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1 Introduction

1.1 Overview

This paper is the third of a series which started with [7, 8]. In the first paper of the series
we analyzed a numerical algorithm for computing the number of real zeros of a polynomial
system. This algorithm works with finite precision and the analysis provided bounds for both
its complexity (total number of arithmetic operations) and the machine precision needed to
guarantee that the returned value is correct. Both bounds depended on size parameters for
the input system f (number of polynomials, degrees, etc.) as well as on a condition number
κ(f) for f . A precise statement of the main result in [7] is Theorem 1.1 therein. To the best
of our knowledge, this theorem is the only result providing a finite-precision analysis of a zero
counting algorithm. Consequently, as of today, to understand zero-counting computations
in the presence of finite-precision appears to require an understanding of κ(f).

Unlike the aforementioned size parameters, the condition number κ(f) cannot be read
directly from the system f . Indeed, it is conjectured that the computation of κ(f) is at
least as difficult as solving the zero counting problem for f , so we need a much depper
understanding of κ(f). In the second paper of the series [8], we attempted to provide
such an understanding from two different angles. Firstly, we showed that a closely related
condition number κ̃(f) satisfies a Condition Number Theorem, i.e., κ̃(f) is the normalized
inverse of the distance from f to the set of ill-posed systems (those having multiple zeros).
The relation between the quantities κ(f) and κ̃(f) is close indeed (see [8, Prop. 3.3]):

κ̃(f)√
n
≤ κ(f) ≤

√
2n κ̃(f).

Secondly, we used this characterization, in conjunction with a result from [6], to provide a
smoothed analysis of κ̃(f) (and hence, of κ(f) as well). A smoothed analysis of the com-
plexity and accuracy for the algorithm in [7] immediately follows. Details about smoothed
analyses and distance to ill-posedness can be found in the introduction of [8].

As a consequence of the smoothed analysis of κ̃(f) one immediately obtains an average-
case analysis of this condition number. One is left, however, with the feeling that the
bounds thus obtained are far from optimal. Indeed, these bounds follow from a result which
is general in two aspects. Firstly, it is a smoothed analysis (of which usual average analysis
is just a particular case). Secondly, it is derived from a very general result yielding smoothed
analysis bounds for condition numbers satisfying a Condition Number Theorem and stated
in terms of some geometric invariants (degree and dimension) of the set of ill-posed inputs.
The question of whether a finer average analysis can be obtained by using methods more
ad-hoc for the problem at hand naturally poses itself.

In this paper we show that such bounds are possible. Loosely speaking, the average
analysis in [8] shows a bound for a typical κ̃(f) - or κ(f) - which is of order D2 where D
is the Bézout number of f . Here we show that

√D is a more accurate upper-bound. This
improvement is meaningful, since D increases exponentially with n. Our main result implies
that if the maximum degree D remains bounded as n grows, E(lnκ(f)) is bounded from
above by a quantity equivalent to ln(D1/2), which according to the Shub-Smale Theorem,
see [19], equals the logarithm of the mathematical expectation of the total number of real
roots of the polynomial system. More precisely,

lim sup
n→∞

E(lnκ(f))
ln(D1/2)

≤ 1.
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No non-trivial lower bound has been obtained for the time being as far as we know.
We next proceed to set up the basic notions and notations enabling us to state the above

in more precise terms.

1.2 Basic definitions and main result

For d ∈ N we denote by Hd the subspace of R[x0, . . . , xn] of homogeneous polynomials of
degree d and, for d := (d1, . . . , dn), we set Hd := Hd1 × · · · × Hdn

. We endow Hd with the
Weyl norm which is defined, for f ∈ Hd, f(x) =

∑
|j|=d ajx

j , by

‖f‖2W =
∑

|j|=d

a2
j(

d
j

)

where x = (x0, . . . , xn), j = (j0, . . . , jn), |j| := j0 + · · · + jn, xj = xj0
0 · · ·xjn

n and
(
d
j

)
:=

d!
j0!···jn! . We then endow Hd with the norm given by

‖f‖ := max
1≤i≤n

‖fi‖W .

For f = (f1, . . . , fn) ∈ Hd, as in [7], we define the following condition number

κ(f) = max
x∈Sn

min
{

µnorm(f, x),
‖f‖

‖f(x)‖∞

}

with
µnorm(f, x) =

√
n ‖f‖

∥∥Dx(f)−1M
∥∥ .

Here

• Dx(f) = Df(x)|TxSn is the derivative of f along the unit sphere Sn ⊂ Rn+1 at the
point x, a linear operator from the tangent space Tx(Sn) to Rn,

• M :=




√
d1

. . . √
dn




is the scaling n× n diagonal matrix with diagonal entries

the square roots of the degrees di = deg(fi),

• the norm ‖Dx(f)−1M‖ is the spectral norm, i.e., the operator norm
max{‖Dx(f)−1M y‖2; y ∈ Sn, y ⊥ x} with respect to ‖ ‖2,

• ‖f(x)‖∞ = max1≤i≤n |fi(x)| denotes as usual the infinity norm.

We next impose the probability measure on Hd defined by Eric Kostlan [15] and Shub-
Smale [19]. This measure assumes the coefficients of the polynomials fi =

∑
|j|=di

a
(i)
j xj are

independent, Gaussian, centered random variables, with variances

Var(a(i)
j ) =

(
di

j

)
.
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For this distribution, and for x, y ∈ Rn+1, 1 ≤ i, k ≤ n, covariances are given by (see Lemma
2.2 below)

E
(
fi(x)fk(y)

)
= δik〈x, y〉di

where δik is the Kronecker symbol.
This probability law is invariant under the action of the orthogonal group and permits to

perform the computations below, which appear to be much more complicated under other
distributions not sharing this invariance property.

To state our main results a number of quantities will be useful. We use the notation

D := max
1≤i≤n

di, D =
n∏

i=1

di, N := dimHd =
n∑

i=1

(
n + di

n

)
.

We note that D is the Bézout number of the polynomial system. We may assume here that
di ≥ 2 for 1 ≤ i ≤ n since otherwise we could restrict to a system with fewer equations and
unknowns. Notice that N ≤ nD+2.

We are now ready to state our main result.

Theorem 1.1. Let the random system f satisfy the conditions of the Shub-Smale model
and assume n ≥ 3. Then,

(i) For a > 4
√

2D2n7/2N1/2 one has

P
(
κ(f) > a

) ≤ Kn

√
2n(1 + ln(a/

√
2n))1/2

a
,

where Kn := 8D2D1/2 N1/2n5/2 + 1.

(ii)

E(lnκ(f)) ≤ ln Kn + (lnKn)1/2 + (lnKn)−1/2 +
1
2

ln(2n).

In fact we are going to prove the corresponding result for the alternative quantity κ̃(f)
already considered in [8], since it will enable us to use L2 methods, which are more adapted
to the type of calculations we will perform. We recall that

κ̃(f) =
‖f‖W(

minx∈Sn{‖Dx(f)−1M‖−2 + ‖f(x)‖22}
)1/2

where ‖f‖2W :=
∑

1≤i≤n ‖fi‖2W is the Weyl norm of the system and ‖f(x)‖2 :=∑
1≤i≤n fi(x)2 denotes the usual Euclidean norm. As we have already mentioned, we have

κ̃(f)√
n
≤ κ(f) ≤ √

2n κ̃(f). Also, as a consequence of [8, Th. 1.1], κ̃(f) satisfies κ̃(f) ≥ 1 for
all f ∈ Hd.

We will therefore obtain Theorem 1.1 as a direct consequence of the following result.

Theorem 1.2. Let the random system f satisfy the conditions of the Shub-Smale model
and assume n ≥ 3. Then,
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(i) For a > 4D2n3N1/2 one has

P
(
κ̃(f) > a

) ≤ Kn
(1 + ln a)1/2

a

where Kn := 8D2D1/2 N1/2n5/2 + 1.

(ii)
E(ln κ̃(f)) ≤ ln Kn + (ln Kn)1/2 + (ln Kn)−1/2.

Theorem 1.1 follows from P
(
κ(f) > a

) ≤ P
(
κ̃(f) > a/

√
2n

)
, since κ(f) > a ⇒ κ̃(f) >

a/
√

2n.

The proof of Theorem 1.2 is given in Section 2. It requires a certain number of auxiliary
results. With the aim of isolating (and in this way highlighting) the main ideas, we will
postpone the proof of these auxiliary results to Section 3, though stating them as needed in
the text. This will be indicated by the symbol ♦ at the end of the statement.

1.3 Relations with previous work

Probably the most successful combination of algorithmics, conditioning, and probability
occurs in the study of complex polynomial systems (a setting similar to ours but with the
coefficients of the polynomials now drawn from C and considering projective complex zeros).
This study spans an impressive collection of papers, which began with [18, 19, 20, 21, 22]
and continued in [3] and [17, 4]. The final outcome of these efforts is a randomized algorithm
producing an approximate zero of the input system in expected time which is polynomial
in the size of the system. The expectation is with respect to both the random choices in the
algorithm and a probability measure on the input data.

The condition number of a system f in this setting is defined to be

µnorm(f) := max
ζ∈Sn

C |f(ζ)=0
µnorm(f, ζ).

Here µnorm(f, ζ) is roughly the quantity we defined above. Over the reals, it may not be
well-defined since the zero set of f may be empty. If one restricts attention to the subset
Rd ⊂ Hd of those systems having at least a real zero one may similarly define a measure
µworst(f), maximizing over the set of real zeros. This has been done in [5] where bounds
for the tail and the expected value of µworst(f) are given. These bounds are very satisfying
(for instance, the tail P

(
µworst > a

)
is bounded by an expression in a−2, a fact ensuring the

finiteness of E(µworst(f))). The measure µworst(f), however, is hardly a condition number
for the problem of real zeros counting, not even restricted to the subset Rd. To understand
why, consider a polynomial as in the left-hand side of the figure below.
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For this polynomial one has µworst = ∞.
An upward small perturbation (as in the right-hand side) yields a low value of µworst.

This value admits a finite limit when such perturbations are small enough! The measure
µworst(f) appears to be insensitive to the closeness to ill-posedness. This runs contrary to
the notion of conditioning [12, 13, 16, 23].

A condition number µ∗(f) for the feasibility problem of real systems (which, obviously,
needs to be defined on all of Hd) was given in [9] by taking

µ∗(f) =





min
ζ∈Sn|f(ζ)=0

µnorm(f, ζ) if f ∈ Rd

max
x∈Sn

‖f‖
‖f(x)‖ otherwise.

As of today, there is no probabilistic analysis for it.

2 Proof of Theorem 1.2

The proof relies on the so-called Rice Formula for the expectation of the number of
local minima of a real-valued random field. This is described precisely in Step 2 below.
Previously, in Step 1, we use large deviations to show that for large n, except on a set of
small probability, the numerator ‖f‖W in κ̃(f) is nearly equal to N1/2. Steps 3, 4, and 5
estimate the different expressions occurring in Rice formula. Finally, Step 6 wraps up all
these estimates to yield the upper bound for the density and Step 7 derives from it the
bounds claimed in the statement of Theorem 1.2.

During the rest of the proof, we set L = L(f) := minx∈Sn{‖Dx(f)−1M‖−2 + ‖f(x)‖22} so
that κ̃(f) = ‖f‖W /

√
L. We observe that

‖Dx(f)−1M‖−1 = σmin(M−1Dx(f)) = min{‖M−1Dx(f)y‖ : y ∈ Sn, y ⊥ x},

(where σmin denotes the minimum singular value), and therefore

L = min{‖M−1Dx(f)y‖2 + ‖f(x)‖22 : x, y ∈ Sn, y ⊥ x}
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is the minimum of the random field {L(x, y) : (x, y) ∈ V } where

L(x, y) := ‖M−1Dx(f)y‖2 + ‖f(x)‖22,

=
n∑

i=1

1
di




n∑

j,k=0

∂jfi(x)∂kfi(x)yjyk


 +

n∑

i=1

f2
i (x); (1)

and V := {(x, y) ∈ Rn+1 × Rn+1 : ‖x‖ = ‖y‖ = 1, 〈x, y〉 = 0}.

Here y = (y0, . . . , yn) and, for 1 ≤ i ≤ n and 0 ≤ j ≤ n, ∂jfi(x) denotes the partial
derivative of fi with respect to xj at the point x.

Step 1. Our first step consists in replacing the Weyl norm in the numerator of κ̃(f) by a
non-random constant, at the cost of adding a small probability, which will be controlled
using large deviations.

Let a > 1. We have

P (κ̃(f) > a) = P
(

L

‖f‖2W
<

1
a2

)
≤ P

(
L <

1
a2

(1 + ln a)N
)

+ P
(
‖f‖2W ≥ (1 + ln a)N

)
.

We bound the second term in the right-hand side above using the following result that will
be proved in Section 3.

Lemma 2.1. Set

N := dimHd =
n∑

i=1

(
n + di

n

)

Then, for η > 0,

P
(
‖f‖2W ≥ (1 + η)N

)
≤ e−

N
2 (η−ln(η+1)). ♦

Therefore, setting η = ln a, we obtain

P (κ̃(f) > a) ≤ P
(

L <
1
a2

(1 + ln a)N
)

+ exp
(
−N

2
(ln a− ln(ln a + 1)

)
. (2)

The second term in the right-hand side above can be easily estimated. We therefore turn
our attention to the first. Given α > 0, we want to compute an upper bound for

P (L < α) .

Step 2. Our second step consists in giving a bound for the density function pL(u) of the
random variable L, i.e. such that

P (L < α) =
∫ α

0

pL(u)du

since L is non-negative. We recall that the quantity L is the minimum of the random field
{L(x, y) : (x, y) ∈ V }, for L and V defined in Formula (1).
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Notice that V is the Stiefel manifold S(2, n + 1), a compact, orientable, C∞-differentiable
manifold of dimension 2n − 1, embedded in Rn+1 × Rn+1. For each linear orthogonal
transformation U of Rn+1, define Ũ : V → V , (x, y) 7→ (Ux, Uy), and denote by Ũ the set
of these Ũ provided with the group structure naturally inherited from the orthogonal group
in Rn+1. Then Ũ acts transitively on V .

At a generic point (x, y) of the manifold V , the normal space N(x,y)(V ) has dimension

(2n + 2) − (2n − 1) = 3, and is generated by the orthonormal set
{

(x, 0), (0, y), 1√
2
(y, x)

}
.

Therefore, if {z2, . . . , zn} ⊂ Rn+1 is such that {x, y, z2, . . . , zn} is an orthonormal basis of
Rn+1, the set

BT(x,y) :=
{

(z2, 0), . . . , (zn, 0), (0, z2), . . . , (0, zn),
1√
2
(y,−x)

}
(3)

is an orthonormal basis of the tangent space T(x,y)(V ).

We denote by σV

(
d(x, y)

)
the geometric measure on V (i.e. the measure induced by the

Riemannian distance on V ), which is invariant under the action of the group Ũ . The total
measure satisfies

σV (V ) =
√

2σn−1σn, (4)

where σk = 2π(k+1)/2/Γ((k + 1)/2) is the total k-th dimensional measure of the unit sphere
Sk, see for example [2, Lemma 13.5].

For α > 0 and S a Borel subset of V , we denote by mα(L, S) the number of local minima
of the random function L on the set S, having value smaller than α. Clearly:

P(L < α) = P
(
mα(L, V ) ≥ 1

) ≤ E(
mα(L, V )

)
. (5)

Our aim is to give a useful expression for the right-hand side of Formula (5). For that
purpose, let us set for each Borel subset S of V , ν(S) := E

(
mα(L, S)

)
. Clearly, ν is a

measure. The invariance of the law of the random field {L(x, y) : (x, y) ∈ V } under the
action of Ũ implies that ν is also invariant under Ũ .

Let ψ : B2n−1,δ → Rn+1 × Rn+1 be a chart on V , that is, a smooth diffeomorphism
between the ball in R2n−1 centered at the origin with radius δ > 0 and its image
W = ψ(B2n−1,δ) ⊂ V .

We denote by L̃ : B2n−1,δ → R the composition L̃(w) = L
(
ψ(w)

)
.

As we already mentioned, our main tool is Rice formula, of which we now present a quick
overview:

Let U be an open subset of Rn and Z : U → Rn a random function having sufficiently
smooth paths. Let us denote by νZ(S) the number of zeros of Z belonging to the Borel
subset S of U . Under certain general conditions on the probability law of Z, one can
compute the expectation of νZ(S) by means of an integral on the set S. The integrand is a
certain function depending on the underlying probability law.
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The simplest form of such a formula is the following:

E(νZ(S)) =
∫

S

E
(| det(Z ′(t))|/Z(t) = 0

)
pZ(t)(0) dt (6)

One must be careful in the choice of the version of the conditional expectation and the
density pZ(t)(·) of the random vector Z(t), since they are only defined almost everywhere.
But this can be done in a certain number of cases in a canonical form, in such a way that
the formula holds true.

This kind of formula can be extended to a variety of situations, such as: a) the zeros of Z
can be “marked”, which means that instead of all zeros, we count only those zeros satisfying
certain additional conditions; b) the domain can be a manifold instead of an open subset of
Euclidean space; c) one has formulas similar to (6) for the higher moments of νZ(S); d) the
dimension of the domain can be larger than the one of the image, in which case the natural
problem, instead of counting roots, is studying the geometry of the random set Z−1({0}).
For a detailed account of this subject, including proofs and applications, see [2, Chapters 3
and 6].

Here we want to express by means of a Rice formula the expectation

ν(S) = E
(
mα(L, S)

)
= E

(
mα(L̃, ψ−1(S))

)

In our case, with probability 1, mα(L̃, ψ−1(S)) equals the number of points w ∈ ψ−1(S)
such that the derivative L̃′(w) vanishes, the second derivative L̃′′(w) is positive definite
and the value L(w) is bounded by α. Then, under certain conditions, we can write (use [2,
Formula (6.19)], mutatis mutandis):

ν(S) = E
(
mα(L, S)

)
= E

(
mα(L̃, ψ−1(S))

)

=
∫ α

0

du

∫

ψ−1(S)

E
(∣∣ det(L̃′′(w))

∣∣χ{L̃′′(w)Â0}/L̃(w) = u, L̃′(w) = 0
)

pL̃(w),L̃′(w)(u, 0) dw.

(7)
Here χA means indicator function of the set A, Â means positive definite, pL̃(w),L̃′(w) is the

joint density in R1×R2n−1 of the pair of random variables
(
L̃(w), L̃′(w)

)
, and dw is Lebesgue

measure on R2n−1. Note that in the chart image, dσV =
(
det

(
(ψ′(w))tψ′(w)

))1/2
dw.

In [2, Proposition 6.6] it is proved that if the integrand in Formula (7) were well-defined
then the change of variable formula would be satisfied, so that ν(S) would be the integral
of a (2n − 1)-form. In that case, Formula (7) would already imply that the measure ν is
finite and absolutely continuous with respect to σV , so that one could write for each Borel
subset S of V

ν(S) =
∫

S

g dσV

for a continuous function g. Let us prove that in that case the Radon-Nikodym derivative
g would be constant. To see this, notice that σV is also invariant under Ũ and the action of
this group is transitive on V . If g takes different values at two points (x1, y1) and (x2, y2)
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of V , letting Ũ ∈ Ũ be such that Ũ(x1, y1) = (x2, y2), we can find a small neighborhood S
of (x1, y1) such that ∫

S

g dσV 6=
∫

Ũ(S)

g dσV ,

contradicting the invariance of ν.

We could then compute the constant g by computing it at the point (e0, e1). We choose the
chart ψ in such a way that ψ(0) = (e0, e1) and

(
ψ′(0)

)t
ψ′(0) = I2n−1 and compute

g = lim
ε→0

ν(ψ(B2n−1,ε))
σV (ψ(B2n−1,ε))

=
∫ α

0

E
(∣∣ det(L̃′′(0))

∣∣χ{L̃′′(0)Â0}/|L̃(0) = u, L̃′(0) = 0
)

pL̃(0),L̃′(0)(u, 0) du

So, if Formula (7) were true, it follows that we could write

ν(S) = σV (S)
∫ α

0

E
(∣∣ det(L̃′′(0))

∣∣χ{L̃′′(0)Â0}/L̃(0) = u, L̃′(0) = 0
)

pL̃(0),L̃′(0)(u, 0) du. (8)

However, if one computes the ingredients in the integrand of the right-hand side of For-
mula (7), it turns out that the value of the density is +∞ and the conditional expectation
vanishes. So, the formula is meaningless in this form.

To overcome this difficulty we proceed as follows:

Let S(x,y) = span(z2, . . . , zn) ⊂ Rn+1 be the orthogonal complement of span(x, y) ⊂ Rn+1

and πx,y : Rn+1 → S(x,y) be the orthogonal projection. For (x, y) ∈ V , we introduce a new
random vector ζ(x,y) defined as

ζ(x,y) :=
((

πx,y(f ′i(x)), ∂yyfi(x)
)
, 1 ≤ i ≤ n

)
∈ (

S(x,y) × R
)n ∼= Rn2

, (9)

where for 1 ≤ i ≤ n, f ′i(x) is the free derivative (the gradient) of fi at x, the first (n − 1)
coordinates are given by the coordinates of the projection of f ′i(x) onto S(x,y) in the or-
thonormal basis {z2, . . . , zn} and the n-th one is the second derivative in the direction y at x.

Then, instead of Formula (7) we write the formula

E
(
mα(L, S)

)
=

∫ α

0

du

∫

ψ−1(S)

dw

∫

(Sψ(w)×R)n

E
(∣∣ det(L̃′′(w))

∣∣ · χ{L̃′′(w)Â0} / L̃(w) = u,

L̃′(w) = 0, ζψ(w) = z
)
· pL̃(w),L̃′(w),ζψ(w)

(u, 0, z) dz.

(10)

Formally, Formula (7) is obtained from Formula (10) by integrating in z.

To prove the validity of Formula (10) one could follow exactly the proof of [2, For-
mula 6.18] if the random field {L(x, y) : (x, y) ∈ V } were Gaussian. This is not our
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case. However, it is in fact a simple function of a Gaussian field, namely it is a quadratic
form in the coordinates of f and its first derivatives as shown in Formula (1). It is
then easy to show that Formula (10) remains true as it is done for the general Rice
formulas in [2, Ch. 6, Section 1.4]. This requires proving: (a) the existence and regularity of
the density pL̃(w),L̃′(w),ζ(ψ(w))

(u, 0, z) and (b) with probability 1, 0 is a regular value of L̃′(w).

(a) is contained below in the present proof (see Step 4). As for (b), once the regularity of
this density will be established, it follows in the same way as [2, Proposition 6.5 (a)].

So, using exactly the same arguments leading to Formula (8) we get:

E
(
mα(L, V )

)
= σV (V )

∫ α

0

du

∫

(Sψ(0)×R)n

E
(∣∣ det(L̃′′(0))

∣∣ · χ{L̃′′(0)Â0} / L̃(0) = u,

L̃′(0) = 0, ζψ(0) = z
)
· pL̃(0),L̃′(0),ζψ(0)

(u, 0, z) dz.

Finally, taking into account Inequality (5) we can conclude that:

pL(u) ≤ σV (V )
∫

(Sψ(0)×R)n

E
(∣∣ det(L̃′′(0))

∣∣ · χ{L̃′′(0)Â0} / L̃(0) = u,

L̃′(0) = 0, ζψ(0) = z
)
· pL̃(0),L̃′(0),ζψ(0)

(u, 0, z) dz.

(11)

Step 3. For the rest of the proof we fix the following orthonormal basis BT (given in (3))
of the tangent space T := Te0,e1 :

BT =
(
(e2, 0), . . . , (en, 0), (0, e2), . . . , (0, en),

1√
2
(e1,−e0)

)
. (12)

Let us recall that in the right-hand side of Inequality (11) the values of L̃(0), L̃′(0), L̃′′(0)
are computed using a chart ψ of a neighborhood of (e0, e1) such that ψ(0) = (e0, e1) and
the image by ψ′ of the canonical basis of R2n−1 is an orthonormal basis of the tangent
space T , that we set to be BT .

We introduce, for (x, y) ∈ V , the gradient ∇L̃(x, y) which is the orthogonal projection of
the free derivative L′(x, y) onto the tangent space T(x,y) and is obviously independent of the
parametrizations of the manifold V . One can check by means of a direct computation that

∇L̃(e0, e1) = L̃′(0)
(
ψ′(0)

)t
.

Then, using the change of variables formula for densities and the fact that
(
ψ′(0)

)t
ψ′(0) =

I2n−1, we have:

pL̃(0),L̃′(0),ζψ(0)
(u, 0, z) = pL(e0,e1),∇L̃(e0,e1),ζ(e0,e1)

(u, 0, z).

Notation. To simplify notation, from now on we write fi (resp. ∂kfi and ∂k`fi,
0 ≤ k, ` ≤ n) for fi(e0) (resp. ∂kfi(e0) = ∂fi

∂xk
(e0), ∂k`fi(e0) = ∂2fi

∂xk∂x`
(e0), 0 ≤ k, ` ≤ n). In
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the same spirit we write L for L(e0, e1) = L̃(0), ∇L̃ for ∇L̃(e0, e1) and L′′ for L′′(e0, e1).
Finally we write ζ for ζ(e0, e1) and S for S(e0,e1).

Under this notation, Inequality (11) becomes:

pL(u) ≤ σV (V )
∫

(S×R)n

E
(∣∣ det(L̃′′)

∣∣ · χ{L̃′′Â0}
/

L = u,∇L̃ = 0, ζ = z
)

pL,∇L̃,ζ(u, 0, z) dz.

(13)
According to the definition of L(x, y) in (1) we have

L =
n∑

i=1

1
di

(∂1fi)2 +
n∑

i=1

f2
i , (14)

and, from Definition (9),

ζ := ζe0,e1 =
(
(∂2fi, . . . , ∂nfi, ∂11fi), 1 ≤ i ≤ n

) ∈ Rn2
. (15)

We also set [∇L̃]BT := (ξ2, . . . , ξn, η2, . . . , ηn, %) for the coordinates of the gradient ∇L̃ in
the basis BT .

Using that the (free) partial derivatives of L at (e0, e1) are given by

∂L

∂xk
(e0, e1) =

n∑

i=1

2
di

(∂k1fi)(∂1fi) +
n∑

i=1

2fi(∂kfi) for 0 ≤ k ≤ n

∂L

∂y`
(e0, e1) =

n∑

i=1

2
di

(∂1fi)(∂`fi) for 0 ≤ ` ≤ n,

we obtain

ξj = 〈L′(e0, e1), (ej , 0)〉 = 2
n∑

i=1

1
di

(∂1jfi)(∂1fi) + 2
n∑

i=1

fi(∂jfi), 2 ≤ j ≤ n,

ηj = 〈L′(e0, e1), (0, ej)〉 = 2
n∑

i=1

1
di

(∂1fi)(∂jfi), 2 ≤ j ≤ n,

% = 〈L′(e0, e1), 2−1/2(e1,−e0)〉

=
√

2
[ n∑

i=1

1
di

(∂1fi)(∂11fi) +
n∑

i=1

fi(∂1fi)
]
−
√

2
n∑

i=1

1
di

(∂0fi)(∂1fi)

=
√

2
n∑

i=1

1
di

(∂1fi)(∂11fi).

(16)

Here, 〈 , 〉 denotes the usual inner product in Rn+1 × Rn+1 and the last equality in (16)
follows from the equalities ∂0fi = difi for 1 ≤ i ≤ n which are easily verified.

Step 4. In this step we focus on the term pL,∇L̃,ζ(u, 0, z) of (13). To this aim we factor
this density as

pL,∇L̃,ζ(u, 0, z) = qL,∇L̃/ζ=z(u, 0) · pζ(z) (17)
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where qL,∇L̃/ζ=z(u, 0) denotes conditional density.

To study the two terms in the right-hand side of (17), we need a lemma containing the
ingredients to compute the distributions and conditional expectations appearing in our
proof.

Lemma 2.2. Let f ∈ R[X0, . . . , Xn] be a homogeneous random polynomial of degree d.
Assume that f follows the Shub-Smale model for the probability law of the coefficients, i.e.
the coefficients of the polynomial f =

∑
|j|=d ajX

j are independent, Gaussian, centered
random variables with variances

Var(aj) =
(

d

j

)
.

Then

• For x, y ∈ Rn+1, the covariances satisfy

E (f(x)f(y)) = 〈x, y〉d ∀x, y ∈ Rn+1,

where 〈 , 〉 is the usual inner product in Rn+1.

Moreover, if e0 := (1, 0, . . . , 0) is the first vector of the canonical basis of Rn+1 and we write
f (resp. ∂kf and ∂k`f , 0 ≤ k, ` ≤ n) for f(e0) (resp. ∂kf(e0) = ∂f

∂xk
(e0), ∂k`f(e0) =

∂2f
∂xk∂x`

(e0), 0 ≤ k, ` ≤ n), we get the following covariances:

• E (f∂kf) = δk0d for 0 ≤ k ≤ n.

• E ((∂kf)(∂k′f)) = δkk′ [d + δk0d(d− 1)] for 0 ≤ k, k′ ≤ n.

• E (f(∂k`f)) = δk`δk0d(d− 1) for 0 ≤ k, ` ≤ n.

• E ((∂k`f)(∂k′f)) = d(d− 1)
[
(d− 2)δ`0δk0δk′0 + δk0δk′` + δ`0δkk′

]
for 0 ≤ k, k′, ` ≤ n.

• E ((∂k`f)(∂k′`′f)) = d(d − 1)
{

(d − 2)(d − 3)δk0δ`0δk′0δ`′0 + (d − 2)
[
δk0δk′0δ``′ +

δk′0δ`0δk`′+δk0δ`′0δk′`+δ`0δ`′0δkk′
]
+δkk′δ``′+δk`′δk′`

}
for 0 ≤ k, k′, `, `′ ≤ n. ♦

We proceed with the study of the two terms in the right-hand side of (17).

Computation of pζ(z): By Lemma 2.2, the n2 coordinates of ζ in (15) are independent
Gaussian centered random variables satisfying that Var(∂kfi) = di and Var(∂11fi) = 2di(di−
1) for 1 ≤ i ≤ n and 2 ≤ k ≤ n.
Although we are not going to use the exact expression in the sequel, we can immediately
deduce for z = ((zi2, . . . , zin, zi11), 1 ≤ i ≤ n) that

pζ(z) =
1

(2π)n2/2

1
∏n

i=1 d
(n−1)/2
i

∏n
i=1(2di(di − 1))1/2

exp


−1

2

n∑

i=1




n∑

j=2

z2
ij

di
+

z2
i11

2di(di − 1)





 .

Computation of qL,∇L̃/ζ=z(0): We factor it as follows:

qL,∇L̃/ζ=z(u, 0) = qL/∇L̃=0,ζ=z(u) · q∇L̃/ζ=z(0).
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Remembering that
(∇L̃

)
BT

:= (ξ2, . . . , ξn, η2, . . . , ηn, %), we can write q∇L̃/ζ=z(0) as

q∇L̃/ζ=z(0) = q(ξ2,...,ξn)/(η2,...,ηn,%)=0, ζ=z(0) · q(η2,...,ηn,%)/ζ=z(0).

First we compute q(η2,...,ηn,%)/ζ=z(0). The condition ζ = z says that for 1 ≤ i ≤ n and
2 ≤ j ≤ n, ∂jfi = zij and ∂11fi = zi11. Therefore, from Identities (16), we have




η2

...
ηn

%


 = A(z)




∂1f1√
d1
...

∂1fn√
dn


 , where A(z) =

←− n −→



2√
d1

z12 . . . 2√
dn

zn2

...
...

2√
d1

z1n . . . 2√
dn

znn

√
2√
d1

z111 . . .
√

2√
dn

zn11




↑
n−1

↓

1

(18)

is non-singular for almost every z ∈ Rn2
. Applying again Lemma 2.2, ∂1fi/

√
di, 1 ≤ i ≤ n,

are independent standard normal random variables that are independent from ζ. By the
change of variables formula, we get

q(η2,...,ηn,%)/ζ=z(0) =
1

(2π)n/2
· 1
|det A(z)| .

Now we compute q(ξ2,...,ξn)/(η2,...,ηn,%)=0,ζ=z(0). Since A(z) is non-singular for almost every
z, the condition η2 = . . . = ηn = % = 0 implies ∂1fi = 0 for 1 ≤ i ≤ n. Therefore, from
Identities (16) and since ζ = z, we have




ξ2

...
ξn


 = 2 B(z)




f1

...
fn


 , where B(z) =

←− n −→



z12 . . . zn2

...
...

z1n . . . znn




↑
n−1

↓
.

Again, f1, . . . , fn are independent standard normal variables independent from
(η2, . . . , ηn, %, ζ) and thus

q(ξ2,...,ξn)/(η2,...,ηn,%)=0, ζ=z(0) =
1

(2π)(n−1)/2
· 1
2n−1(det(B(z)B(z)t))1/2

,

where B(z)t denotes the transpose of the matrix B(z).
We therefore obtain

q∇L̃/ζ=z(0) = q(ξ2,...,ξn)/(η2,...,ηn,%)=0, ζ=z(0) · q(η2,...,ηn,%)/ζ=z(0)

=
1

(2π)n− 1
2 2n−1|detA(z)|(det(B(z)B(z)t))1/2

.

Finally we compute qL/∇L̃=0,ζ=z(u). The conditions ∇L̃ = 0 and ζ = z imply by (18) and
(16) that ∂1fi = 0 for 1 ≤ i ≤ n and

∑n
i=1 fizij = 0 for 2 ≤ j ≤ n for almost every z .

Plugging the former into (14) we get

L =
n∑

i=1

f2
i ,
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and the latter says that the vector (f1, . . . , fn) is orthogonal to the (n − 1)-dimensional
subspace S spanned by the n − 1 vectors (z1j , . . . , znj), 2 ≤ j ≤ n. This shows that
f2
1 + · · ·+ f2

n, the square of the distance of (f1, . . . , fn) to S, has the χ2
1-distribution, since

the property of being a vector of independent standard normal variables is independent of
the choice of the orthonormal basis. So, for u > 0,

qL/∇L̃=0, ζ=z(u) =
e−u/2

√
2πu

.

We therefore obtain

qL,∇L̃/ζ=z(u, 0) = qL/∇L̃=0,ζ=z(u) · q∇L̃/ζ=z(0)

=
e−u/2

(2π)n2n−1|det
(
A(z)

)|(det
(
B(z)B(z)t)

)1/2√
u

.

Plugging this expression into Identity (17) we obtain

pL,∇L̃,ζ(u, 0, z) =
e−u/2

(2π)n2n−1| det
(
A(z)

)|(det
(
B(z)B(z)t)

)1/2√
u
· pζ(z). (19)

Step 5. In this step we focus on the conditional expectation

E
(∣∣ det(L̃′′)

∣∣ · χ{L̃′′Â0}
/

L = u,∇L̃ = 0, ζ = z
)

(20)

in the integrand of (13). We obtain the following expression for L̃′′ under the stated
conditions.

Lemma 2.3. Let M be the symmetric block-matrix R(2n−1)×(2n−1) of the linear operator
L̃′′, under the conditions L = u,∇L̃ = 0 and ξ = z. Let f∗ be any solution of the system∑n

i=1 fizij = 0, 2 ≤ j ≤ n, and
∑n

i=1 f2
i = u. Then

M =

n−1 n−1 1




Mσσ Mστ Mσθ

Mτσ Mττ Mτθ

Mθσ Mθτ Mθθ




n−1

n−1

1
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where

(Mσσ)jj = 2
n∑

i=1

(
1
di

(∂1jfi)2 + z2
ij + f∗i (∂jjfi)− dif

∗
i

2

)
for 2 ≤ j ≤ n,

(Mσσ)jk = 2
n∑

i=1

(
1
di

(∂1jfi)(∂1kfi) + zijzik + f∗i (∂jkfi)
)

for 2 ≤ j 6= k ≤ n,

(Mστ )jk = 2
n∑

i=1

1
di

(∂1jfi)zik for 2 ≤ j, k ≤ n,

(Mσθ)j1 =
√

2
n∑

i=1

1
di

(∂1jfi)zi11 for 2 ≤ j ≤ n,

(Mττ )jk = 2
n∑

i=1

1
di

zijzik for 2 ≤ j, k ≤ n,

(Mτθ)j1 =
√

2
n∑

i=1

1
di

zi11zij for 2 ≤ j ≤ n,

Mθθ =
n∑

i=1

(
1
di

z2
i11 − f∗i zi11

)
.

Proof. The hypotheses imply that for almost every z, one has ∂1fi = 0 for 1 ≤ i ≤ n,∑n
i=1 fizij = 0 for 2 ≤ j ≤ n and

∑n
i=1 f2

i = u. The last two conditions give a system of n
equations and n unknowns with exactly two solutions f∗ = (f∗1 , . . . , f∗n) and −f∗ for almost
every z and u > 0. Moreover the symmetry of the Gaussian distribution implies that the
law of the coordinates of the matrix M does not change under the stated conditions when
replacing f1, . . . , fn by either one of these solutions. The formulas are then a consequence
of Corollary 3.2 of Section 3 (here we use that ∂0fi = difi and skip the details).

For z fixed, the only random variables that appear in the elements of M are the second
partial derivatives ∂jkfi, 2 ≤ j, k ≤ n and ∂1jfi, 2 ≤ j ≤ n, 1 ≤ i ≤ n. Therefore, we are in
condition to apply the following result which gets rid of conditioning in (20).

Lemma 2.4. Let X = (Xij)1≤i≤p,1≤j≤q be a real random matrix and Y = (Y1, ..., Yq)t, Z =
(Z1, ..., Zp)t be real random vectors. Assume that X, Y, Z are independent, the distributions
of X, Y and Z have bounded continuous densities, respectively in Rp×q, Rq, Rp and that
pY (.) and pZ(.) do not vanish. Let g : Rp×q → R be continuous, such that E(|g(X)|) < +∞.
Then, for any u ∈ Rp,

E
(
g(X) /XY + Z = u, Y = 0

)
= E

(
g(X)

)
. ♦

The heuristic meaning of the previous lemma is that if we know that Y = 0, then XY + Z
does not give information on the distribution of X.

For X =
(

1
di

∂1jfi

)
2≤j≤n,1≤i≤n

∈ R(n−1)×n and Y =
(
∂1f1, . . . , ∂1fn

)t in the previous

lemma we obtain that

E
(∣∣ det(L̃′′)

∣∣ · χ{L̃′′Â0}
/

L = u,∇L̃ = 0, ζ = z
)

= E
(∣∣ det(M)

∣∣ · χ{MÂ0}
)
. (21)
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We now consider E
(∣∣ det(M)

∣∣ · χ{MÂ0}
)
. We observe that it is now an unconditional

expectation. We will bound it in terms of u and z. We begin by writing the matrix M in a
form that will be useful for our computations.

Notation To simplify notation, from now on we simply write A and B for the matrices
A(z) and B(z) of Step 4.

We first observe that
Mσσ = V V t + 2BBt + W − µIn−1

where

V :=

←− n −→



√
2√
d1

∂12f1 . . .
√

2√
dn

∂12fn

...
...√

2√
d1

∂1nf1 . . .
√

2√
dn

∂nnfn




↑
n−1

↓
, W :=

←− n−1 −→



2
∑n

i=1 f∗i ∂22fi . . . 2
∑n

i=1 f∗i ∂2nfi

...
...

2
∑n

i=1 f∗i ∂n2fi . . . 2
∑n

i=1 f∗i ∂nnfi




↑
n−1

↓

and

µ := 2
n∑

i=1

dif
∗
i

2.

Also, introducing for 1 ≤ i ≤ n and 2 ≤ j ≤ n,

z̃ij :=
2√
di

zij , z̃j :=
(
z̃1j , . . . , z̃nj

)
, B̂ = B̂(z) :=




z̃2

...
z̃n


 =

←− n −→



z̃12 . . . z̃n2

...
...

z̃1n . . . z̃nn




↑
n−1

↓

and

z̃i11 :=
2√
di

zi11, f̃i :=
√

dif
∗
i and z̃11 :=

(
z̃111, . . . , z̃n11

)
, f̃ :=

(
f̃1, . . . , f̃n

)

so that

A =

n

 B̂

1√
2
z̃11


 n−1

1
,

we get

Mστ =
1√
2
V B̂t, Mσθ =

1
2
V z̃t

11, Mττ =
1
2
B̂B̂t, Mτθ =

√
2

4
B̂z̃t

11 and Mθθ =
1
4
z̃11z̃

t
11−

1
2
z̃11f̃

t.

Therefore

M =

n−1 n−1 1




V V t + 2BBt + W − µIn−1
1√
2
V B̂t 1

2V z̃t
11

1√
2
B̂V t 1

2 B̂B̂t
√

2
4 B̂z̃t

11

1
2 z̃11V

t
√

2
4 z̃11B̂

t 1
4 z̃11z̃

t
11 − 1

2 z̃11f̃
t




n−1

n−1

1

.
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The coefficients of the matrix W appearing in the first block are the centered Gaussian
random variables {2 ∑n

i=1 f∗i ∂jkfi : 2 ≤ j ≤ k ≤ n} which are independent. Applying
Lemma 2.2, we obtain

σ2 := Var(2
n∑

i=1

f∗i ∂jkfi) = 4
n∑

i=1

di(di − 1)f∗i
2 ≤ 4D(D− 1)u for j 6= k,

Var(2
n∑

i=1

f∗i ∂jjfi) = 8
n∑

i=1

di(di − 1)f∗i
2 = 2σ2.

(22)

As a consequence, dividing each coefficient of W by σ
√

n− 1, one can write the matrix W
in the form:

W = σ
√

n− 1 G

where G is a real random symmetric matrix with entries aij which are independent
Gaussian centered satisfying that Var(aij) = 1/n for i 6= j and Var(aij) = 2/n for i = j.

We continue now with the bound for E
(∣∣ det(M)

∣∣ · χ{MÂ0}
)
. The randomness for this ex-

pectation lies in the matrices V and W , which are stochastically independent by Lemma 2.2.

Denote by λ the maximum between 0 and the largest eigenvalue of the matrix G. Using
the independence of V and W , and the fact that the determinant of a positive semidefinite
matrix is an increasing function of the diagonal values, we get

E
(∣∣ det(M)

∣∣ · χ{MÂ0}
) ≤ E

(∣∣ det(M1)
∣∣ · χ{M1Â0}

)
(23)

where M1 is given by:

M1 =

n−1 n−1 1




V V t + 2BBt + σ
√

nλ In−1
1√
2
V B̂t 1

2V z̃t
11

1√
2
B̂V t 1

2 B̂B̂t
√

2
4 B̂z̃t

11

1
2 z̃11V

t
√

2
4 z̃11B̂

t 1
4 z̃11z̃

t
11 − 1

2 z̃11f̃
t




n−1

n−1

1

.

We note that
det(M1) = det(M2)− 1

2
z̃11f̃

t det(M0). (24)

where

M0 =

n−1 n−1

 V V t + 2BBt + σ

√
n λ In−1

1√
2
V B̂t

1√
2
B̂V t 1

2 B̂B̂t




n−1

n−1

.

and

M2 =

n−1 n−1 1




V V t + 2BBt + σ
√

n λ In−1
1√
2
V B̂t 1

2V z̃t
11

1√
2
B̂V t 1

2 B̂B̂t
√

2
4 B̂z̃t

11

1
2 z̃11V

t
√

2
4 z̃11B̂

t 1
4 z̃11z̃

t
11




n−1

n−1

1

.
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Observe that M0 and M2 can be written as

M0 = N0 N t
0 and M2 = N2 N t

2

where

N0 :=

n n n−1



V
√

2B (σ
√

n λ)1/2 In−1

1√
2
B̂ 0 0




n−1

n−1

and

N2 :=

n n n−1




V
√

2B (σ
√

nλ)1/2 In−1

1√
2
B̂ 0 0

1
2 z̃11 0 0




n−1

n−1

1

.

Therefore they are both positive semidefinite. Moreover det(M2) is the square of the (2n−1)-
volume of the parallelotope generated by the 2n − 1 rows of N2. This volume equals the
distance from the last row to the subspace generated by the rows of N0 times the volume
of the parallolotope defined by these 2n − 2 rows. The distance from the last row to the
subspace generated by the rows of N0 is bounded by the distance to the smaller subspace
generated by the n− 1 rows of the matrix

(
1√
2
B̂ 0 0

)
,

which is clearly equal to

dist
(

1
2
z̃11, S̃

)

where S̃ := span(z̃2, . . . , z̃n) ⊂ Rn. Now we recall that (f∗1 , . . . , f∗n) satisfies the conditions∑n
i=1 f∗i zij = 0, 2 ≤ j ≤ n, which implies

〈f̃ , z̃j〉 = 2
n∑

i=1

f∗i zij = 0, 2 ≤ j ≤ n.

This means that f̃ is orthogonal to S̃ so that

dist
(

1
2
z̃11, S̃

)
=

1
2

∣∣∣
〈

f̃

‖f̃‖
, z̃11

〉 ∣∣∣.

Therefore

det(M2) ≤ 1
4

∣∣∣
〈

f̃

‖f̃‖
, z̃11

〉 ∣∣∣
2

det(N0)2 =
1
4

∣∣∣
〈

f̃

‖f̃‖
, z̃11

〉∣∣∣
2

det(M0). (25)

Using this equality to replace det(M2) in (24), we have that

| det(M1)| ≤ 1
2

(1
2

∣∣∣
〈

f̃

‖f̃‖
, z̃11

〉 ∣∣∣
2

+
∣∣〈f̃ , z̃11〉

∣∣
)

det(M0),
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and therefore, since M0 is positive semidefinite

E
(|det(M1)| · χ{M1Â0}

) ≤ 1
2

(1
2

∣∣∣
〈

f̃

‖f̃‖
, z̃11

〉 ∣∣∣
2

+
∣∣〈f̃ , z̃11〉

∣∣
)
E

(
det(M0)

)
. (26)

We now turn to E(det(M0)).

Notation For a matrix M and a subset S (respectively R) of its columns (resp. of its
rows), we denote by MS (resp. MR) the sub-matrix of M consisting of the columns in S
(resp. the rows in R). Also, MS

R denotes the matrix that consists in erasing the columns
not in S and the rows not in R.

Lemma 2.5. Let C = (cij)i,j ∈ Rm×m. For q ∈ Z, 1 ≤ q ≤ m, and λ ∈ R define

Cq(λ) := C + Λq where Λq :=

q m−q



λ Id 0

0 Id




q

m−q

,

i.e the matrix obtained by adding λ to the first q diagonal entries of C.
Then,

det(Cq(λ)) = det(C) +
q∑

`=1

( ∑

S⊂{1,...,q}:#(S)=`

det
(
CS

S

))
λ`.

where S is the complement set of S, with the convention that det(C∅∅ ) = 1. ♦

We set λ := σ
√

n λ and write M0 = C + Λ where

C :=

n−1 n−1

 V V t + 2BBt 1√

2
V B̂t

1√
2
B̂V t 1

2 B̂B̂t




n−1

n−1

and Λ :=

n−1 n−1



λ Id 0

0 Id




n−1

n−1

.

Then, by Lemma 2.5 and using that the random variables involved in the expectation of
M0 are the elements of V and λ, which are independent, we obtain

E
(
det(M0)

)
= E

(
det(C)

)
+

n−1∑

`=1

∑

S ⊂ {1, . . . , n− 1}
#(S) = `

E
(
det

(
CS

S

))
(σ
√

n)` E
(
λ

`)
. (27)

We now bound the expectations appearing here. We first consider E
(
det(C)

)
.

Lemma 2.6. Set n, k ∈ N, 1 ≤ k < n. Let A = (aij)i,j , B ∈ Rk×n and C ∈ R(n−1)×n.
Define

Q :=

k n−1



AAt + B Bt ACt

C At C Ct


 k

n−1
∈ R(k+n−1)×(k+n−1).
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Then,

det(Q) = det(CCt) det(BBt) +
∑

#(S)=k−1

( k∑

i=1

n∑

j=1

(−1)i+j−1aij det(BS
i
) det(Cj)

)2

. ♦

Applying this result for k := n− 1, A := V , B :=
√

2B and C := (1/
√

2)B̂ we get

det(C) = det(BBt) det(B̂B̂t) +
∑

#(S)=n−2

( n−1∑

i=1

n∑

j=1

(−1)i+j−1vij det
(√

2BS
i

)
det

( 1√
2
B̂j

))2

.

Since the random variables vij =
√

2/dj ∂1(i+1)fj are centered and independent, and since
Var(vij) = 2(dj − 1), we obtain

E
(
det(C)

)
= det(BBt) det(B̂B̂t) +

∑

#(S)=n−2

E




( n−1∑

i=1

n∑

j=1

±vij det
(√

2BS
i

)
det

( 1√
2
B̂j

))2




= det(BBt) det(B̂B̂t) +
∑

#(S)=n−2

n−1∑

i=1

n∑

j=1

2(dj − 1)2n−2
(

det
(
BS

i

))2 1
2n−1

(
det

(
B̂j

))2

≤ det(BBt) det(B̂B̂t) + (D− 1)
∑

#(S)=n−2

n−1∑

i=1

n∑

j=1

(
det

(
BS

i

))2(
det

(
B̂j

))2

= det(B̂B̂t)
(

det(BBt) + (D− 1)
n−1∑

i=1

det
(
BiB

t
i

))

(28)
where in the last equality we applied twice the well-known Cauchy-Binet formula, see for
example [14]: For m ≤ n, A ∈ Rm×n and B ∈ Rn×m,

det(AB) =
∑

S:#(S)=m

det(AS) det(BS). (29)

Now we compute E
(
det

(
CS

S

))
for #(S) = `, 1 ≤ ` ≤ n− 1.

• For ` = n− 1 it is obvious that

det
(
CS

S

)
= (1/2n−1) det(B̂B̂t). (30)

• For 1 ≤ ` ≤ n− 2, we note that for each S ⊂ {1, . . . , n− 1} with #(S) = `, we have

CS
S

:=

n−1−` n−1



VS(VS)t + 2BS(BS)t 1√
2
VSB̂t

1√
2
B̂(VS)t 1

2 B̂B̂t




n−1−`

n−1

and we obtain, imitating the computation for the case det(C),

E
(
det(CS

S
)
) ≤ det(B̂B̂t)

2`

(
det(BS(BS)t)+(D−1)

∑

1 ≤ i ≤ n− 1− `
i 6∈ S

det
(
B

S∪{i}(BS∪{i})
t
))

.

(31)
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Finally we give an upper-bound for E
(
λ

`)
.

Lemma 2.7. Let G = (aij)1≤i,j≤n for n ≥ 2 be a real random symmetric matrix such
that the the random variables {aij , 1 ≤ i ≤ j ≤ n} are independent Gaussian centered,
V ar(aij) = 1/n for i 6= j and V ar(aij) = 2/n for i = j, and denote by λ the maximum
between 0 and the largest eigenvalue of the matrix G. Then, for 1 ≤ ` ≤ n,

E
(
λ

`) ≤ 2 · 4`. ♦

Plugging Inequalities (28), (31), (30) and Lemma (2.7) into Formula (27) we obtain

E
(
det(M0)

) ≤ det(B̂B̂t)
(

det(BBt) + (D− 1)
n−1∑

i=1

det
(
BiB

t
i

)
+ 2n(σ

√
n)n−1

+
n−2∑

`=1

2`+1(σ
√

n)`
( ∑

#(S)=`

(
det(BS(BS)t) + (D− 1)

n−1−`∑

i=1

det
(
B

S∪{i}(BS∪{i})
t
))))

≤ det(B̂B̂t)
(

det(BBt) + (D− 1)
n−1∑

i=1

det
(
BiB

t
i

)
+ 2n(σ

√
n)n−1

+
n−2∑

`=1

2`+1(σ
√

n)`
( ∑

#(S)=`

det(BS(BS)t) + (D− 1)(` + 1)
∑

#(T )=`+1

det
(
BT (BT )t

)))
.

This finally implies, by Identity (21) and Inequalities (23) and (26) the inequality we will
focuse on in next step.

E
(∣∣ det(L̃′′)

∣∣ · χ{L̃′′Â0}
/

L = u,∇L̃ = 0, ζ = z
)
≤ 1

2

(1
2

∣∣∣
〈

f̃

‖f̃‖
, z̃11

〉∣∣∣
2

+
∣∣〈f̃ , z̃11〉

∣∣
)

det(B̂B̂t)·

·
(

det(BBt) + (D− 1)
n−1∑

i=1

det
(
BiB

t
i

)
+ 2n(σ

√
n)n−1

+
n−2∑

`=1

2`+1(σ
√

n)`
( ∑

#(S)=`

det(BS(BS)t) + (D− 1)(` + 1)
∑

#(T )=`+1

det
(
BT (BT )t

)))
.

(32)

Step 6. We put together the calculations of Steps 4 and 5 to compute an upper bound for
pL(u) following Inequality (13). We will also use the following auxiliary result:

Lemma 2.8.

22n−1

D det(BBt) ≤ det(B̂B̂t) ≤ 22(n−1)D
D det(BBt),

22n−1−`

D det(BS(BS)t) ≤ det(B̂S(B̂S)t) ≤ 22(n−1−`)D`+1

D det(BS(BS)t) for S ⊂ {1, . . . , n}, #(S) = `.
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Proof. We have B̂ = B H for the diagonal matrix

H :=

←− n −→



2√
d1

. . .
2√
dn




↑
n

↓
.

By Cauchy-Binet formula (29),

det(B̂B̂t) =
n∑

k=1

det(B̂k) det((B̂k)t)

=
n∑

k=1

(
det(BkHk

k
)
)2 =

n∑

k=1

(
det(Hk

k
)
)2( det(Bk)

)2

=
n∑

k=1

22(n−1)dk

D
(
det(Bk)

)2
.

The proof concludes using

22n−1

D ≤ 22(n−1)dk

D ≤ 22(n−1)D
D since dk ≥ 2 and

n∑

k=1

(
det(Bk)

)2 = det(BBt).

The proof of the second assertion is analogous.

According to Inequalities (13), (32), and Identity (19), we get:

pL(u) ≤ σV (V )
∫

(S×R)n

E
(∣∣ det(L̃′′)

∣∣ · χ{L̃′′Â0}
/

L = u,∇L̃ = 0, ζ = z
)
· pL,∇L̃,ζ(u, 0, z) dz

≤ σV (V )
∫

(S×R)n

1
2

(1
2

∣∣∣
〈

f̃

‖f̃‖
, z̃11

〉∣∣∣
2

+
∣∣〈f̃ , z̃11〉

∣∣
)

det(B̂B̂t)·

·
(

det(BBt) + (D− 1)
n−1∑

i=1

det
(
BiB

t
i

)
+ 2n(σ

√
n)n−1

+
n−2∑

`=1

2`+1(σ
√

n)`
( ∑

#(S)=`

det(BS(BS)t) + (D− 1)(` + 1)
∑

#(T )=`+1

det
(
BT (BT )t

)))
·

e−u/2

(2π)n2n−1|det(A)|( det(BBt)
)1/2√

u
· pζ(z)dz.

Here we notice that | det(A)| is the n-volume of the parallelotope generated in Rn by the
rows of A, that is, in the same way we computed det(M2) in (25), we have

| det(A)| = dist
(

1√
2
z̃11, S̃

)
det(B̂B̂t)1/2 =

1√
2

∣∣∣
〈

f̃

‖f̃‖
, z̃11

〉 ∣∣∣
(
det(B̂B̂t)

)1/2
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where like previously S̃ := span(z̃2, . . . , z̃n) ⊂ Rn is the hyperplane spanned by the the rows
of B̂. Therefore, using Cauchy-Schwartz inequality for 〈f̃/‖f̃‖, z̃11〉, applying Lemma 2.8
and the fact that 2n ≤ D, we get

pL(u) ≤ σV (V )
∫

(S×R)n

√
2

(4π)n

(1
2
‖z̃11‖+ ‖f̃‖)

(det(B̂B̂t)
det(BBt)

)1/2

·

·
(

det(BBt) + (D− 1)
n−1∑

i=1

det
(
BiB

t
i

)
+ 2n(σ

√
n)n−1

+
n−2∑

`=1

2`+1(σ
√

n)`
( ∑

#(S)=`

det(BS(BS)t) + (D− 1)(` + 1)
∑

#(T )=`+1

det
(
BT (BT )t

)))
· e−u/2

√
u

pζ(z)dz

≤ σV (V )
∫

(S×R)n

√
2

(4π)n

(1
2
‖z̃11‖+ ‖f̃‖)2n−1

√
D√D ·

·
( D

22n−1
det(B̂B̂t) + (D− 1)

n−1∑

i=1

D
22n−2

det(B̂i(B̂i)
t) +D(σ

√
n)n−1

+
n−2∑

`=1

2`+1(σ
√

n)`
( ∑

#(S)=`

D
22n−1−`

det(B̂S(B̂S)t) + (D− 1)(` + 1)
∑

#(T )=`+1

D
22n−`

det
(
B̂T (B̂T )t

)))
·

· e−u/2

√
u

pζ(z)dz

≤ σV (V )
∫

(S×R)n

√
2

(8π)n

(1
2
‖z̃11‖+ ‖f̃‖)

√
DD ·

(
det(B̂B̂t) + 2(D− 1)

n−1∑

i=1

det(B̂i(B̂i)
t) + 2(4σ

√
n)n−1

+
n−2∑

`=1

(4σ
√

n)`
( ∑

#(S)=`

2 det(B̂S(B̂S)t) + (D− 1)(` + 1)
∑

#(T )=`+1

det
(
B̂T (B̂T )t

)))
· e−u/2

√
u

pζ(z)dz

= E
(
H(u, ζ)

)
,

where

H(u, ζ) : =
√

2
(8π)n

σV (V )
(1
2
‖ζ̃11‖+ ‖f̃‖)

√
DD ·

(
det(B̂(ζ)B̂t(ζ)) + 2(4σ

√
n)n−1

+ 2(D− 1)
n−1∑

i=1

det(B̂i(ζ)(B̂i)
t(ζ)) +

n−2∑

`=1

(4σ
√

n)`
( ∑

#(S)=`

2 det(B̂S(ζ)(B̂S)t(ζ))

+ (D− 1)(` + 1)
∑

#(T )=`+1

det
(
B̂T (ζ)(B̂T (ζ))t

)))
· e−u/2

√
u

.
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Here

B̂(ζ) :=

←− n −→



2√
d1

∂2f1 . . . 2√
dn

∂2fn

...
...

2√
d1

∂nf1 . . . 2√
dn

∂nfn




↑
n−1

↓
and ζ̃11 :=

( 2√
d1

∂11f1, . . . ,
2√
dn

∂11fn

)
.

Our next goal is then to bound E(H(u, ζ)). We first note that the matrix B̂(ζ) is indepen-
dent from ζ̃11, so that the expectation can be factorized as a product of expectations.

First, using Lemma 2.2 and the definition of f̃ we easily get

E
(1
2
‖ζ̃11‖+ ‖f̃‖) ≤

√
2(D− 1)n +

√
Du.

For the other expectations we apply the following.

Lemma 2.9. (e.g. [2, Lemma 13.6]) Set m ≤ n and let U be an m × n random matrix
whose elements are independent real standard normal. Then

E
(
det(UU t)

)
=

n!
(n−m)!

.

Therefore, since by Lemma 2.2, 1
2 B̂(ζ) satisfies the hypothesis of the lemma with m = n−1,

we obtain
E

(
det(B̂(ζ)B̂t(ζ)

)
= 4n−1n!

and we get similar expressions for the other determinants in E(H(u, ζ))):

E
(
det(B̂i(ζ)(B̂i)

t(ζ))
)

= 4n−2 n!
2

,

E
(
det(B̂S(ζ)B̂t

S
(ζ))

)
= 4n−1−` n!

(` + 1)!
,

E
(
det

(
B̂T (ζ)(B̂T (ζ))t

)
= 4n−2−` n!

(` + 2)!
.

We also apply Formula (4): σV (V ) = 4
√

2πn+ 1
2 /

(
Γ(n/2)Γ((n + 1)/2)

)
. Therefore
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E
(
H(u, ζ)

)
=

√
2

(8π)n

4
√

2πn+ 1
2

Γ(n/2)Γ((n + 1)/2)
(√

2(D− 1)n +
√

Du
)√

DD

·
(

4n−1n! + 2(4σ
√

n)n−1 + 2(D− 1)
n−1∑

i=1

4n−2 n!
2

+
n−2∑

`=1

(4σ
√

n)`
((

n− 1
`

)
2 · 4n−1−` n!

(` + 1)!
+ (D− 1)(` + 1)

(
n− 1
` + 1

)
4n−2−` n!

(` + 2)!

))

· e−u/2

√
u

=
√

π

8n−1Γ(n/2)Γ((n + 1)/2)
(√

2(D− 1)n +
√

Du
)√

DD 4n−1n!

·
(

1 + 2
(σ
√

n)n−1

n!
+

(D− 1)(n− 1)
4

+
n−2∑

`=1

(σ
√

n)`
((

n− 1
`

)
2

(` + 1)!

+
(D− 1)(` + 1)

4

(
n− 1
` + 1

)
1

(` + 2)!

))
· e−u/2

√
u

≤
√

π

2n−1Γ(n/2)Γ((n + 1)/2)
(√

2(D− 1)n +
√

Du
)√

DD n!

·
(

n−1∑

`=0

(
n− 1

`

)
(σ
√

n)` +
(D− 1)(n− 1)

4

n−2∑

`=0

(
n− 2

`

)
(σ
√

n)`

)
· e−u/2

√
u

.

(33)
Now, we assume n ≥ 3 and we bound this expectation for 0 < u < 1/(4D2n5) in which
case, by the bound for σ2 given in (22), σ2 ≤ 4D(D− 1)u ≤ 1/n5.
We will use throughout the bounds 1 + x ≤ ex for any x and ex − 1 ≤ 2x for 0 ≤ x ≤ 1.
The factorial term n! = Γ(n+1) and the other Gamma functions in the first line of the right-
hand side of Inequality (33) can be bounded through Stirling’s formula [1, Formula 6.1.38]:
for any x > 0,

Γ(x + 1) =
√

2πx
(x

e

)x

eθ/(12x) for some 0 < θ = θ(x) < 1.

so that, √
2πx

(x

e

)x

< Γ(x + 1) <
√

2πx
(x

e

)x

e1/(12x).

Also,

√
Du ≤ 1

2
√

Dn5/2
≤

√
2(D− 1)n

( 1
2
√

2(D− 1)n
√

Dn5/2

)
≤

√
2(D− 1)n

4n3
,

which implies √
2(D− 1)n +

√
Du ≤

√
2(D− 1)n

(
1 +

1
4n3

)
.
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Therefore, the first line of the right-hand side of Inequality (33) satisfies
√

π

2n−1Γ(n/2)Γ((n + 1)/2)
(√

2(D− 1)n +
√

Du
)√

DD n!

≤
√

π

2n−1
√

(n− 2)π
√

(n− 1)π

( 2e

n− 2

)n−2
2

( 2e

n− 1

)n−1
2 √

2(D− 1)n
(
1 +

1
4n3

)

√
DD

√
2πn

(n

e

)n

e1/(12n)

=
e1/(12n)

e3/2

√
n2

(n− 2)(n− 1)

( n

n− 2

)n−2
2

( n

n− 1

)n−1
2

n3/2
√

2(D− 1)
(
1 +

1
4n3

)√
DD

≤ 3D
√
D n3/2

(
1 +

1
4n3

)(
1 +

1
6n

)
≤ 4D

√
D n3/2.

We now turn our attention to the term under brackets in the right-hand side of Inequal-
ity (33).
We have σ

√
n ≤ 1/n2. Therefore

n−1∑

`=0

(
n− 1

`

)
(σ
√

n)` +
(D− 1)(n− 1)

4

n−2∑

`=0

(
n− 2

`

)
(σ
√

n)`

≤
(
1 +

1
n2

)n−1

+
(D− 1)(n− 1)

4

(
1 +

1
n2

)n−2

≤ e
n−2
n2

(
1 +

1
n2

+
(D− 1)(n− 1)

4

)
≤

(
1 +

2(n− 2)
n2

)(
1 +

1
n2

+
(D− 1)(n− 1)

4

)
≤ nD.

Adding up, since e−u/2 ≤ 1, we obtain

pL(u) ≤ E
(
H(u, ζ)

) ≤ 4D2D1/2 n5/2 1√
u

.

Step 7. We finally complete the proof of Theorem 1.2.

For 0 < α < 1/(4D2n5), the previous estimate for pL(u) implies

P(L < α) =
∫ α

0

pL(u) du ≤ 8D2D1/2 n5/2
√

α.

Let us go back to the starting inequality (2):

P (κ̃(f) > a) ≤ P
(

L <
1
a2

(1 + ln a)N
)

+ exp
(
−N

2
(ln a− ln(ln a + 1)

)
.

where we recall that

N =
n∑

i=1

(
n + di

n

)
≤ nD+2.

By hypothesis in the theorem, a > an := 4D2n3N1/2.
We set α := (1 + ln a)N/a2 and verify α < 1/(4D2n5). It is enough to verify it with an:

(1 + ln an)N
a2

n

<
1

4D2n5
⇐⇒ 1 + ln an ≤ 4D2n
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which is satisfied since for D ≥ 2 and n ≥ 3,

1+ln an < 1+ln(4D2)+3 lnn+
D + 2

2
ln n ≤ 4D2+

(D
2

+4
)
ln n < 4D2+4D2(n−1) = 4D2n.

Therefore, by Inequality (2),

P(κ̃(f)) > a) ≤ P
(
L <

(1 + ln a)N
a2

)
+ exp

(
− N

2
(
ln a− ln(ln a + 1)

))

≤ 8D2D1/2 n5/2
√

α +
1
a

= Kn
(1 + ln a)1/2

a

where Kn = 8D2D1/2 N1/2n5/2 + 1. Here we used exp
(
(−N/2)

(
ln a− ln(ln a + 1)

))
< 1/a

for a > 2, N > 10. This proves part (i) of Theorem 1.2.

(ii) We verify that Kn > an. It is enough to check

8D2D1/2N1/2n5/2 ≥ 4D2n3N1/2 ⇐⇒ 2D1/2 ≥ n1/2 ⇐⇒ 4D ≥ n

which holds because 4D ≥ 4 · 2n ≥ n.
Therefore we can write

E(ln κ̃(f)) =
∫ +∞

0

P(ln κ̃(f) > x) dx ≤ ln Kn +
∫ +∞

ln Kn

P
(
κ̃(f) > ex

)
dx

≤ ln Kn +
∫ +∞

ln Kn

Kn(1 + x)1/2e−x dx

≤ ln Kn + Kn

∫ +∞

ln Kn

x1/2e−x dx +
Kn

2

∫ +∞

ln Kn

x−1/2e−x dx

= ln Kn + Kn(e− ln Kn (lnKn)1/2) + Kn

∫ +∞

ln Kn

x−1/2e−x dx

≤ ln Kn + (lnKn)1/2 + Kn(lnKn)−1/2

∫ +∞

ln Kn

e−x dx

= ln Kn + (lnKn)1/2 + (lnKn)−1/2.

Here we used the inequality (1 + x)1/2 < x1/2 + 1
2x−1/2 for x > 0 and integration by parts.

3 Auxiliary lemmas

This section contains the proofs of all the auxiliary results indicated by the symbol ♦, which
were stated without proof during the text.

Proof of Lemma 2.1. According to the definition of the Weyl norm,

‖f‖2W =
n∑

i=1

∑

|j|=di

ξ2
i,j (34)
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where, due to the distribution, the random variables

ξi,j =
a
(i)
j(

di

j

)1/2

are independent identically distributed (i.i.d.) standard normal.
It is easy to see that the number of terms in the sum (34) is equal to N , so that

P
(‖f‖2W ≥ (1 + η)N

)
= P

(
(ξ2

1 − 1) + · · ·+ (ξ2
N − 1) ≥ ηN

)
= P

(
X1 + . . . + XN

N
≥ η

)

where X1, . . . , XN are i.i.d. random variables having the distribution of ξ2 − 1, ξ a normal
standard random variable.
The logarithmic moment generating function of ξ2 − 1 is

Λ(λ) = lnE{eλ(ξ2−1)} =

{
−λ− 1

2 ln(1− 2λ) if λ < 1
2

+∞ if λ ≥ 1
2

and its Fenchel-Legendre transform

Λ∗(x) = sup
λ∈R

(λx− Λ(λ)) =
{

1
2 (x− ln(x + 1)) if x > −1
+∞ if x ≤ −1.

A basic result on large deviations [11, Ch. 2] states that, for any integer m and any x > 0,

P
(

X1 + · · ·+ Xm

m
≥ x

)
≤ exp(−mΛ∗(x)).

This implies the statement.

Proof of Lemma 2.2. For the first item, from the fact that E(ajaj′) = E(aj)E(aj′) = 0
for j 6= j′ (by the independence of the aj), we have

E(f(x)f(y)) = E


∑

j,j′
ajaj′x

jyj′


 =

∑

j

E((aj)2)xjyj =
∑

j

(
d

j

)
xjyj = 〈x, y〉d.

For the following items, we observe that we can differentiate under the expectation sign the
function (x, y) 7→ E(f(x)f(y)) = 〈x, y〉d, e.g.

E (f(x)∂kf(y)) =
∂(〈x, y〉d)

∂yk
(x, y) = dxk〈x, y〉d−1

E (∂kf(x)∂k′f(y)) = ∂2
kk′(〈x, y〉d) = δkk′d〈x, y〉d−1 + d(d− 1)xk′yk〈x, y〉d−2.

This gives the covariances when specializing x = y = e0.

Our next lemma deals with the analytic description of the geometry of the manifold V which
is used in the proof of Lemma 2.3. We define the function ψ : B2n−1,δ → Rn+1 × Rn+1 by
means of:

ψ(σ2, . . . , σn, τ2, . . . , τn, θ) =
(

C

‖C‖n+1
,

D

‖D‖n+1

)
,
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where B2n−1,δ is the open ball in R2n−1, centered at the origin and radius δ sufficiently
small, ‖.‖n+1 is the Euclidean norm in Rn+1 and the definition of C and D is given in
several steps by the following:

• We set σ1 := (1− σ2
2 − . . .− σ2

n)1/2, τ1 := (1− τ2
2 − . . .− τ2

n)1/2,

a(σ, τ) := −
(∑n

j=2 σjτj

)
/(σ1 + τ1), n(σ, τ) :=

√
1 + a2(σ, τ).

• A := 1
n(σ,τ)

(
σ1e0 +

∑n
j=2 σjej + a(σ, τ)e1

)
, and

B := 1
n(σ,τ)

(
τ1e1 +

∑n
j=2 τjej + a(σ, τ)e0

)
.

• C := cos(θ/
√

2)A + sin(θ/
√

2)σ1e1, and D := cos(θ/
√

2)B − sin(θ/
√

2)τ1e0.

Lemma 3.1. [Geometry of V ]

1. ψ is a parametrization of a neighborhood of the point (e0, e1) in the manifold V with
ψ(0) = (e0, e1).

2. For 2 ≤ j ≤ n,

∂ψ

∂σj
(0) = (ej , 0),

∂ψ

∂τj
(0) = (0, ej) and

∂ψ

∂θ
(0) =

1√
2
(e1,−e0).

Therefore the orthonormal basis BT (defined in (12)) of the tangent space of V at the
point (e0, e1) satisfies

BT =
(

∂ψ

∂σ2
(0), . . . ,

∂ψ

∂σn
(0),

∂ψ

∂τ2
(0), . . . ,

∂ψ

∂τn
(0),

∂ψ

∂θ
(0)

)
.

3. The curvatures are given by:

∂2ψ

∂σ2
j

(0) = (−e0, 0);
∂2ψ

∂τ2
j

= (0,−e1);
∂2ψ

∂σj∂τj
= −1

2
(e1, e0) for 2 ≤ j ≤ n,

∂2ψ

∂σj∂σk
(0) =

∂2ψ

∂τj∂τk
(0) =

∂2ψ

∂σj∂τk
(0) = (0, 0) for 2 ≤ j 6= k ≤ n,

∂2ψ

∂θ2
(0) = −1

2
(e0, e1);

∂2ψ

∂σj∂θ
(0) =

∂2ψ

∂τj∂θ
= (0, 0) for 2 ≤ j ≤ n.

Proof. If δ is small enough, ψ is well defined and is C∞. It is easy to check that
〈C, D〉Rn+1 = 0, so that ψ(σ2, . . . , σn, τ2, . . . , τn, θ) ∈ V .
A routine calculation of first derivatives allows to check 2 and also implies that if δ is small
enough, ψ is a diffeomorphism from B(0, δ) onto its image. The computation of second
order derivatives is also immediate.

Corollary 3.2. Let us set L′ := L′(e0, e1) and L′′ := L′′(e0, e1) for the free first order
and second order derivatives of L at (e0, e1). We use the parametrization introduced in the
previous Lemma. Consider the function

L̃(σ2, . . . , σn, τ2, . . . , τn, θ) = L
(
ψ(σ2, . . . , σn, τ2, . . . , τn, θ)

)
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Let M be the symmetric matrix of the linear operator L̃′′(0) in the canonical basis of R2n−1:

M =




Mσσ Mστ Mσθ

Mτσ Mττ Mτθ

Mθσ Mθτ Mθθ


 ∈ R(2n−1)×(2n−1)

where for 2 ≤ j, k ≤ n,

(Mσσ)jk = (Mσσ)kj =
∂2(L ◦ ψ)
∂σj∂σk

=
〈

L′′
∂ψ

∂σj
(0),

∂ψ

∂σk
(0)

〉
+

〈
L′,

∂2ψ

∂σj∂σk
(0)

〉

=
{ 〈L′′(ej , 0), (ej , 0)〉 − 〈L′, (e0, 0)〉 for j = k
〈L′′(ej , 0), (ek, 0)〉 for j 6= k

=





∂2L
∂x2

j
− ∂L

∂x0
for j = k

∂2L
∂xj∂xk

for j 6= k

(Mστ )jk = (Mτσ)kj =
∂2(L ◦ ψ)
∂σj∂τk

=
〈

L′′
∂ψ

∂σj
(0),

∂ψ

∂τk
(0)

〉
+

〈
L′,

∂2ψ

∂σj∂τk
(0)

〉

=
{ 〈L′′(ej , 0), (0, ej)〉 − 1

2 〈L′, (e1, e0)〉 for j = k
〈L′′(ej , 0), (0, ek)〉 for j 6= k

=





∂2L
∂xj∂yj

− 1
2 ( ∂L

∂x1
+ ∂L

∂y0
) for j = k

∂2L
∂xj∂yk

for j 6= k

(Mττ )jk = (Mττ )kj =
∂2(L ◦ ψ)
∂τj∂τk

=
〈

L′′
∂ψ

∂τj
(0),

∂ψ

∂τk
(0)

〉
+

〈
L′,

∂2ψ

∂τj∂τk
(0)

〉

=
{ 〈L′′(0, ej), (0, ej)〉 − 〈L′, (0, e1)〉 for j = k
〈L′′(0, ej), (0, ek)〉 for j 6= k

=





∂2L
∂y2

j
− ∂L

∂y1
for j = k

∂2L
∂yj∂yk

for j 6= k
,

for 2 ≤ j ≤ n,

(Mσθ)j1 = (Mθσ)1j =
∂2(L ◦ ψ)

∂σj∂θ
=

〈
L′′

∂ψ

∂σj
(0),

∂ψ

∂θ
(0)

〉
+

〈
L′,

∂2ψ

∂σj∂θ
(0)

〉

=
1√
2
〈L′′(ej , 0), (e1,−e0)〉 =

1√
2

(
∂2L

∂xj∂x1
− ∂2L

∂xj∂y0

)
,

(Mτθ)j1 = (Mθτ )1j =
∂2(L ◦ ψ)

∂τj∂θ
=

〈
L′′

∂ψ

∂τj
(0),

∂ψ

∂θ
(0)

〉
+

〈
L′,

∂2ψ

∂τj∂θ
(0)

〉

=
1√
2
〈L′′(0, ej), (e1,−e0)〉 =

1√
2

(
∂2L

∂yj∂x1
− ∂2L

∂yj∂y0

)
,
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and finally

Mθθ =
∂2(L ◦ ψ)

∂θ2
=

〈
L′′

∂ψ

∂θ
(0),

∂ψ

∂θ
(0)

〉
+

〈
L′,

∂2ψ

∂θ2
(0)

〉

=
1
2

(〈L′′(e1,−e0), (e1,−e0)〉 − 〈L′, (e0, e1)〉)

=
1
2

(
∂2L

∂x2
1

− 2
∂2L

∂x1∂y0
+

∂2L

∂y2
0

− ∂L

∂x0
− ∂L

∂y1

)
.

Proof of Lemma 2.4. We have:

E
(
g(X) /XY + Z = u, Y = 0

)
=

∫

Rp×q

g(x)
pX,Y,XY +Z(x, 0, u)

pY,XY +Z(0, u)
dx (35)

since
pX,Y,XY +Z(x, 0, u)

pY,XY +Z(0, u)

is the conditional density of X at the point x, given that Y = 0, XY + Z = u.
Now, the density pX,Y,XY +Z(x, y, u) is easily computed from the change of variables formula
(using the independence of X, Y, Z), obtaining:

pX,Y,XY +Z(x, y, u) = pX(x)pY (y)pZ(u− xy).

This also implies

pY,XY +Z(0, u) =
∫

Rp×q

pX,Y,XY +Z(x, 0, u) dx = pY (0)pZ(u).

Replacing pY,XY +Z(0, u) by pY (0)pZ(u) in (35), we get:

E
(
g(X) /XY + Z = u, Y = 0

)
=

∫

Rp×q

g(x)pX(x) dx = E
(
g(X)

)

Proof of Lemma 2.5. Write the Taylor expansion of det(Cq(λ)) at λ = 0 and compute
the successive derivatives at this point.

Proof of Lemma 2.6. We note that Q = M M t where

M :=

n n



A B

C 0


 k

n−1
.

Applying the Cauchy-Binet formula (29), we get

det(Q) =
∑

#(S′)=k+n−1

(
det(MS′)

)2
, (36)
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where the sum is over all choices of k + n− 1 columns of M .

We fix such an S′. It is easy to see, performing a Laplace expansion with respect to the first
k rows of the obtained matrix, that if we take strictly more than k columns in the n-columns
right block corresponding to B, then det(MS′) = 0. This is because in this expansion there
will always remain a zero column. Therefore, we can only choose up to k columns in the
right block, i.e. there are two cases: we choose all the n columns in the left block and k− 1
columns in the right block, or we choose n − 1 columns in the left block and k columns in
the right block.
Case 1: MS′ is of the form:

MS′ =

n k−1



A BS

C 0


 k

n−1
∈ R(k+n−1)×(k+n−1).

Here S is the set of (k− 1) columns of B that we kept. Again using Laplace expansion with
respect to the last k−1 columns of MS′ , we see that each non-zero determinant corresponds
to suppressing a row –say row i– of BS , times the determinant of its complementary matrix
which is equal to the i-th row of A added to C. Finally, expanding this last matrix by the
i-th row of A, we obtain:

det(MS′) = (−1)n(k−1)
k∑

i=1

(−1)k−i det(BS
i

n∑

j=1

(−1)j−1aij det(Cj),

where i and j denote the complementary rows or columns, accordingly.
Case 2: MS′ is of the following form for some j which corresponds to the suppressed column
of A and S is a choice of k columns of B:

MS′ =

n−1 k

 Aj BS

Cj 0


 k

n−1
∈ R(k+n−1)×(k+n−1).

Then, permuting the two blocks of rows and since the obtained matrix is block-diagonal,
we get det(MS) = (−1)k(n−1) det(Cj) det(BS).

Therefore, the sum in (36) for all S′ in Case 2 gives:

n∑

j=1

(
det(Cj)

)2 ∑

#(S)=k

(
det(BS)

)2 = det(CCt) det(BBt),

again by the Cauchy-Binet formula (29). The statement follows from adding up over all S′

in Cases 1 and 2.

Proof of Lemma 2.7. The proof is based on the following bound for the tails of the
probability distribution of λ. For t > 0 one has (see for example [10] and references therein):
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P(λ ≥ 2 +
√

2 t) < exp
(− nt2

2
)
.

Therefore, since ` ≤ n,

E
(
λ

`)
=

∫ +∞

0

P(λ`
> x) dx =

∫ +∞

0

P(λ > y) `y`−1 dy

≤
∫ 4

0

`y`−1 dy +
∫ +∞

4

` y`−1 exp
(
− n

2
· (y − 2)2

2

)
dy

≤ 4` +
∫ +∞
√

2n

`

√
2
n

(√
2
n

u + 2
)`−1

exp
(
− u2

2

)
du

= 4` + `

√
2
n

2`−1

∫ +∞
√

2n

(
1 +

u√
2n

)`−1

exp
(
− u2

2

)
du

≤ 4` + `

√
2
n

2`−1

∫ +∞
√

2n

exp
(
u

√
n

2
− u2

2
)
du since 1 + x ≤ exp(x)

= 4` + `

√
2
n

2`−1 exp(n/4)
∫ +∞
√

n/2

exp
(− y2

2
)
dy

≤ 4` + `

√
2
n

2`−1 exp
(n

4

)√
2
n

exp
(
− n

4

)
≤ 2 · 4`,

where in the last line we used that
∫ +∞

a

exp
(
− y2

2

)
dy <

∫ +∞

a

y

a
exp

(
− y2

2

)
dy =

1
a

exp
(
− a2

2

)
.
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