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ABSTRACT. We generalize Sylvester single sums to multisets and show
that these sums compute subresultants of two univariate polynomials as
a function of their roots independently of their multiplicity structure.
This is the first closed formula for subresultants in terms of roots that
works for arbitrary polynomials, previous efforts only handled special
cases. Our extension involves in some cases confluent Schur polynomials
and is obtained by using multivariate symmetric interpolation via an
Exchange Lemma.

1. INTRODUCTION

Let K be a field. Given two finite sets A, B C K of cardinalities m and
n respectively, and 0 < d < m, J.J. Sylvester introduced in [Syl1840b] the
following single sum:

(1) Syla(A, B)(x) =

Z R(A\A/, B)R(.’L‘, AI)
l / ’
A'CA,|A|=d R4, A\A')
where R(X,Y) := [[zex(z — y), with the convention that R(X,Y) = 1 if
ey

X=0orY =10, and €4\A’ denotes as usual the set difference.

For f:= fpa™ 4+ -+ fo,9 := gnz™ + -+ go € Klz], and 0 < d <
min{m,n} when m # n or 0 < d < m = n, Sylvester also introduced in
[Syl1839, Syl1840] the d-th order subresultant Sresy(f,g)(x) € K[x] :

m+n—2d
Jm - o faneay 2N
: : n—d
. Jm ... fa f
Sresq(f, g)(x) := det — S i) T g
: : m—d
gn - 9d+1 9

When
f= H(x—a) and ¢ = H(x—b),

acA beB
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that is, all roots of f and ¢ are simple roots, the following relation between
Sylvester single sums and subresultants was stated in [Syl1840b] and then
established in [Syl1853, Section 2|: for d < min{m,n} when m # n, or
d<m=n,

(2) Sresa(f, 9)(x) = (1)~ DSyly(4, B)(x).
The interest for having formulas “in roots” for subresultants comes from the
fact that it is well-known that for 0 < d < min{m,n}, Sresq(f, g)(x) is “the”
polynomial of degree d appearing in the polynomial remainder sequence
starting with f and g, and whose last element is ged(f, ¢). In the particular
case g = [/, the derivative of f, the study of the variation of signs of the
elements of this sequence in a given interval leads to explicit criteria for
computing the number of real roots of f in that interval. This is the so-called
Sturm’s method which was actually the main focus of Sylvester’s papers in
[Syl1839, Syl1853]. These results allowed Sylvester to obtain formulas for
Sturm’s auxiliary functions in terms of the roots of f, and these expressions
became well-known in his lifetime (see [Syl1853, Art. 35]).

Note that (2) can be considered as a “Poisson formula” for the subresul-
tant, generalizing the well known Poisson formula for resultants

Res(f, g) = Sreso(f, ) = [ [ 9(a),
acA
as it describes it in terms of the values of ¢ in the roots of f:

_ Ha A A/g(a)R($aA/)
res z) = (=1)4m=d) =2
S =0T S S

but this equality only holds in the case where the roots of f are all simple,
i.e. when f is squarefree, unlike the classical Poisson formula for resultants.

Even though there is a long history in the study of the connection be-
tween subresultants and Sylvester sums in the simple root case (see for
instance [Bor1860, ApJo2006, Chal990, Hon1999, LaPr2001, DTGV2004,
DHKS2007, RoSz2011, KS2001, KSV2017] and the references therein), lit-
tle is known about extensions when the roots of f and g have multiplicities.
As noted above, the generalization is not straightforward, since some de-
nominators in the Sylvester sums turn zero in case of root multiplicities,
despite the fact that the left hand side of (2) is well defined even in these
cases. The article [DKS2013] describes formulas in terms of the roots of
arbitrary polynomials but only for the order d = 1 and d = min{m,n} — 1
subresultants, while formulas for the subresultants of any order d but only
for the extremal case when f = (z —a)™ and g = (z — b)" in terms of a and
b have been developed in [BDKSV2017].

The present paper is the first one to give expressions for subresultants of
arbitrary polynomials f and g and arbitrary values of 0 < d < min{m,n}
that are a generalization of the classical Sylvester single sums.

To this aim, in Definitions 1.1 and 1.4, we present SyIM,(A, B)(x), a gen-
eralization of the notion of Syl;(A4, B)(z) for multisets (sets where repeated
elements are allowed). First, in Definition 1.1, we consider the case when
A and B are multisets and d sufficiently large. Then, in Definition 1.4, we
extend our definition to any d with the aid of Schur functions. Both of these
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definitions coincides with Syl;(A, B)(x) defined in (1) when A is a set, and
in Theorems 1.2 and 1.5 we show that our definitions also satisfy -as desired-
Identity (2).

In order to state our main results, we first introduce some notation we
extend from sets to multisets. Given a multiset X C K, we denote with | X|
its length (the number of elements counted with multiplicities). If X’ € X
are multisets, then X \ X’ is the multiset difference, defined by the elements
of X with multiplicities equal to the difference between their values in X
and in X'

Definition 1.1. Let A, B C K be multisets with |A| = m, |B| = n and let
A C A and B C B be fived subsets of the sets of distinct elements in A and
B respectively, and set m’ :== m — |A| and n’ = n—|B|. For any d such that
m' +n' <d<min{m,n} if m#n orm’ +n' <d<m=n, we define

SylM,(A, B)(z) :=
R(A\A, B\B'YR(A\A', B\B')R(z, A )R (x, B')
Z Z R(A, A\AR(B', B\B') '

(_1)m/(m—d)

A'CA B'CB
|A'|=d—m' |B’|=m'

It is straightforward to verify that when A is a set and A := A, i.e. m’ =0,
then SylM,(A, B)(z) boils down to Syl (A, B)(x), the usual Sylvester sum
which appears in (1). We also note here that the definition of SylM (A, B)(z)
depends on the choice of A C A and B C B, but since ultimately we prove
that they all agree with the subresultant independently of the choice of A
and B, we do not indicate this dependence in the notation for the sake of
simplicity.

We then have:

Theorem 1.2. Let f,g € K[x] be monic polynomials of degrees m and n,
with multisets of roots A and B. Let A and B be subset of the sets of distinct
roots of f and g, respectively, and set m' := m — |A| and n' :=n — |B|. For
any d such that m'+n' <d <min{m,n} if m #n orm’+n’ <d <m =n,
we have

Sresa(f, 9)(x) = (—=1)""=ISyIMy (A, B)(x).

One can wonder whether the lower bound stated for d in Theorem 1.2 is
sharp, since the definition of SyIM,(A, B)(x) makes sense for more values of
d, more precisely for those d such that m’ < min{d,|B|}. The next example
illustrates that the result holds for d in the right range and shows that the
constraint on it is necessary.

Example 1.3. Take f = (x — a1)(z —32)2 and g = (x :b1)2, so A =
{a1,a9,a2}, B = {b1,b1}, and we take A = {a1,a2} and B = {b1}. For
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d =2, one has Sresa(f, g)(xz) = g(x) while SylMy(A, B)(z) equals
_((az —b)(@—a)(z—b) | (a1 —by)(@ —ap)(z — b1)>

a; — ag az — ay
((CLQ — bl)(l‘ — al) — (a1 — bl)(l‘ — CLQ))(:L‘ — bl)

az — aj

= (.CE - bl)(.%' — bl)

= g(x),
so Theorem 1.2 holds in this case, and we note that d = 2 is in the range of
Theorem 1.2 since (3 —2) + (2 —1) < 2 < min{3,2}.

Now take f = (x — a1)(z — a2)? and g = (x — by)3. In this case, A =
{a1,az2,a2} and B = {by,b1,b1}, and we again take A = {a1,as} and B =
{b1}. For d = 2 we have Sresa(f,g)(x) = g(z) — f(x) and SylMy(A, B)(x)
can still be defined according to Definition 1.1 since m’ = 1 < min{d,|B|},
but it is a multiple of —0b1, so the two expressions obviously do not coincide.

We note that here d = 2 is not in the range of Theorem 1.2 since 2 <
(3—2)+(3-1).

To extend the definition of SylM (A, B)(z) for any d, we need to introduce
confluent Schur polynomials S,(CR) (X), which are defined in (5) below, for a

multiset X of length r < k, by removing a subset R of kK — r rows in the
confluent Vandermonde matrix of X of size k x r.

Definition 1.4. Let A, B C K be multisets with |A| = m, |B| = n and let
AC Aand B C B be subsets of the sets of distinct elements in A and B
respectively, with |A| =m, |B| =n. Set m' :=m —m and n' :=n —n. For
0 <d<min{m,n} ifm+#mn or0<d<m=n, we define
SYIMy(A, B)(z) = (=)™ "=,
. Z(_UUR R(A\A, B\B"YR(A\A’, B\B"YR(z, AR (z, B') .
R(A', A\NA)R(B', B\B’)
. S(ﬁl)(A/ UB' U {:C})S(R2) ((Z\A/) U B)S(R3) (AU (E\B/))
d+1 m+n—d m+n—d ’
where the sum is indezxed by
e all possible disjoint unions Ry U Ro U Ry = {1,...,m'+n’' —d} with
R Cc{m+4+n—-2d,....m"+n —d}, |Ri] <d-(m+mn)—+1,
m' —d<|Ry]<m—dandn —d<|R3| <n—d,
e all subsets A' C A, |A'| = |Ra| +d — n/,
e all subsets B' C B, |B'| = |Rs| + min{m/,d — n’},
o is specified in (6) for R := (Ry, Ry, R3), and Ry := {i— (m+n—2d—1) :
i€ Ry}

It is easy to verify that this notion generalizes Definition 1.1, since when
m' +n' < d, then m’ + n’ —d < 0 which implies that the sets Ri, Ro
and R3 in the sum above are empty, and |B’| = m’/. In this way, one
recovers the previous multiple sum straightforwardly. On the other hand,
when m/+n’ > d, we have min{m’,d—n'} = d—n’, and one can easily check
that the three Schur polynomials are well defined, i.e. the submatrices of
confluent Vandermonde matrices appearing in the formula are all square.
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Furthermore, when A is a set and we choose A = A, that is m’ = 0, then
Rs={1,...,n" —d}, Ri = Ro =0, |A’/| =d and |B’| = 0, and one can then
check that SyIM,(A, B)(z) = Syl (A, B)(z).

An additional interesting feature of our formula is that when B is a set
instead of A, and we choose B = B, that isn’ = 0, then Ry = {1,...,m'—d},
Ry = R3 =0, |A'| = 0 and |B’| = min{m/,d}. In this case one can check
that for m’ > d, one has

R(A, B\B') R(z, B
R(B', B\B')

SyIMy(A, B)(z) = (-1)4m=D »~
B'CB,|B'|=d

— (—1)"™" Syl (B, A) (x).

When n’ = 0 and m’ < d, one can also prove that the same identity holds,
though it is not immediate and requires applying the Exchange Lemma
described in Section 2. In any case, the amazing fact is that SylM;(A, B)(z)
somehow “recognizes” when A or B are sets.

The main result of our paper is the following generalization of Theorem
1.2, which shows that SyIM,(A, B)(x) computes the subresultant in all the
cases.

Theorem 1.5. Let f,g € K[x] be monic polynomials of degrees m and n,
with multisets of roots A and B. Let A and B be subsets of the sets of distinct
roots of f and g, respectively, and set m' := m—|A| and n' := n—|B|. Then
for 0 < d <min{m,n} if m#n or 0 <d < m =n, we have

Sresa(f, 9)(x) = (—=1)""~DSyIMy(A, B)(x).

We consider again Example 1.3 to illustrate how under Definition 1.4,
Theorem 1.5 indeed holds. The right-hand side SylM;(A4, B)(z) in this ex-
ample is fully developed in Example 3.4 below.

Example 1.6. Take f = (v — a1)(x — a2)? and g = (x — by)® associated
to the multisets A = {a1,as,a2} with A = {a1,a2}, B = {b1,b1,b1} with
B = {b} and d = 2. We have Sresa(f, g)(z) = g(z) — f(x) while in this
case SylMy (A, B)(x) equals

(az —b1)(z — a1)(z — az) — (a2 — b1)(as _albl_)(:;— a1)(@ —b1)

(a1 —b1)(a1 — b)) (2 — az)(z — by)

Gz — aj

It is easy to check that the two expressions coincide.

Next, we also obtain analogous descriptions in term of roots for the Bézout
coefficients Fy(f, g)(z) and G4(f, g)(x) that appear when expanding

Sresq(f, g)(x) = Fa(f, 9)(z) f(x) + Ga(f, g)(z)g(x),
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with
m+n—2d
fm - o fari—(n—d-1) gt
: n—d
fm cee fd+1 1
Fy(f,9)(x) := det
: : m—d
Gn - 9d-+1 0
and
m+n—2d
fm o fari—(n—d-1) 0
) n—d
fm - fdt1 0
Ga(f,9)(x) := det —d=
d(f g)( ) In gd+1—(m—d—1) l’m a1
: : m—d
gn - 9d+1 1

Our new formulations extend the following formulas in case of simple roots
that already appear in [Syl1853, Art. 29] (see also [KSV2017, Cor. 3.10])
for 0 < d < min{m, n}:

R(A, B\B\R(z, B\B'
3 (A, B\B)R(z, B\B')

Fy(f.9)(x) = (~1)"¢ R(B,B\B')

B/'CB,|B'|=d+1

(3)  Ga(f,9)(x) = (—1)m=d=b}" R(A\ﬁ’@f?);z\(z)fx\,ax')'

A'CA,|A|=d+1

Our results are based on Lemma 4.1, where we relate the Bézout coeffi-
cients associated to f and ¢ to principal subresultants of bivariate polyno-
mials in K[z,y| obtained from f(y) and ¢g(y) by adding the variable x to
their roots. To our knowledge, this is the first result expressing the Bézout
coefficients as special cases of subresultants. This lemma allows us to use
the results of Theorems 1.2 and 1.5 to get formulas for F; and Gg.

Theorem 1.7. Let f,g € K[z] be monic polynomials of degrees m and n,
with multisets of roots A and B. Let A and B be subsets of the sets of
distinct roots of f and g, respectively, with m = |A| and n = |B|, and set

m' :=m—m and n' := n—n. For any d such that m'+n’ < d < min{m,n},
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we have

Fd(fa g)(!L‘) =

bl 1) R(A\L.B\B)R(A\L, B\B)R(z. B\B)
(-1 1 Z Z R(A', A\AR(B', B\B'),

B/
|A| n'|B\ d+1 n’

Ga(f,9)(x) =

oY d—1 R(A\A', B\B)R(A\A', B\B')R(x:, A\ A’
(_1)(d )¢ = Z Z \ >/ )A\<A’\) (B’}B\)B’() \ )

A'CA B'CB
|A'|=d+1—m/ |B'|=m’

These identities are particular cases of Theorem 4.2, which deals with any
value of 0 < d < min{m, n}.

The paper is organized as follows: in Section 2 we describe the main ingre-
dient in our proofs, Proposition 2.1, which is a generalization of a result by
F. Apéry and J.-P. Jouanolou. In Section 3, we apply this tool to justify the
definition of SyIM,;(A, B)(x) and show its connection with the subresultant.
For the sake of clarity, we first present our results for the case d big enough
and then in the following subsection, we recall the definition of confluent
Schur polynomial and extend our definition and result to arbitrary values of
d. Section 4 presents the formulas for the Bézout coefficients Fy(f, g)(z) and
Ga(f,g)(z). We conclude in Section 5 by comparing our results with previ-
ous literature in the topic. The Appendix at the end contains the technical
proofs of statements made in Sections 2, 3 and 4.

A Maple code [Map2016] computing the formulas described in Theorems
3.1 and 3.3 is freely available at
http://cms.dm.uba.ar/Members/mvaldettaro/code.mw
This code has been used for computing most of the examples which illustrate
this paper.
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2. A GENERALIZATION OF A RESULT BY APERY & JOUANOLOU

This section deals with a generalization of a result by Apéry and Jouanolou
that appears in [ApJo2006, Prop.91], which is quite surprising and seems of
independent interest. No multisets are involved here.

Proposition 2.1. Let A, B C K be finite sets with |A| = m, |B| = n. Set
0<d<m. Let X be a set of variables and ¥ C K be any finite set satisfying

|E| > max{|X|+d,m+n—d,m}.
Then

3 R(A2, B)R(X, A1) _
AjUAy=A R(A1, 42)
|Ar|=d, | Az|=m—d
_ Z R(AaE?))R(EQaB)R(Xa El)

a R(E1, B2)R(E1, E3)R(Eo, E3)

FiUESUEs=F
|Er|=d,| Eo|=m—d,| E3|=| E|-m

The original result in [ApJo2006, Prop.91] states that for |E| = m+n—d
and d < min{m,n} for m # n or d < m = n, one has
> R(E3, A)R(E2, B)R(x, E1)
R(E2, B1)R(E3, E1)R(E3, E2)

Sresq(f, 9)(z) =
FiUEsUEs=F

|E1|=d,| Es|=m—d,| B3|=n—d

This is a particular case of our result by (2) and the definition of the sum (1).

We illustrate the result with a toy example, which shows how the sym-

metric interpolation developed by W.Y. Chen and J.D. Louck [ChL01996]

(or see Proposition A.2 below) applies here, and leave its technical proof to
Section A.1 in the Appendix.

Example 2.2. Take A = {a1,a2}, B = {b}, and d = 1. For X = {z} we
have
Z R(Az, B)R(z, A1) _ (a1 —b)(z — a2) N (a2 — b)(x —aq)
R(A1, A2) az —ay ar —az

A1UA=A
|[A1]=1,]A2]=1

= —(x —b).
On the other side, for E = {e1,ea} we have

3 R(A, E3)R(E2, B)R(x, E1)
R(E1, E2)R(E1, E3)R(Es, E3)

FE1UESUE3=F
|E1]|=1,|E2|=1,| E5]|=0

= (e1 = b)(z = e2) + (e2 = b)(w —e1) = —(z—0b) as well,
€2 — €] €1 — €2

which is obvious in this case, or can be easily checked for instance by La-
grange interpolation in ey and es. This is an example of Apéry and Jouanolou’s
result.

Now consider X = {x1,x2}, E = {e1,e2,e3}, and A, B as above. On one
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hand we have
Z R(A2, B)YR(X, A1)
R(A1, Ag)

A1UA=A
[A1[=1,|Az2|=1

(a1 — b)(21 — az)(w2 — az) n (a2 — b) (21 — a1)(w2 — a1)
a2 — aj a] — ag
= —z1x2 + b(x1 + x2) + arag — b(ay + a2) =: f(x1,x2).
On the other hand, for E = {e1,ea,e3},
R(A, E3YR(Es, BYR(X, E)
2. R(E1, B3)R(Ey, E3)R(Es, E3)’

E1UEsUE3=FE
|E1|=1,|EB2|=1,|E3|=1
is a symmetric polynomial g in 2 variables of multidegree bounded by 1,
which, by symmetric interpolation (see Proposition A.2 below), is determined
by its value on all subsets of size 2 of E = {e1,e2,e3}. Let us check that
the symmetric polynomial g agrees with the above symmetric polynomial f
in all subsets of size 2 of E: for 1 <i < j <3, one has

(a1 —ei)(az —ei)(ej = b) | (a1 —ej)(az —€j)(ei = b)

6]'—67; ei—ej

g(eiv ej) =
= —eje; + b(e; + €5) + arag — b(ar + az) = f(ei, e;).
Thus, f=g.
Finally, since the two bivariate polynomials f and g coincide, their leading
coefficient with respect to xo also coincide, which implies that
Z R(AQ,B)R(CEl,Al)
R(A1, Ag)

A1UA=A
|[A1]=1,]A2|=1

Z R(A, E3)R<E2, B)R(I‘l, El)
R(E1, E2)R(E1, E3)R(Ey, E3)

FiUFE>UEs=F
|E1]|=1,|Ea|=1,| E3]=1
as well. This means that the equality also holds for one variable x, which is
an example of a case where |E| > max{|X |+ d,m +n —d,m}.

A prominent consequence of Proposition 2.1 is that the sum in its right-
hand side, since it coincides with the sum in the left-hand side, does not
depend on the particular choice of the set E, as soon as it is large enough,
but only on the sets A and B. This enables us to compute it by any suitable
specialization of the set F.

3. APPLICATION TO SUBRESULTANTS

This section is devoted to motivate Definitions 1.1 and 1.4, and prove
Theorems 1.2 and 1.5 of the introduction. This will be done via Theorems 3.1
and 3.3 below, where A and B are assumed to be sets instead of multisets,
and A, B are arbitrary subsets of A, B respectively. Proposition 2.1, which
can be interpreted as a multivariate version of Syl (A, B)(z) by means of
an arbitrary auxiliary set E (where only the size of E matters), allows us
to specialize E on sets in such a way that the denominators only depend
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on these A and B. Then, in the proofs of Theorems 1.2 and 1.5, we let the
elements of A or B collide, and our formulas remain well defined as long as
we assume that the elements of A and B are all distinct.

We start with the easier case of d sufficiently large to be in the range of
Definition 1.1.

3.1. The case of d sufficiently large.

Theorem 3.1. Let A,B C K be sets with |A] = m and |B| = n. Let
A C A and B C B be any non-empty subsets of A and B respectively, with
|A| = m, |B| = m, and set m' := m —m, n' := n —n. Assume that d
satisfies m' +n' < d < min{m,n}, and let X be a set of variables with
| X| <m+n—2d. Then
Z R(A2, BYR(X, A1)
R(A1, A2)

_ (_1)m’(m—d) .

A1UA=A
|A1|=d, | Az|=m—d

D> R(A\A, B\BYR(A\A', B\BR(X, AR(X, B
R(A, A\A"R(B', B\B') ‘

A'CA B'CB
|A'|l=d—m/ |B'|=m’

Proof. We first assume that AN B = (. By Corollary 2.1 applied to E :=
AU B, with |E| =m +7n > m + n — d by assumption, we have

3 R(A2, B)R(X, A1) _ 3 R(A, E3)R(E2, B)R(X, Ev)

R(A1, A R(E1, E9)R(E1, E3)R(E>, E3)
AiLids=A (A1, 42) mummAus P BIR(EL B)R(Ey, By)
|A1]=d, |\ By |=d,| B3 |=m—d
|Az|=m—d |E3|=m+n—m

Now, if ANE3 # () then R(A, Es) = 0 and if E;N B # () then R(E2, B) = 0.
Therefore, in each non-zero summand on the right hand side we have E3 C B
and Fy C A. Setting A’ = A\E; and B’ = B\F3, we get that E3 = B\B’,
Ey = A\A’ and E; = A’ U B’, and therefore we can rewrite the right hand
side as
Z Z R(A,B\B")R(A\A", BYR(X, A)R(X, B')
= RAUBLAARA OB, B\B)R(A\A, B\B)

-y ¥ R(A, B\B")R(A\A', B)R(X, A")R(X, B’)
B R(A", A\AR(B', A\AYR(A, B\B")R(B', B\B')

B A R(A\A, B\B)R(A\A", B\B'YR(X, A YR(X, B)
= (EDIEERAT S 2 R(A', A\A"YR(B', B\B')

A'CA B'CB

|A|=d—m" |B'|=m/
as desired, since |B’| - [A\A'| = m/(m — d).
The general statement follows from the fact that the two expressions
generically coincide. O

We note that the right-hand side of the equality in Theorem 3.1 makes
sense even when A, B are multisets instead of sets, for one only needs A, B
to be sets. For X = {z} we can then define, as stated in Definition 1.1, the
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notion of Sylvester sum for multisets A and B and d within the bounds of
Theorem 3.1, which extends the usual notion of Sylvester sums for sets.

Proof of Theorem 1.2. Since neither SylM,;(A, B) nor Sres,(f,g) depends
on the ordering of the elements in A and B, we can assume without loss
of generality that the distinct elements of A and B appear as the first m
and m elements of A and B, respectively. Define sets of indeterminates
Y = {y1,..,ym} and Z = {z1,,...,7,}, and set f¥ = [[",(z — v;) and
g7 = [[-,(x — 2). Then if we set Y = {y1,...,ym} C Y and Z =
{z1,.-,z7} CZand m' +n” <d <min{m,n} if m#norm' +n' <d<
m = n, according to Theorem 3.1 we have

Syla(Y, Z)(x) =

e RYV\Y, Z\Z)R(V\Y', 2\Z\R(z,Y"\R(z, Z')
(o >, 2 ROV Y\Y)R(Z', 2\2)

Y'cYy Z7Z'cZ
Y/ |=d—m' |Z'|=m'
On the other hand, by (2), Sresq(fY,9%)(z) = (=1)4m=DSyl, (Y, Z)(x).
Therefore, for d within the stated bounds,
Sresa(f¥, 9%)(x) =

Y R(Y\Y,Z\Z)R(Y\Y", Z\Z')R(z,Y"YR(z, Z')
A DD RY,Y\YR(Z',Z\Z')

Y'cY z'czZ
Y/ |=d—m' |Z'|=m’

We end the proof by setting y1 — a1,...,Ym — G- - s Ym — Am, 21 —
bi,...,2m — bm,...,2n — by noting that both sides of the equality are
well-defined after this specialization. O

3.2. The general case. In order to deal with the situation where 0 <
d < m' +n' we need to recall the definition of Schur polynomials. Given a
partition

A:()\l,AQ,...,AT), ANi € Zsp for 1 <7 <7, with Ay > Xg > -+ > A,

the Schur polynomial s)(X) for a set X = {z1,...,2,} is defined as the
ratio

x;lﬂn*; w%lﬂn*; oAl
:c12+T_ x22+r— . x;\2+7"_2
det .
o ay o
X) =
sx( 21 21
1 r
det : :
1 .. 1

That is, Schur polynomials are ratios of subdeterminants of Vandermonde
matrices, where in the numerator some rows of a regular Vandermonde ma-
trix are deleted, while in the denominator a regular Vandermonde matrix
occurs. Note that Schur polynomials are symmetric in z1,...,z,, and thus
it makes sense to write s)(X) for a set X. For convenience here, we will
not follow this usual notation for Schur polynomials given by partitions but
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introduce a notation with a set of exponents as follows: for k,r € N, k > r,
we set

xlf_l x,’ffl
Vi(X) = : :
1 .. 1

to be the regular rectangular Vandermonde matrix of size k x r. When
k = r we write V(X) for simplicity. For a subset of row indexes R =
{i1,.. - ig—r} C{1,...,k}, we will denote by Vk(R)(X) the square submatrix
of V(X)) obtained by removing the rows indexed by R. We then define

(VB
@) S0 = S

that is SI(CR) (X) is the Schur polynomial associated to the set of indexes
{1,...,k}\ R.
In a more general setting, if X = {z1,...,21,...,%F,...,T7} is a multiset
1 s
with r» = j; + -+ + j7, we define a genei"alized or conﬂ]uent Vandermonde
matrix instead of the regular Vandermonde matrix of size k x r as (c.f.
[Kal1984])

Vi(X) = ( Vi(z1,51) -~ Vilzrgr) )
where for any j, Vi(x;, j) of size k x j is defined by
B (k-2 (k-1 (k-2 L G
Viteind) = | 2 2u; 2 0 )
T; 1 0 .. 0
1 0 0 . 0

where when k& = r one writes again V(X)) for simplicity. It is known that
V(X) is invertible when x; # x; for i # j.

Then one can define confluent Schur polynomials in the same way as
before: let R = {i1,...,ix—} C {1,...,k} be a subset of the row indexes,

then we will denote by Vk(R)(X ) the square submatrix of Vj,(X) obtained by
removing from it the rows indexed by R, and define

ot (VR
? 100 = Sy

Note that in principle S,E,R) (X) is a rational function, and it may not be
defined over fields of positive small characteristic. The next result shows
that it is actually a polynomial, and hence its definition can be done over
any field K.

Lemma 3.2. S,ER) (X) is a symmetric polynomial in the X -variables with
coefficients in K.

Proof. When X is a set instead of being a multiset, the Schur function
defined in (5) coincides with the Schur polynomial defined in (4), so the claim
obviously holds in this situation. To prove the statement in the general case,
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consider a set X = {x11,...,Z1,,..., %5 1,..., %, } which will “converge”
to a multiset Y by setting 21, — y1 for 1 < i < 51, ..., x5; — y7 for
1 <% <7 Then

S0 = 57()
as it can be seen for instance by computing the limits for x12 — 211 by
L’Hopital rule, for x; 3 — ;1 if necessary, and repeating the same for the

other terms 92 — xj 1, etc. This shows that SIER) (Y) e K[Y]. O

For a given (increasingly ordered) set R C {1,...,r}, we set sg,(R) :=
(—=1)?, where o is a number of transpositions needed to move this set to the
first positions in {1,...,r}, i.e. if R={i1,...is} with 1 <iy <--- <izs <,
then o is the parity of the number of transpositions needed to bring (1,...,r)
to (i1,...1s,...), without changing the relative order of the other elements.

Also, for a given partition {1,...,r} = Ry U Ry U ... U Ry, with R :=
(R1,...Ry) we denote sg(R) = (—1)?, where o is the parity of the number
of transpositions needed to bring the ordered set (Ri, ..., Ry) (we assume
that each of them is also increasingly ordered) to {1,...,r}.

Theorem 3.3. Let A, B C K be sets with |[A] = m and |B| = n. Let
A C A and B C B be any non-empty subsets of A and B respectively, with
|A| = m and |B] = n and set m' := m —m and n' == n —n. Assume
that 0 < d < min{m,n} if m # n or 0 < d < m = n satisfies in addition
d<m/+n'. Then:

(1) If 0 < d <M+ 7 then

Z R(A27B)R($7A1) _ (_l)m’(mfd) Z (_1)01-2 .

A1lUA=A R(A17 AQ) RQUR3={1,...,m,+n,—d}
|A1‘=d, ‘Rzl:’rg,mldengm*d
|Az|=m—d |R3|=r3,n'—d<r3<n—d
> > R(A\A, B\B)R(A\A', B\B)R(z, AYR(x, B')
. 2 R(A", A\A)R(B', B\B')
A'CA B'CB

|A'|=ro—(m/—d) |B'|=rs—(n'—d)
R — R el
SR (A UB)SR) (AU (B\B),
where for the partition Ro U Rs = {1,...,m'+n’ —d} and R = (Ra, R3)

(_l)O'R — (_1)rg(mf1)+r3(m’+n’fdfl)+r2r3sg<R).

(2) Ifm+n<d<m +n,

Z R(AQaB)R(Qj?Al) _ (_1)m’(m—d) Z (_1)0R,
A‘ljil_lf‘lijA R(Ar, As) RiURsURs={1,....m"+n’' —d}

RiC{m+n—2d,...,m'+n’—d},
|R1|=r1, 1 <d—(Mm+7)+1
|Ra|=r2, m'—d<ry<m—d
|R3|=r3,n'—d<rs<n—d

R(A\A, B\B')R(A\A', B\B')R(z, A')R(z, B)
> ) R(A", A\AYR(B', B\B')

|A2|:m7d

! A !~
B
|A'|=ro—(m'—d) |B’|=r3—(n’—d)

S 0B UR)SED (@A) UB)SEY (AU (B\B)),



14 C. D’ANDREA, T. KRICK, A. SZANTO, AND M. VALDETTARO

where Ry = {i—=(m+n—-2d—1): i€ R}, and for the partition Ry U
RyURs={1,...,m'+n' —d} and R = (R1, Ra, R3)

(6) (_1)UR — (_l)rl(n—d+r2+r3)+r2(m—l)+r3(m’+n’—d—1)+r2r3Sg(R)_

We leave the proof of Theorem 3.3 to Section A.2 in the Appendix. Here
we illustrate this theorem by working out the full details the case corre-
sponding to Example 1.6 of the introduction.

Example 3.4. Let A = {al,ag,ag}, Z = {al,aQ}, B = {bl,bQ,bg}, F =
{b1}, and d = 2. Set f = (x —a1)(z — a2)(x —a3) and g = (z — by)(x —
ba)(x — b3). On one side we have

R(AQ, B)R(l‘, Al) _ g(al)(x — a2)(1; — ag)
AlL%;:A R(Al)AQ) B (CLQ — al)(ag — al) +
|A1]=2,]A2|=1
glaz)(r —a1)(x —a3) | glas)(r —a1)(r —az) e
(a1 — az)(as — az) (a1 —as)(az —az) 9(x) = f(z),

since, by Lagrange interpolation, these two polynomials of degree < 2 agree
on ay, az and ag.
Now, since d < m +n in this case, we need to compute the right-hand side
in (1) above. First, m'(m —d) = 1. Also, Ry U R3 = {1}. For Ry = {1},
ro=1,|A"=1, and R3 =10, r3 =0, |B'| =0, (-1)7% = —1, and one can
check that Sil)@ UB)=1 and 54(1@) (AU{b1}) = 1. This gives the term

(a3 —b1)(x —a1)(x — ag).

Similarly, for ro =0 and r3 = 1, |A’| =1 and |B’| = 1. The computation
gives two terms depending on A" = {a1} and A" = {as}:

(a2 — by)(az — b3)(z —ar)(z —b1) (a1 — ba)(a1 — b3)(z — az)(z — b1)

a1 — ag az — a1
So the final sum equals

(a3 —b1)(z — a1)(z — az) — (a2 — ba2)(az —albg_)(;— ar)(x —b1)

(a1 — ba)(a1 — b3) (= — ag)(x — by)
as — al

One can easily verify that this expression coincides with g(x) — f(x) by in-
terpolating in ay,as and by for instance. The expression in Example 1.6 is
obtained by setting as = az and by = by = bs.

We are ready now to conclude the proof of Theorem 1.5.

Proof of Theorem 1.5. First we note that SyIM,;(A, B)(z) introduced in Def-
inition 1.4 not only generalizes Definition 1.1 as mentioned in the introduc-
tion, but also generalizes the term in the right-hand side of Theorem 3.3(1)
for sets, since when d < m+n, Ry C {m+n—2d,...,m' +n' —d} = 0.
Therefore, thanks to Identity (2), Theorems 3.1 and 3.3, one has that the
following equality holds for sets A and B, any subsets A C A and B C B
and any 0 < d < min{m,n}ifm#nor0<d<m=n:

Sresa(f, 9)(x) = (—=1)""=ISyIMy (A, B)(x).
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The transition from sets to multisets is then straightforward by taking limits
of sets to multisets, as in the proof of Theorem 1.2, thanks to Lemma 3.2
and its proof, since both quantities are well-defined for multisets. O

4. APPLICATION TO THE BEZOUT COEFFICIENTS

We first show an interesting new connection between the Bézout coeffi-
cients Fy(f, g)(x) and G4(f, g)(x) and the order d+1 principal subresultants
of bivariate polynomials obtained from f and g.

Lemma 4.1. Let f, g9 € K[z] be polynomials of degrees m and n, respectively,
and define f = f(y) - (y — z) € K(2)[y] and g = g(y) - (y — z) € K(z)[y].

Then for any 0 < d < min{m,n}, we have
Fd(fv g)(x) = (_1)m_dcoeﬁyd+1 (SI‘GSd+1(f, g(y>))7
Gd(f7 g)(.%') - Coeﬁyd+1 (Sresd+1(f(y)v g)) :

Proof. We first consider the case when f and g have distinct roots A and
B. By Identity (3) we have

R(A\A', BYR(x, A\ A’
T (A\A", B)R(x, A\A")

Ga(f. g)(@) = (~1)m=a=D R4, A\A)

A'CA,|Al|=d+1

= (~1)@rm=d-)  $ R(é\(ﬁ’ i\til/{)«’v})

A'CA,|A|=d+1

— (1) DD oo . Z R(A\A;éagig\;ggz(% A’)>

AICAA | =d41
_ (_1)(d+1)(m_d_1)coeﬁyd+1 (Sylgs1(A, BU {z})(v))
= coeff 41 (Sl"eSd+1(f(Z/)7§))

and

()= D= DG (g, £)(x)
(_1)(m*d)("7d) Coeffyd-H (Sresd+1 (g(y)7 f))

(—l)m_dcoeﬁyd+1 (Sresd+1 (f, g(y))) :

Fa(f,9)(x)

The identities for arbitrary polynomials f and g follow by continuity, since
all expressions are well-defined in case of multiple roots. U

Now we are ready to state our general expressions for the Bézout coeffi-
cients, generalizing Theorem 1.7 in the Introduction.

Theorem 4.2. Let f,g € K[z] be monic polynomials of degrees m and n,
with multisets of roots A and B, and A and B are subsets of the sets of
distinct roots of f and g, respectively, with m = |A| and 7 = |B|, and set

m':=m—m and n' :=n —n. For any d such that 0 < d < min{m,n}, we
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have
Fa(f,9)(x) = (—1ym 4 md=nim=n) > (~1)7% -
R1|_|R2|_|R3={l,...,m/+’n/7d}
Ric{m+n—2d,....m'+n'—d},
|R1|=T1,T1§d+27(m+ﬁ)
|Ra|=r2,n'—d—1<ro<n—d—1
|R3|=r3,m'—d<r3<m—d
> > R(B\B, A\AYR(B\B', A\A)R(z, B\B)
= = R(A, A\AVR(B', B\B')
|A’|=r34+min{n’,d—m’} |B’|=rs—(n'—d—1)
R R R3)
-S4 U BN (AUB\B) U {2} ST (A\A') U B),
Ga(f,g)(x) = (—1)m—d=Dd=m) > (—=1)7" -
RluRQUR3:{1,...,m,+n/—d}
Ric{m+n—2d,....,m'+n'—d},
‘R1|=T1,T1Sd+2—(m+ﬁ)
|R2|=r2,m' —d—1<ra<m—d—1
|R3|=r3,n'—d<r3<n—d
> > R(A\A, B\B)YR(A\A', B\BR(z, A\4")
) = R(A, A\ AVR(B, B\B)
|A’|=ro—(m'—d—1) |B’|=rs+min{m’,d—n’}
ST AU BT (@A) UBU (), (AU (B\B),
where
(_I)ER — (_1)7”1(m_d+r2+7'3)+r2ﬁ+1”3(m’+n’—d—1)+T2TSSg(R)7
(_1)53 _ (_1)r1(nfd+r2+r3)+r2m+r3(m’+n’fd71)+r2rgsg(R)
and

El ::{i—(m+n—2d—2):iER1}.

Again, we illustrate this result with a toy example, leaving the proof to
Section A.3 in the Appendix. We do not treat here the case f = (x —a1)(x—
a2)? and g = (z—b)3 as we did for Sresy(f, g) in the introduction, because in
this case Fa(f,g) = —1 and G2(f, g) = 1 which do not have a lot of interest.

Example 4.3. Take f = (z — a)® and g = (x — b)%2. For d = 1, we easily
compute that

Fi(f,9)(z) =1 and Gi(f,g)(z) = —x+ 3a—Db.

We now compute the expressions at the right-hand side in Theorem 4.2.
For the first expression, corresponding to Fy(f,g)(x), we have Ry = Ry =
0, Ry = {1,2}. This gives A’ = A and B' = B. We then get that the sum
equals 1 and the initial sign equals 1. That is, the right-hand side equals 1,
as expected.
For the second expression, corresponding to G1(f,g)(x), the initial sign
equals —1. We have Ry = 0, and Ry = {1}, Ry = {2} or Ry = {2},
= {1}. In the first case, (—1)"R = —1 while in the second case (—1)°F =
1. In both cases A' = A and B' = B, so what is left to compute in each sum
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is S{™)/(B U {z}) and S\"(A). When Ry = {1}, S{"™(BU{z}) =1 and
SiRg)(A) = —3a, while when Ry = {2},

b 30 B
det b 1 =
1 0 1
R
S\ (B U {x}) = Ty =@+ 2
det b 1 =z
1 0 1

and SiR3)(A) =1.
We finally get that the expression in the right-hand side equals 3a — x — 2b
which coincides with what is expected.

5. COMPARISONS WITH PREVIOUS RESULTS

In this paper we have succeeded in defining an expression in roots with
multiplicities SylM,(A, B)(z) (Definitions 1.1 and 1.4) which extends the
classical Sylvester sum Syl;(A, B)(x). However, in [Syl1853] Sylvester also
introduced the following double sum: for 0 < p <m, 0 < g < n,

R(x, A" R(z,B’)

(A, A\A") R(B’, B\B’)’

Syl ¢(A; B)(x) := Z R(A", B") R(A\A', B\B') R
A'CA,B'CB
|A’|=p, |B'|=q
and showed that if we set d := p + ¢; for d < min{m,n} when m # n, or
d <m=n,

Syl (A, B)(x) = (—1)rom) (jj) Sresq(f, 9)(x).

It would be interesting to produce expressions SylM,, . (A, B)(x) for general
multisets A and B, which specialize to the above double sums in the case of
A and B being sets. Some extensions have been described in [Vall7, Section
4.2] for the case p and ¢ “large enough”, but still more work has to be done
in this direction.

Recently, several explicit formulas “in roots” for univariate subresultants
with multiplicities have been presented. We describe some of them and show
that in all the cases, our SylM;(A, B)(z) essentially produces new formulas.

5.1. m = n = 1. In [BDKSV2017], the authors, in a joint work with Alin
Bostan, developed a formula for the subresultants in the extremal case when
both polynomials f and g have only one (multiple) root each, that is when
f=(x—a)™ and g = (z — b)". More precisely,

Theorem 5.1. ([BDKSV2017, Th.1.1, Th.1.2]) Let m,n,d € N with 0 <
d < min{m,n}, and a,b € K. Then

Sresq((x — a)™, (x — b)")(x)

SH

= (_1)(2)(a — b)(m—d)(n—d) Z q;(m,n, d)(z — a) (z — b)d—j7
§=0
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where the coefficients qo(m,n,d), ..., qq(m,n,d) satisfy
d ;. .
(t—1)!m+n—-—d—i—1)!
d)
Go(m, n, 1;1 (m—i—1)(n—1)! ’
G
qj(m,n,d) = -2 J qo(mnd) for 1 <45 <d.

T m—1y

(")

Comparing the expression above with the formula given in Theorem 3.3
applied to the case m =n = 1, we get the following result:

Proposition 5.2. Let m,n,d € N with 1 < d < min{m,n}, and a,b € K.
Let A={a,...,a} and B={b,...,b}. Then
——— ———

m n

Sresq((x —a)™, (x — b)™) ()
= (a=b)""(z = b)So(d) + (a = )"z — a)S1(d) + (z — a)(zx — b)Sa(d),
where
. Sold) = > (~1)7mS52)_a{a} UB)SIE,_4(4),

RzUR3:{1 ,,,, er’and*l}
|Ro|=m—d—1,|R3|=n—d

o Si(d) = 3 (—1)7mst=)  (B)SUR) (AU (b)),
RzUR3:{1 ,,,, er’and*l}
|Rz|=m—d,|Rs|=n—d—1

e S3(d) =0 for d=1, and for d > 1,
d—1

Sa(d) = >

i=1 RoUR3={1,..., m+n—2d—1}U{m+n—2d—1+i}
|Rz|=m—d,|R3|=n—d

(—1)or gt =N (1 3 2}y SU) - (B)STE)  (A).

As an example, for m =3, n =2, m=n =1 and d = 1, we get from
Theorem 3.3 that
—a? — ab + 2b?
Stesi (@ — a)?, (v~ b)(x) = (a = b)(& — b)(3a+ =)
+ (@ — b)*(z — a)

= (a—0)*(2(z — b) + (¢ — a)),
which is consistent with the values ¢o(3,2,1) = 2 and ¢1(3,2,1) = 1 obtained
in Theorem 5.1.

Note however that the subresultant in Theorem 5.1 is expressed as a linear
combination of the family (z —a)?(z — b)?~7 while in Proposition 5.2 we get
a combination of different powers (z — a)!(x — b)? for i + j < d. This shows
that these expressions are different except in the case where d = 1 which
appears below.

52.d = m —1 < n. In [DKS2013], the first three authors of this paper
developed a general formula for the cases d = m—1 < n. Indeed, Proposition
2.6 in [DKS2013] states that for

[=(@—ay (o - ampm,
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with ji1 + -+ + jm = m, Sres;,,—1(f, g) is the unique Hermite interpolant h
of degree < m — 1 satisfying the m conditions

Rk (a;) = g% (a;), 0 < ki < jis, 1 <i <.

We observe that the formula described in Theorem 1.5, expressed in
terms of roots of f and g, gives an alternative —though completely different
and not at all obvious— description of the Hermite interpolant h. For in-
stance, thanks to symmetric interpolation, we can check how the polynomial
SylM,,,_1(A, B)(x) described in Definition 1.1 satisfies (at least) the condi-
tions SyIM,,,_1 (4, B)(a;) = (=1)™1g(a;) for all a; € A when n—7n < m—1:
from its definition,

SyIM,,_,(A, B)(a;) =
_ R(A\A, B\B')R(a;, B\B') 1, ,(a; — a;)R(a;, B')

(_1)7”*7" ! B\ B/
BB Hj;éi(aj —a;)R(B', B\B’)
|B'|l=m—m
o \m-lp R(A\A, B\B')
=(-)"'"R(a:, B)) > R(E BB

since by symmetric interpolation (Prop. A.2), one has for X = (z1, .

|- Z R(X,B\B') Z R(A\A, B\B')

R

* R(B.B\B) = R(B,B\B)’

|B'|[=m—m | B |=m—m

5.3. d = 1. In the same paper [DKS2013], an explicit formula for Sres; (f, g)(x)

in terms of their multiple roots is given. To be more precise, [DKS2013,
Thm. 2.7.] states:

Sres1(f,g)(x) = (—1)m9(a1)< H g(ik) )(37 —ay)
9<h<m—1 M1 T Gk
1 2 1
(Y ot ¥ e
<2<k<m—1 ap —ap - ay—b 9<hen—1 M T Ok )

2
_qym-1 g(a1) ( g9(ax) ) -
+=D Z (ai —az)? 11 ai — ag (@ = i),
2<i<m—1 2<k<m—1
=
which is an expression in the roots of f and their values in g. On the other
hand, Theorem 1.5 for d =1 and m' :==m —m >0, n' :=n —7n > 0, gives

Sresy (f,9)(«) = (-1} (R(A, B\B) 3 m
beB ’

R(A\a, B)
R(a, A\a)

(x—0) T

+R(A\A,B) >

acA

(=) Ts).

where
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o Ti:=

e To:=

. D’ANDREA, T. KRICK, A. SZANTO, AND M. VALDETTARO

3 (-1)7=s52) _(AUB)SEE) (AU (B\D)),
RoUR3={1,...,m'+n'—1}
|R2|:m’71,|R3\:n/
3 (-1)7mS52) | (A\a) UB)SSE) _\ (AUB),
RQURgZ{l,‘..,m’+TL,71}
|Ra|=m/,|R3|=n"—1

which are expressions in both the roots of f and g. Note also that the
first formulation is given as a linear combination of (z — a), a € A and
constants, while the second one is a linear combination of (z —a),a € A

and (z —b),

[ApJo2006]
[BDKSV2017]
[Bor1860]
[Cha1990]
[ChL01996]

[DHKS2007]

[DKS2013]

[DTGV2004]

[Hon1999]
[Kal1984]
[KS2001]

[KSV2017)

[LaPr2001]

[Map2016]
[RoSz2011]

[Syl1839)]

[Sy11840]

b € B. So their presentation is not the same.
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APPENDIX A

A.1. Proof of Proposition 2.1. The proof follows from a suitable exten-
sion of the next Exchange Lemma that appears in [KSV2017, Lem.3.1 &
Cor.3.2].

Lemma A.1. Setd > 0. Let A, B C K be finite sets with |Al,|B| > d, and
X a set of variables with |X| < |A| —d. Then

gy ROCA) ) ROGB)
A/c%;/:dR(A\A B, ) B’CB%;sq:dR(A’ B\B) 5 5 5 )

Lemma A.1 turns out to be a consequence of the symmetric interpolation
developed in [ChL01996] (see also [KSV2017]) that we state here as we will
need it for the proof of Lemma A.3.

Proposition A.2. Let E C K be a finite set of size |E| =e. Set 0 < d <e,
and let X be a set of variables with | X| =e — d. Then,

B:={R(X,E'); E'CE,|E|=d}

is a basis of the K-vector space S(._gqq) of symmelric polynomials h in X =
{w1,...,2c_a} over K such that deg, (h) < d for all1 <i<e—d.
Moreover, any polynomial h(X) € S(e—d,a) can be uniquely written as

M= X MEVE) e
E'CE,|E'|=d ’

where h(E\E') := h(ey,...,ec_q) for E\E' ={e1,...,€c_q}-

Our next extension of Lemma A.1 relaxes slightly the condition on the
size of X. Item (2) is presented for sake of completeness, we do not use it
in the sequel.

Lemma A.3. Setd > 0. Let A, B C K be finite sets with |A| > d, and X
be a set of variables with | X| < |A| + |B| — 2d. Then
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(1) If |B| > d, then
Z R(A2, B)R(X, A1) _

A1UAs=A R(A1, Az)
|A1|=d,|A2|=|A|-d
— (_1)d(|A|_d) Z R(Av B2)R(X7 Bl)
B1UB>=B R(B1, Bs)
|B1|=d, |B2|=|B|—d
(2) If |B| < d, then
Z R(Az, BYR(X, Ay) _ 0
AjUAs=A R(A1, Ag)

|A1]=d, |A2|=|A|-d

Proof. (1) When |B| > d, if | X| < |A| — d holds, we are in the conditions of
Lemma A.1 and the statement holds by simply correcting the sign.

Now assume |B| > d and r := |X| > |A] —d. Write X =Y U Z, with
Y = {21, ,24-q} and Z = {Z|4|—d41, -+ ,7r}. We define

h(Y, Z) = 3 R(As, BYR(Y, A1)R(Z, A)

Ay UAg=A R(A1, Az)
|A1|=d,|A2|=|Al—d
" (A, B2)R(Y, B1)R( )
R 7BQRK31RZ,Bl
Y, Z) = 7
g( ) Z R(BLBQ)

BiUB>=B

|B1|=d, |B2|=|B|—d
and show that h = (—1)441=dg For this purpose, we consider g,h €
K(Z)[Y], i.e. with coefficients in the field K(Z). Both polynomials are
symmetric in Y and have multidegree in Y bounded by d. So h,g €
Sn—d,d(K(Z)). Using Proposition A.2, it is enough to verify that h(As, Z) =
(—1)UAI=Dg( Ay, Z), for all Ay C A with |As| = |A| —d. Clearly, for a given
Ay, h(A, Z) = (—1)UA=DR(Ay, BYR(Z, A1) where A; := A\As. Let us
compute g(Asg, Z):

R(A, B2)R(A2, B1)R(Z, B1)

g(A27Z): Z

BiUB.=B R(By, Bz)
| B1|=d, | B2|=|B|~d
R(A1,B2)R(Z, By)
=TR(Ay, B .
( B ) B L%B R(Bl’Bz)
1 2=
|B1|=d, | B2|=|B|—d
Thus it suffices to show that
R(A1,B))YR(Z, B
™ >, RALBIREB) gz,

B1UBy=B R(B1, By)

|B1|=d, | B2|=|B|—d
But this holds again by Lemma A.1 for B instead of A, A; instead of B and
Z instead of X, since |Z| = |X| — (|A| — d) < |B| — d by hypothesis (in this
case the only subset of A; of size d is A; itself).
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(2) When |B| < d, we enlarge B by adding variables Y so that |[BUY| = d,
say Y = {y1, -+ ,ys}, with s = d — | B|]. So we get, by applying the previous
item, that

Z R(Az, B)R(X, A1)
R(A1, As)

A1UA=A
|A1|=d,|Az|=|A|—d

R(As, BUY)R(X, A
T ( )R( )

_ Al=d)|Y
f(_l)“ [=d)| ‘Coeﬁ.y\lA\—d”'yLAlfd R(Ay, Ay)

A1UA=A
|[A1|=d,|Az|=|A|-d

= (_1)(|A|—d)|Y\ Coeffym\fd“_ymde(X,BUY) = 0,
1 s

since in this case the hypothesis | X| < |A| 4 | B| — 2d together with |B| < d
implies that | X| < |A|—d, and therefore there is no coefficient in y; of degree
|A| — d. O

Proof of Proposition 2.1. Set e := |E|, m := |A| and n := |B|. The right-
hand side of the equality we want to show can be rewritten as
Z Z R(A, E3)R(E2, B)YR(X, Ey)
!/
E\UE'=E E>UE;=E' R(Ey, E'YRAE,, Bs)

|Br|=d, | B |=e—d |Ea|l=m—d, | Eg|=e—m
_ 3 R(X, Ey) > R(A, E3)R(E3, B)
’
FiUE'=E R(Er, E') EyUBae B’ R(E2, E3)
|E1|=d, |E'|=e—d |Es|=m—d, |E3|=e—m
_ (_1)m(e—m)+n(m—d) Z R(X, El) Z R(Eg,, A)’R(B7 Eg)
E\UE'—E R(EL, E') FollEs—E R(E», Es)
1 = 2UE3=
|E1|=d, |E'|=e—d |Ez|=m—d, |E3|=e—m
(8)
_ (_1)d(efm)+n(m7d) Z R(Xa El) Z R(E’, A/)R(B, Ag)
/
E,UE'=E R(El’E ) AsllA;=A R(A%Al)
‘Ellzdv |E/|:5_d |A2|:m7d, |A1|:d
_ R(A27B) R(ElvAl)R(XvEl)
— (_1)d(e m) Z Z
AslUA1=A R(A2’A1) EyUE'=E R(E17E/)
[Az|=m—d, |A1|=d |E1|=d, |E'|=e—d
(9)
B R(As, B)
= (—1)4m=9 > 07 R(X,Ay)
AsUA;=A R(Az2, Ar)
|[Az|=m—d, |A1|=d
_ Z R<A2a B)R(X7 Al)
R(Ay, Ag) 7

AiUAz=A
|A1]=d, | As|=m—d
where (8) is Lemma A.3(1) applied to £’ instead of A, A instead of B and
B instead of X since |B| < |E'| 4+ |A] —2(m — d), i.e. n <e—m+d by
hypothesis, and (9) is the same lemma applied to E instead of A, A; instead
of B and X since |X| < |E|+|A1] —2d, i.e. |X| < e—d by hypothesis (note
that in this case, the only subset of A; of size d is A; itself and therefore
the second sum in Lemma A.3 simply equals R(X, A4;)). O
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A.2. Proof of Theorem 3.3. As in the proof of Theorem 3.1, we can
assume that AN B = (). The idea of the proof is to add an auxiliary set of
variables T' = {t1,-- ,t,} with r = m/ +n/ — d so that E:= AUBUT has
size |E| = m + n — d, which allows us to apply Proposition 2.1 to F and
X = {x}, and then to compare coefficients in the obtained expression.
Applying Proposition 2.1 we get

3 R(A2, B)R(x, A1) _ T R(A, E3)R(E2, B)R(z, Er)

R(A;, A R(EL, E))R(E L, E3)R(Ey, E3)’
A1UA2=A (41, 42) E1UEsUEs=AUBUT (E1, B2)R(EL, E3)R(Es, Es)
[A]=d, |Br|=d,| B |=m—d

|Ag|=m—d |Es|=n—d

Again, R(A, E3) = 0 when E3NA # () and R(Ey, B) = 0 when E2NB # ().
Therefore E3 C BUT and Fs C AUT. Let us write By = (A\A') U Ty
with A’ C Aand Ty C T, B3 = (B\B') UTs with B’ C B and T3 C T with
ToNT3 =1{. Then E; = (A'UB’) UTy where Th = T\(T> U T5), and we can
rewrite the sum as we did in Theorem 3.1:

2 D D

T UToUT3=T A'CA B'CB

|T1|=r1,0<r1<d  |A'|=ry+d—m’' |B'|=rs+d—n'
|T2|=r2,0<ra<m—d = g<|A’|<m 0<|B'|<m
|T5|=r3,0<rs<n—d - -

R(A, (B\B') UTs)R((A\A") U Ty, BYR(x, (A’ UB')UT))

R((A'UB)UTy, (A\A) UTo)R((A'UB'YUTy, (B\B') UT3)R((A\A") U Ty, (B\B') UT3)

= 2. D D

ThWUToUTs=T A’ CZ B’ CE
|Ta|=r1,0<r1<d |A'|=ry—(m'—d) |B'|=rs—(n’ —d)
|T2|=r2,max{0,m'—d}<ro<m-—d
|T5|=r3,max{0,n'—d}<rz<n—d

R(A, (B\B")UT3)R((A\A") U Ty, B)YR(x, (A’ UB")UT)

R((A’UB)UTy, (A\A)UT2)R((A’ UB")UTy,(B\B") UT3)R((A\A") UTs, (B\B’) UT3)
Here, for each choice of T7, T, T3 and A’, B’, the numerator equals
R(A, B\B"YR(A, T5)R(A\A', BYR(T%, B)R(z, A YR (z, B )R(x,T1),
while the denominator can be rewritten as
R(A'U B, A\AYR(A UB , To)R(Ty, AAAYR(T1, T3)-
-R(A"UB',B\B"R(A'" U B, T3)R(T1, B\B"R(T{, T3)-
-R(A\A', B\B"\R(A\A', T3)R(T», B\B YR (T3, T3).

Therefore, the part of the quotient which is free of T;’s equals, as in Theo-
rem 3.1,

e R(A\A, B\B'YR(A\A', B\B"\R(z, A\R(z, B
=D 2 2 R(A', A\AR(B', B\B')

A'CA B'CB
|A'|=r2—(m’ ~d) | B'|=rs— (n'~d)
with o7 := |B'| |A\A'].
We deal now with the part of the quotient that involves some T;. Multiplying
and dividing by R(Th, A" U B")R(T», A\A")R (T3, B\B'), we get that this
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quotient equals
(—1)7 R(T3, AU (B\B'))R(Ty, (A\A") U B)YR(Ty, A’ U B' Ux)
R(T, AU B)R(T1, To)R(T1, T3)R(T», T3)
where o3 = [T3] [A\A'| + (/T3] + |T3))|A" U B'| + |T5| [A] + |T4].
Next we multiply and divide by the product of Vandermonde determinants
det(V(T1)) det(V (12)) det(V (13)), where we consider in each Ty the elements
t; with the indices ¢ in increasing order, and get
R(T3,AU (B\B'))R(T%, (A\A") U B)R(T1, A’ U B Uz) det(V (1)) det(V (T3)) det(V (T3))
R(T, Z U E)R(Tl, TQ)R(Tl, Tg)R(TQ, Tg) det(V(Tl)) det(V(Tz)) det(V(Tg)) N
= Sg(Th TQa T3)
R(T3,AU (B\B"))R(Tz, (A\A") U B)YR(Ty, A’ U B Uz)det(V(T)) det(V (Ty)) det(V (T3))
R(T, AU B)det(V(T))

)

)

where sg(Th, T, T5) := (—1)7 where o is the parity of the number of trans-
positions needed to bring the ordered set 77 U T5 LT3 to {t1,...,t.}.

Since the denominator is independent of the choices of Ty, going back to
the first expression, we have

R(T, AU B)det(V(T)) 3 R(A2, B)R(z, A1) _

AUA,=A R(A1, A2)
|A1]=d, |Az|=m—d
= Z (_1)Ulsg(T1vT23T3) :

T UT>UTs=T
|T1 \:rl ,0§r1 Sd
| T2 |=r2,max{0,m’ —d}<rs<m-—d
|T5|=r3,max{0,n'—d}<rz<n-—d

R(A\A, B\B")R(A\A’, B\B")R(z, A')R(z, B')
2 2 R(A', A\AR(B',B\B') '

, A'CA , B'CB
|4/ [=r2—(m —d)) | B |=rs—(n'—d)

- R(T3, AU (B\B'))R(Ts, (A\A') U BYR(T1, A' U B' Uz)-
- det(V(T1)) det(V(13)) det(V(T3)),

= (IB'| +|T3[)[A\A| + (IT2| + |T5])|A" U B'| + |T3| |A] + | T3]
= —d)(m—d)+ri+ro(m' —d+1)+r3(n’ —m+1) (mod 2)
=m/(m—d)+ri(m—d—1)+re(m—1)+rz(m' +n' —d—1) (mod 2).
(The last row is written in a way that it coincides with the exponent in
Theorem 3.1, when r < 0 is interpreted as 1 = ro = r3 = 0.)
To recover the sum we are looking for, we take a specific coefficient in

(t1,...,t) in both sides. Note that the leading coefficient of R(T,A U
B)det(V(T)) w.r.t. the lexicographic term order ¢; > --- > t, equals

Coeﬁ‘t;n+nfd7lt;n+n7d72“.t;rﬂn+n—d—r (R(T, Z U F) det(V(T))) = 1

We now look for this coefficient on the right hand side of the expression
above. We do it by keeping track of the variables t; that belong to each
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Ty. We go first after the variables in 75, and then in T3, since they behave

similarly. Observe that

det(V(Ty U (A\A") U B))
det(V((A\A)UB)) ’

R(Ty, (A\A") U B) det(V (Ty)) =

and

R(Ts, AU (B\B')) det(V(T3)) = detdg((g?iz fé@i’) ),

where the matrices in the numerator of the right-hand sides are both of size
(m+n—d)x (m+n—d). The coefficient of the monomial [[, ., gmtn—d=i
corresponds to the submatrix of V1, q((A\A’)UB) where the rows indexed
by Ry :={i: t; € Ty} have been erased. Then

det(V(Ty U (A\A") U B))
( det(V((A\A’) U B))

) = Sl R2)ST)_ (A U B

= 5B 1 a(R2)S5 _a((A\A) U B)
since Ry C {1,...,m’' +n’ — d}. Analogously

. Sy 4G TETIU L)
Meer, 7\ det(V(AU (B\B')))

where R3 := {Z 1t € Tg}.
Now we deal with variables in T7. Note that

det(V(Th UA"UB Ux))
Ty, A'UB 7)) =
R{TL, AU B V@) det(VIT)) = =3 7 B U )

Here the matrix in the numerator is a Vandermonde matrix of size (d+1) x
(d+1) and the maximal exponent of ¢; for t; € T} that can appear equals t;-i.
Set Ry :={i: t; € T1}. Therefore, for all i € Ry one needs m+n—d —i C
{0,1,...,d},i.e. m4+n—2d<i<m+n—d. Since i <r=m'+n'—d, we
need m+n—2d<m'+n —dand Ry C{m+n—2d,...,m'+n' —d}.
In particular, when m +n — 2d > m’ +n’ — d, i.e. when d < m + 7 there is
no choice of Ry. In that case, we conclude

coeff mAn—d—i
Hti ery bi

i

) = g a(R3)ST2)_L(AU(B\B),

R(A2, B)R(z, A (i -
Z ( 2 ) ( 1) _ (71) ( d) Z (71) Sg(RQ,Rg)'
A1UA=A R(A1, 4z2) _ oyt
1 2= RQL’R3—{1 ..... m +n 7d}
|A1]=d, |Rz|=r2,max{0,m' —d}<ros<m—d
|Az|=m—d |R3|=r3,max{0,n’ —d}<rz<n—d
> > R(A\A, B\B')R(A\A', B\B)R(z, A')R(x, B)

R(A', A\AYR(B', B\B')

'cA B'cB

|A'|=ra—(m'—d) |B'|=rz—(n'—d)

s (A\AYUB)STE) (AU (B\B)),

where
o=ro(m—1)+r3(m' +n' —d—1)+rors,
since it is easy to check that sg,,/\,/_4(R2)8g 1 _a(R3) = (=1)"" as Ry

and R3 are complementary sets in {1,...,m’ +n' — d} (or see Lemma A.4
below).



CLOSED FORMULA FOR UNIVARIATE SUBRESULTANTS IN MULTIPLE ROOTS 27

Now, whend > m+nand Ry = {i: t; € Ty} C {m+n—2d,...,m'+n'—d}
we have

det(V(Tl UA,UB,ULU)) . > (R1)/ 11 /
S ( Qe (VA OB Uy )~ S (F)Siy (AUB L),

where Ry := {i—(m+n—2d—1): ie Ri} c{1,...,d+1— (m+m)}. We
prove in Lemma A.4 below that

8041 (RUSE 0—a(R2)S o a(Ra) = (1)1 Frstmen—nrars,

Therefore we get

Z R(A27 B)R(xaAl) _ (_l)m’(m—d) .
aimea Rl A
|A1|=d,
|[Az|=m—d
> (—1)7 sg(R1, B2, Rs)

RluRzuRgi{l,..‘,m/Jr’n/*d}
RiC{m+n—2d,....m"+n’ —d},
‘Rl ‘:7‘1 ,0<r; Sd*(ﬁﬁ*ﬁ)ﬁ*l
|Ro|=r2,max{0,m' —d}<rs<m—d
|R3|=r3,max{0,n' —d}<rz<n—d

R(A\A, B\B)R(A\A’, B\B")R(z, A')R(z, B')
2 2 R(A', A\AR(B',B\B') '

A'CA B'cB
|A|=ra—(m' —d) | B'|=r3—(n'~d)
SE A B U ST (A UB) S, (AU (B\B),

where
o=ri(n—d+ry+r3) +ro(m—1) +rs(m' +n' —d—1) +rors.

Lemma A.4. Let Ri U RyURs be a partition of {1,...,r} with |R;| = r; for
1<i<3,and0<s<r besuchthat Ry ={i—s: i€ R} C{l,...,r—s}.
Then

sgr—s(R1) 58, (Ra) sg,(R) = (1) rtratelirars,

Proof. We set Ry = {i1,...,ir, }, Ro = {J1,-..,Jry} and R3 = {k1, ..., kr, }.
Then

Sgrfs('él)sgr(RQ)Sgr(]D%) = Z (Z'g—S—g)-i- Z (j€_£)+ Z (/{g—g)

1<6<m 1<e<ry 1<e<rs
_r(r+1) s ri(r1 +1) B ro(ra + 1) B r3(rs + 1)
T2 ! 2 2 2

= B) — 718

B 72— (ry + 72 +13)2 + 27170 + 27173 + 21913 s

— -
2

=rirg +rir3 +rors + s (mod 2).
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A.3. Proof of Theorem 4.2. First note that the statement of Theorem 4.2
implies the expressions in Theorem 1.7 for the case when m’ +n/ < d since
in this case r1 = ro = r3 = 0. Here we prove the statement for G4(f, g), the
statement for Fy(f,g) in follows from the identity

Fa(f.9) = (=1 D0=DGy(g, ).
By Lemma 4.1 and Theorem 1.5 we have
(10)  Ga(f,9)(x) = (=)D Deoeff japs (SyIM 1 (A, B U {2}) (1))

Now we use Definition 1.4 for A and B U {z} and choose A C A and B C
B C BU{z} as subsets of the sets of distinct roots in f and g respectively,
and get that

SylM, (A, BU {z})(y) = (—1)™ (m=9.

3 (—1)7r R(A\A, BU{z\B")R(A\A', BU {z}\B)R(y, A)R(y, B')
’ / / /
RiURsUR3={1,....m'+n'—d} R(A ’A\A )R(B ’B\B )
RiCc{m+n—2d—1,....m"+n’—d},
|R1|=r1,m1 <d+2—(m+n)
|Ra|=r2, m' —d—1<rs<m—d—1
|R3|=r3,n'—d<r3<n—d

: ngg(A’ UB U {y})S) (A\A)UBU{x})S) (AU (B\B)).

We have to consider S(S,T; (AuB'U{y}) for Ry C {m+n—2d—1,...,m +

n'—d} and Ry = {i—(m+n—2d—2) :i € R;}. Since deg, (R(y,A'UB')) =
|A’| + | B’|, we first observe that

deg, (SSV(A'UB U {y}) <d+1—|4|—|B
and moreover, if 1 € él, ie, if m+n—2d—1€ Ry, then
coeff a1 41— 15| (5((512) (A'uB"U{y})) =0,
while if 1 ¢ Ry, ie, if m+n—2d—1¢ Ry, then
coefl uss - v -1 (SEF (AU B U {y})) = (~ )15 (41U BY).

Therefore the only subsets R; that produce non-zero terms satisfy R; C
{m+n-—2d,...,m'+n’ —d} and for these Ry,

coeff jarn (R(y, A' U B)SS (AU B' U {y})) = (1) PS4y BY).
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Hence,
coeff jat1 (SylMy1 (A, BU{z})(y)) = (_1)m’(m7d71) )

) (1)

RiURoUR3={1,....m'4+n/—d}
Ric{m+n—2d,....,m'+n’—d},
|R1|=r1,r1 <d+2—(m+n)
|Ra|=r2, m'—d—1<ro<m—d—1
|R3|=r3,n'—d<r3<n—d

3 $ R(A\A, B\B")R(A\A", B\B)R(A\A',z)
— — R(A, A\AYR (B, B\B')
|A|=ro—(m'—d—1) |B'|=r3—(n'—d)

S Ay BYsE) (A\AYUBU ) ST (AU (B\B)),

where for the partition Ry U Ry U Ry = {1,...,m' +n' —d} and R =
(R17 R27 R3)
(_1)03 _ (_1)r1(n—d+r2+r3)+r2(ﬁ—l)—&—rg(m/+n'—d—1)+r2r38g(R)‘

We conclude the proof by applying again Identity (10) and by permuting z
and A\A" in R(A\A', z):

, ~
Ga(f, g)(x) = (—1)@-m)m=d=1) > (=1)77 -
RluRzuRgz{l,...,m/+n/7d}
Ric{m+n—2d,....,m'+n'—d},
|R1 |=7’1 ,r1 §d+27(m+ﬁ)
|Ra|=r2, m'—d—1<ro<m—d—1
|R3|=r3,n'—d<r3<n—d

R(A\A, B\B"R(A\ A, B\B")R (z, A\ A')
2 2 R(A',A\AR(B',B\B') '

/CZ 1)
|A'|=ro—(m’'—d—-1) |B'|=r3—(n'—d)

LS u B ST (@A) UBU {21)ST) (AU (B\B)),

where (—1)77 := (—1)r1(n—dtratrs)tramitrs(m'+n'—d—1)+rarsge( R).
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