 2n%dn+ (n+1)2? (h+1logs)dé + 21 (n+ 1)*d? log(d + 1) 6.
Finally we apply Lemma 1.3 to obtain a € Z \ {0} such that g; := ap; € Ok|z1,...,2,]. Thus

a=g1fi+-+9gsfs
and the corresponding height estimates are multiplied by [K : Q]. m]

We derive from this result and Lemma 4.8 the following estimate in terms of the degree and the
height of the input polynomials:

Corollary 4.11 Let f1,...,fs € Oklz1,...,2z,] be polynomials without common zeros in IA™.
Set d; := deg f; and assume that di > -+ > ds holds. Also set d := dy = max;deg f;, h :=
h(f1,.--, fs), and ng := min{n, s} .

Then there exist a € Z \ {0} and g1,...,9s € Ok[x1,...,2,] such that

g a:glf1+"'+gsfs ;
o degg; <2n2d [[}2"d; ,

o h(a,g,...,9:) <2(n+1)°[K:Q](h+logs+3n(n+7)dlog(d+1))d[[}°"d;.

4.2.3 Estimates for the sparse case

Our arithmetic Bernstein-Kushnirenko inequality (Proposition 2.12 and Lemma 4.9) shows that
both the degree and the height of a system are controlled by its volume. We then derive from
Theorem 4.10 the following arithmetic Nullstellensatz for sparse polynomial systems. Corollary 3
in the Introduction corresponds to the case K :=Q .

Corollary 4.12 (Sparse arithmetic Nullstellensatz)

Let f1,..., fs € Okglz1,...,z,] be polynomials without common zeros in IA™ . Set d := max; deg f;
and h:=h(f1,...,fs). Alsolet V denote the volume of the polynomial system 1,21,...,Zpn, f1,..., fs-
Then there exist a € Z\ {0} and g1,...,9s € Ok[x1,...,2,] such that
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s a=gfit+-+gsfs
o degg; <2n%dV ,
o h(a,g1,...,9) <2(n+1)3[K:Q]dV (h+logs+22""3d log(d + 1)).
Example 4.13 For 1 <i<s we let
fii=ai0+ai1@ + 4 QGinp 4+ bi1x1 x4+ big(zy - xn)d € Ly, .. ]

be polynomials of degree bounded by nd without common zeros in IA™. Set h := max; h(f;). Also
set Pgq:= Conv(0,e1,...,e,,d(e1 + -+ e,)) CR™, so that Py contains the Newton polytope
of the polynomials 1,x1,...,2Zpn, f1,...,fs. Then

V < Vol(Pg) =nld/(n—1)! = nd.
We conclude that there exist a € ZZ\ {0} and q1,...,9s € Zlz1,...,x,] such that

hd a:glf1+"'+gsfs>
o degg; <2n*d? ,
o h(a),h(gi) <2n®>(n+1)3d*>(h+logs+n22"t3dlog(nd+1)) .

This estimate is sharper than the one given by Theorem 1.
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