
A Numerical Algorithm for Zero Counting.

I: Complexity and Accuracy

Felipe Cucker ∗

Dept. of Mathematics
City University of Hong Kong

HONG KONG
e-mail: macucker@cityu.edu.hk

Teresa Krick †

Departamento de Matemática
Univ. de Buenos Aires & CONICET

ARGENTINA
e-mail: krick@dm.uba.ar

Gregorio Malajovich‡

Depto. de Matemática Aplicada
Univ. Federal do Rio de Janeiro

BRASIL
e-mail: gregorio@ufrj.br

Mario Wschebor
Centro de Matemática

Universidad de la República
URUGUAY

e-mail: wschebor@cmat.edu.uy

Abstract. We describe an algorithm to count the number of distinct real zeros of

a polynomial (square) system f . The algorithm performs O(log(nDκ(f))) iterations

(grid refinements) where n is the number of polynomials (as well as the dimension of

the ambient space), D is a bound on the polynomials’ degree, and κ(f) is a condition

number for the system. Each iteration uses an exponential number of operations. The

algorithm uses finite-precision arithmetic and a major feature in our results is a bound

for the precision required to ensure the returned output is correct which is polynomial

in n and D and logarithmic in κ(f). The algorithm parallelizes well in the sense that

each iteration can be computed in parallel time polynomial in n, log D and log(κ(f)).

1 Introduction

In recent years considerable attention was put on the complexity of counting problems over
the reals. The counting complexity class #PR was introduced [20] and completeness results
for #PR were established [3] for natural geometric problems notably, for the computation
of the Euler characteristic of semialgebraic sets. As one could expect, the “basic” #PR-
complete problem consists of counting the real zeros of a system of polynomial equations.

Algorithms for counting real zeros have existed since long. One such algorithm follows
from the work of Tarski [25] on quantifier elimination for the theory of the reals. Its complex-
ity is hyperexponential. Algorithms with improved complexity (doubly exponential) were
devised in the 70s by Collins [5] and Wütrich [27]. A breakthrough was reached a decade

∗Partially supported by City University SRG grant 7002106.
†Partially supported by grants UBACyT X112/06-09, CONICET PIP 2461/00 and ANPCyT 33671/05.
‡Partially supported by CNPq grants 304504/2004-1, 472486/2004-7, 470031/2007-7, 303565/2007-1, and

by FAPERJ grant E26/170.734/2004.

1

later with the introduction of the critical points method by Grigoriev and Vorobjov [13, 12]
which uses exponential time. Algorithms counting connected components (and hence, in
the zero-dimensional case, solutions) based on this method can be found in [14, 16], and in
the straight-line program model of computation in [1]. These algorithms parallelise well in
the sense that one can devise versions of them working in parallel polynomial time when
an exponential number of processors is available. The #PR-completeness of the problem
strongly indicates that this is the best we can hope for.

All the algorithms mentioned above are “symbolic algorithms.” They have been devised
upon the premise that no perturbation or round-off error is present. Were this not the
case, it is not difficult to see that errors would accumulate quite badly. Roughly speaking,
these algorithms construct some object of exponential size on which some basic computation
(e.g., linear algebra) is eventually performed. A question is posed, can one devise “numerical
algorithms” (maybe iterative, which need not terminate for ill-posed inputs) with a better
behavior viz the accumulation of round-off errors? For the problem of deciding the existence
of (or computing) a zero of a polynomial system such algorithms were given in [8, 6, 18].
The goal of this article is to describe and analyze a numerical algorithm for zero counting.
We will do so by developping appropriate versions of the tools used in [8, 6].

Let d1, . . . , dn ∈ N and d = (d1, . . . , dn). We will denote by Hd the space of polynomial
systems f = (f1, . . . , fn) with fi ∈ R[X0, . . . , Xn] homogeneous of degree di.

Zero rays of polynomial systems f ∈ Hd are associated to pairs of zeros (−ζ, ζ) of the
restriction f|Sn of f to the n-dimensional unit sphere Sn ⊂ Rn+1. Thus, it will be convenient
to consider a system f ∈ Hd as a (central symmetric, analytic) mapping of Sn into Rn. If
we denote by Z(f) = {ζ ∈ Sn : f(ζ) = 0} the zero-set of f in Sn then the number #R(f) of
zero rays of the system f is half the cardinality of Z(f).

In this paper we describe a finite-precision algorithm computing #R(f), given f ∈ Hd.
To analyze its complexity and accuracy, besides the number n of polynomials, we will rely on
two more additional parameters. One is D = maxi≤n di. The other is a condition measure
κ(f) for the system f . We will describe this measure in detail in Section 2 below. We
will also let S = max Si where Si is the number of non-zero coefficients of fi. Note that
S is bounded by a simple expression in terms of n and D, namely, S =

(
n+D
D

)
. Yet, we

will express dependancy on S since this may be relevant for the case of sparse systems of
polynomials. Our main result is the following.

Theorem 1.1. There exists an iterative algorithm which, with input f ∈ Hd,

(1) Returns #R(f).

(2) Performs O(log(nDκ(f))) iterations and has a total cost (number of arithmetic opera-
tions) of

O
(

log(nDκ(f))(n + 1)2
(

2(n + 1)D2κ(f)2

α∗

)2n
)

,

where α∗ ≈ 0.0384629388 . . . is a universal constant.

(3) Can be well-parallelized in the sense that it admits a parallel version running in time

O(n2 ln(nDκ(f))(ln(nDκ(f))2 + ln(α∗)2))

with a number of processors exponential in this quantity.

2

(4) Can be implemented with finite precision (both versions, sequential and parallel). The
running time remains the same (with α∗ replaced by α• ≈ 0.028268 · · ·) and the re-
turned value is #R(f) as long as the machine precision (i.e., the round-off unit) u
satisfies

u ≤ 1
O (

D2n5/2κ(f)3(log S + n3/2D2κ(f)2)
) .

(5) It can be modified to return, in addition and for each real zero ζ ∈ Sn of f , an approx-
imate zero x of f in the sense that Newton’s iteration, starting at x, converges to ζ
quadratically fast.

Remark 1.2. (i) A system f for which arbitrarily small perturbations may change
the value #R(f) is considered ill-posed in our context since for arbitrarily small machine
precisions finite precision algorithms may return an incorrect value. Consequently, the
condition number κ(f) is infinite in these cases (and only then). This happens when f has
multiple real zeros and, in particular, when f has infinitely many real zeros. In these cases
the algorithm of Theorem 1.1 may not halt.
(ii) Numerical algorithms compute functions ϕ on real data. Error analysis for algorithms
computing (vectors of) real numbers —i.e. for which the image of ϕ has non-empty interior—
are usually expressed in terms of bounds for the relative error of the computed quantities.
That is, for data d, bounds in

‖ϕ(d)− fl(ϕ(d)‖
‖ϕ(d)‖

where fl(ϕ(d)) is the vector actually computed with finite precision. This relative error
varies continuously with d and depends on the condition of d and on the precision u. Such a
form of analysis, however, becomes meaningless when computing quantities taking a finite
number of values. Indeed, if Ra denotes the set of input data d for which ϕ(d) = a the
following happens. When d is in the interior of Ra we have that the relative error above
is 0 for sufficiently small u. In contrast, when d is on the boundary of Ra, that error may
remain constant for all u > 0. Because of this, error analysis for this kind of discrete-valued
problems has a different form, as in Theorem 1.1. One bounds how small u needs to be to
guarantee a correct answer. Such a bound, needless to say, also depends on the condition
of the data d. Examples of this type of analysis can be found in [4, 6, 7, 8]. In each of these
references a condition number for the problem at hand occurs in the error analysis. We note
that the one in [6] is essentially our κ(f).

The rest of the paper is organized as follows. In Section 2 we describe the basic objects we
will deal with as well as fixing the notation. In Sections 3 and 4 we prove the two technical
results our algorithm relies on. In Section5 we describe the algorithm under the assumption
of infinite precision and we prove parts (1), (2), and (3) of Theorem 1.1. The geometric
ideas making the algorithm work are best seen in this context. Section 6 then describes the
necessary modifications to make the algorithm work as well under finite precision. These
modifications are simple and can be summarized by saying that we relax a bit the inequalities
tested in the algorithms to make room for the finite-precision errors to fit in.

2 Preliminaries

Denote byHd the subspace of R[X0, . . . , Xn] of homogeneous polynomials of degree d. Then,
Hd = Hd1 × · · · × Hdn .

3

If g ∈ Hd we write
g(X) =

∑

J

gJXJ

where J = (J0, . . . , Jn) is assumed to range over all multi-indices such that |J | = ∑n
k=0 Jk =

d, XJ = XJ0
0 XJ1

1 . . . XJn
n and gJ ∈ R. Multinomial coefficients are defined by:

(
d

J

)
=

d!
J0!J1! · · · Jn!

.

The space Hd is endowed with the inner product

〈g, h〉 =
∑

|J|=d

gJhJ(
d
J

)

which gives rise to the norm ‖g‖ =
√
〈g, g〉. These norms, for d1, . . . , dn, induce a norm in

Hd by taking for f = (f1, . . . , fn) ∈ Hd:

‖f‖ = ‖(f1, . . . , fn)‖ = max
1≤i≤n

‖fi‖.

Let O(n + 1) be the orthogonal group. The inner product above is known to be O(n + 1)-
invariant: for all Q ∈ O(n + 1) and all g, h ∈ Hd,

〈g ◦Q,h ◦Q〉 = 〈g, h〉.
(This is a direct consequence of [26, III-7] or [2, Theorem 1 p. 218], by considering O(n+1)
as subgroup of U(n + 1)). The associated norm ‖f‖ on Hd is therefore also O(n + 1)-
invariant. We will use this norm on Hd all along this paper. For x = (x1, . . . , xn) ∈ Rn we
recall that ‖x‖2 = (x2

1 + · · ·+ x2
n)1/2 and ‖x‖∞ = max{|x1|, . . . , |xn|}. We will often denote

‖x‖2 simply by ‖x‖.
For f ∈ Hd and x ∈ Sn define

µnorm(f, x) = ‖f‖√n

∥∥∥∥∥∥∥∥∥
Df(x)−1

|TxSn




√
d1 √

d2

. . . √
dn




∥∥∥∥∥∥∥∥∥
(1)

where Df(x)|TxSn is the restriction to the tangent space of x at Sn of the derivative of f at
x and the norm is the spectral norm, i.e. the operator norm with respect to ‖ ‖2. We now
define the condition number κ(f) of f ∈ Hd:

κ(f) = max
x∈Sn

min
{

µnorm(f, x),
‖f‖

‖f(x)‖∞

}
.

Remark 2.1. The quantity κ(f) is closely related to other condition numbers for similar
problems.

A version of the quantity µnorm(f, ζ) was introduced in [21, 22, 23] (see also [2, Chap-
ter 12]) for a complex polynomial system f and a zero ζ of f in the complex unit sphere
Sn
C ⊂ Cn+1. The normalized condition number of such a system f was then defined to be

µnorm(f) := max
ζ∈Sn

C |f(ζ)=0
µnorm(f, ζ). (2)

4

Actually, the version of µnorm(f, ζ) introduced in [21, 22, 23] differs from (1) in the fact
that ‖f‖ is defined as (

∑ ‖fi‖2)1/2 (and there is no
√

n factor). It is bounded above by the
expression in (1).

Over the reals, the right-hand side in (2) may not be well-defined since the zero set
of f may be empty. In [8] real systems were considered (as in the present paper) and
an algorithm deciding feasibility of f (i.e., whether f has a real zero) was proposed. Its
complexity was analyzed in terms of a condition number which, using our notation and
modulo minor details, is defined as follows





min
ζ∈Sn|f(ζ)=0

µnorm(f, ζ) if f is feasible

max
ζ∈Sn

‖f‖
‖f(ζ)‖∞ if f is infeasible.

Note the use of min (instead of max) in the first line above. This is due to the fact that the
time needed for the algorithm in [8] to detect the existence of a zero depends on the best
conditioned zero of f . The existence of other, poorly conditioned (or even singular), zeros
of f is irrelevant.

Shortly after, the algorithm in [8] was extended to an algorithm which would, in addition
and if f is feasible, return a zero of f [6]. The complexity of this extension was studied
in terms of a condition number (denoted %(f) in [6]) which, essentially, coincides with our
κ(f).

Proposition 2.2. For all f ∈ Hd, κ(f) ≥ 1.

Proof. Let x ∈ Sn. Because of orthogonal invariance, we may assume without loss of
generality that x = e0 := (1, 0, . . . , 0).

It is then immediate that ‖f(x)‖∞ ≤ ‖f‖. This shows that the second expression in the
definition of κ is at least 1.

For the first expression, i.e., µnorm(f, x), define g = (g1, . . . , gn) ∈ Hd by gi(X) = fi(X)−
fi(e0)Xdi

0 . Then g(e0) = 0 and [2, Corollary 3 p. 234], µnorm(g, e0) ≥ 1 (this is shown for
the version of µnorm with the 2-norm for ‖f‖, which is bounded above by the expression (1)).
Since Df(e0) = Dg(e0) and ‖g‖ ≤ ‖f‖, we can conclude µnorm(f, e0) ≥ µnorm(g, e0) ≥ 1.

3 The exclusion Lemma

In this article, d(,) denotes the Riemannian (angular) distance in Sn (which satisfies
0 ≤ d(x, y) ≤ π, ∀x, y ∈ Sn) and for x ∈ Sn, r > 0, we set B(x, r) := {y ∈ Sn : d(y, x) < r}
and B(x, r) := {y ∈ Sn : d(y, x) ≤ r}.

The following result can be used to support an exclusion test.

Lemma 3.1. Let f ∈ Hd and let x, y ∈ Sn such that d(x, y) ≤ √
2. Then,

‖f(x)− f(y)‖∞ ≤ ‖f‖
√

D d(x, y)

In particular, if f(x) 6= 0, there is no zero of f in B(x, min{‖f(x)‖∞/(‖f‖√D),
√

2}).

5

Proof. An immediate consequence of the definition of the O(n + 1)-invariant inner
product is that Hd endowed with this inner product is a reproducing kernel Hilbert space [9,
Prop. 2.21]. This implies that, for all g ∈ Hd and x ∈ Rn+1,

g(x) = 〈g(X), (xT X)deg g〉. (3)

Because of orthogonal invariance, we can assume that x = e0 and y = e0 cos θ + e1 sin θ,
where θ = d(x, y). Equation (3) implies that

fi(x)− fi(y) = 〈fi(X), (xT X)di〉 − 〈fi(X), (yT X)di〉 = 〈fi(X), (xT X)di − (yT X)di〉
= 〈fi(X), Xdi

0 − (X0 cos θ + X1 sin θ)di〉.
Hence, Cauchy-Schwarz-Bunyakowsky implies:

|fi(x)− fi(y)| ≤ ‖fi‖ ‖Xdi
0 − (X0 cos θ + X1 sin θ)di‖.

Since

Xdi
0 − (X0 cos θ + X1 sin θ)di = Xdi

0 (1− (cos θ)di) +
di∑

k=1

(
di

k

)
(cos θ)di−k(sin θ)kXdi−k

0 Xk
1 ,

we have:

‖Xdi
0 − (X0 cos θ + X1 sin θ)di‖2 = (1− (cos θ)di)2 +

di∑

k=1

(
di

k

)
(cos θ)2(di−k)(sin θ)2k

= (1− (cos θ)di)2 + 1− (cos θ)2di

= 2(1− (cos θ)di)

≤ 2(1− (1− θ2

2
)di) (4)

≤ 2(1− (1− di
θ2

2
)) (5)

≤ diθ
2,

where the inequality in line (4) is obtained from Taylor expanding cos θ around 0, and the
inequality in line (5) is due to the fact that (1− a)d ≥ 1− da for a ≤ 1.
We conclude that

|fi(x)− fi(y)| ≤ ‖fi‖ θ
√

di

and hence
‖f(x)− f(y)‖∞ ≤ ‖f‖ θ

√
max

i
di.

For the second assertion, we have

‖f(y)‖∞ ≥ ‖f(x)‖∞ − ‖f(x)− f(y)‖∞
≥ ‖f(x)‖∞ − ‖f‖

√
D d(x, y) since d(x, y) ≤

√
2

> ‖f(x)‖∞ − ‖f‖
√

D ‖f(x)‖∞/(‖f‖
√

D) = 0.

6

4 The proximity Theorem

4.1 Newton and Smale

Newton iteration on the sphere Sn is defined by

Nf : Sn → Sn

x 7→ Nf (x) = expx

(
−Df(x)−1

|TxSnf(x)
)

where expx is the exponential map at x,

expx h = cos(‖h‖)x +
sin(‖h‖)
‖h‖ h.

Furthermore, the standard invariants of α-theory, introduced by Smale in [24], can be
defined as:

β(f, x) =
∥∥∥Df(x)−1

|TxSnf(x)
∥∥∥ ,

γ(f, x) = sup
k≥2

∥∥∥∥∥
Df(x)−1

|TxSnDkf(x)|(TxSn)k

k!

∥∥∥∥∥

1/(k−1)

,

α(f, x) = β(f, x)γ(f, x).

Remark 4.1.

(i) It is easy to see that β(f, x) = d(x,Nf (x)).

(ii) We will not use Newton’s method in our algorithm. We are instead interested in its
alpha theory which guarantees existence of zeros near points x with α(f, x) small
enough.

(iii) The Newton iteration presented above is not the iteration known as ‘projective New-
ton’. There is an alpha theory for that method, available in [19].

Here we use slight modifications of the quantities α, β and γ, more adapted to our
purposes. We set

β(f, x) := µnorm(f, x)
‖f(x)‖∞
‖f‖

γ(f, x) :=
D3/2

2
µnorm(f, x)

α(f, x) := β(f, x)γ(f, x).

The definition of γ is motivated by the estimate of γ [2, Theorem 2 p. 267].

γ(f, x) ≤ γ(f, x).

which yields the lower bound

κ(f) ≥ max
ζ|f(ξ)=0

2D−3/2γ(f, ζ). (6)

7

We also observe that γ(f, x) ≥ D3/2

2 since µnorm(f, x) ≥ 1 and that β(f, x) ≤ β(f, x)
since

β(f, x) =
∥∥∥Df(x)−1

|TxSnf(x)
∥∥∥ ≤ √

n‖f(x)‖∞
∥∥∥Df(x)−1

|TxSn

∥∥∥ ≤ µnorm(f, x)
‖f(x)‖∞
‖f‖ = β(f, x).

Therefore α(f, x) ≤ α(f, x).

4.2 Proximity and unicity from data at a point

Definition 4.2. We say that x ∈ Sn is an approximate zero for f if and only if the Newton
sequence {xk}k∈N, where x0 := x and xk+1 := Nf (xk), is defined for all k and moreover

d(xk, xk+1) ≤
(

1
2

)2k−1

d(x0, x1).

The limit point ζ = limk→∞ xk is a fixed point for Newton iteration and a zero of f . It is
called the associated zero to x.

In what follows we denote σ :=
∑

k≥0 2−2k+1 = 1.632843018 . . . and we set

Bf (x) := {y ∈ Sn | d(x, y) ≤ σβ(f, x)}.

The main technical tool in our algorithm is provided by the following result.

Theorem 4.3. There exists an universal constant α∗ := 0.0384629388 . . . such that for all
x ∈ Sn, if α(f, x) < α∗, then

(i) x is an approximate zero of f .

(ii) If ζ denotes its associated zero then ζ ∈ Bf (x).

(iii) Furthermore, for each point z in Bf (x) the Newton sequence starting at z converges
to ζ.

4.3 Background material

Theorem 4.3 is a consequence of the following two results, which are restatements of results
proved in [10]. While [10] deals with Newton iteration on arbitrary complete real analytic
Riemannian manifolds, here we reword them in terms of Newton iteration on the unit
sphere Sn (Example 1 in [10]). The γ-Theorem for mappings [10, Theorem 1.3] becomes
the following.

Theorem 4.4. Let f : Sn → Rn be analytic. Suppose that f(ζ) = 0 and Df(ζ) is an
isomorphism. Let

R(f, ζ) := min

{
π,

3−√7
2γ(f, ζ)

}
.

If d(x, ζ) ≤ R(f, ζ), then the Newton sequence xk = Nk
f (x) is defined for all k ≥ 0 and

d(xk, ζ) ≤ (
1
2

)2k−1
d(x, ζ). In particular, {xk} converges to ζ.

8

Now let α0 := 0.130716944 . . . denote the smallest positive root of the polynomial ψ(u)2−
2u, and

s0 :=
1

σ + (1−σα0)2

ψ(σα0)

(
1 + σ

1−σα0

) = 0.103621842 . . .

We state the α-Theorem for mappings [10, Theorem 1.4] for the sphere Sn.

Theorem 4.5. Let f : Sn → Rn be analytic. Let x ∈ Sn be such that β(f, x) ≤ s0π and
α(f, x) ≤ α0. Then the Newton sequence xk = Nk

f (x) is defined for all k ≥ 0 and converges
to a zero ζ of f . Moreover,

d(xk, xk+1) ≤
(

1
2

)2k−1

β(f, x)

and
d(xk, ζ) ≤ σβ(f, x).

Finally we introduce ψ(u) := 1−4u+2u2, which is positive and decreasing for 0 < u < 1−
√

2
2 ,

and state [10, Lemma 4.3]:

Lemma 4.6. Let x, y ∈ Sn with d(x, y) < π. Suppose that Df(x) is nonsingular and

ν := d(x, y)γ(f, x) < 1−
√

2
2

.

Then

γ(f, y) ≤ γ(f, x)
(1− ν)ψ(ν)

.

4.4 Proof of Theorem 4.3

Set ν∗ := 0.0628039411 . . . for the only real root of the polynomial

Ψ(u) := (3−
√

7)(1− u)ψ(u)− 4u,

and α∗ := ν∗
σ = 0.0384629388 Note that α∗ ≤ min{α0, s0π}.

Since γ(f, x) ≥ D3/2

2 , the hypothesis of Theorem 4.5 hold from α(f, x) ≤ α(f, x) < α∗ ≤
α0 and β(f, x) ≤ β(f, x) ≤ 2α(f,x)

D3/2 < 2α∗
D3/2 < s0π.

Using Remark 4.1(i) it follows that x is an approximate zero of f , and that the associated
zero ζ satisfies:

d(x, ζ) ≤ σβ(f, x) ≤ σβ(f, x).

This already proves Parts (i) and (ii) of Theorem 4.3.
We show (iii). Since d(x, ζ) ≤ σβ(f, x) < σs0π < π,

ν = d(x, ζ)γ(f, x) ≤ σβ(f, x)γ(f, x) ≤ σα(f, x) ≤ σα∗ = ν∗ < 1−
√

2
2

,

and we can apply Lemma 4.6. Therefore

4σβ(f, x)γ(f, ζ) ≤ 4σβ(f, x)γ(f, x)
1

(1− ν)ψ(ν)
≤ 4ν∗

1
(1− ν∗)ψ(ν∗)

= 3−
√

7,

9

because (1−u)ψ(u) decreases for 0 < u < 1−
√

2
2 , and ν∗ is a zero of (3−√7)(1−u)ψ(u)−4u.

This shows, since 2σβ(f, x) ≤ π, that

2σβ(f, x) ≤ R(f, ζ) = min

{
π,

3−√7
2γ(f, ζ)

}
.

We conclude applying Theorem 4.4 to z ∈ Bf (x), since

d(z, ζ) ≤ d(z, x) + d(x, ζ) ≤ 2σβ(f, x) ≤ R(f, ζ).

It follows that the Newton sequence {zk}k∈N starting at z converges to ζ.

Remark 4.7. The hypothesis on the radius of injectivity in [10] was recently found to be
redundant.

5 Infinite precision

5.1 Grids and Graphs

Our algorithm works on a grid on Sn. We easily construct one by projecting onto Sn a
grid on the cube Cn = {y | ‖y‖∞ = 1}. We make use of the (easy to compute) bijections
φ : Cn → Sn and φ−1 : Sn → Cn given by φ(y) = y

‖y‖ and φ−1(x) = x
‖x‖∞ .

Given η := 2−k for some k ≥ 1, we consider the uniform grid Uη of mesh η on Cn. This is
the set of points in Cn whose coordinates are of the form i2−k for i ∈ {−2k,−2k +1, . . . , 2k},
with at least one coordinate equal to 1 or −1. We denote by Gη its image by φ in Sn. Note
that, for y1, y2 ∈ Cn,

d(φ(y1), φ(y2)) ≤ π

2
‖y1 − y2‖2 ≤ π

2
√

n + 1 ‖y1 − y2‖∞. (7)

Given η as above we associate to it a graph Gη as follows. We set A(f) := {x ∈ Sn |
α(f, x) < α∗}. The vertices of the graph are the points in Gη ∩A(f). Two vertices x, y ∈ Gη

are joined by an edge if and only if Bf (x) ∩Bf (y) 6= ∅.
Note that as a simple consequence of Theorem 4.3 we obtain the following lemma.

Lemma 5.1.

(i) For each x ∈ A(f) there exists ζx ∈ Z(f) such that ζx ∈ Bf (x). Moreover for each point
z in Bf (x), the Newton sequence starting at z converges to ζx.

(ii) Let x, y ∈ A(f). Then ζx = ζy ⇐⇒ Bf (x) ∩Bf (y) 6= ∅.

We define Z(Gη) :=
⋃

x∈Gη
Bf (x) ⊂ Sn where x ∈ Gη has to be understood as x running

over all the vertices of Gη. Similarly, for a connected component U of Gη, we define

Z(U) :=
⋃

x∈U

Bf (x).

Lemma 5.2.

(i) For each component U of Gη, there is a unique zero ζU ∈ Z(f) such that ζU ∈ Z(U).
Moreover, ζU ∈ ∩x∈UBf (x).

10

(ii) If U and V are different components of Gη, then ζU 6= ζV .

Proof. (i) Let x ∈ U . Since x ∈ A(f), by Lemma 5.1 (i) there exists a zero ζx of f
in Bf (x) ⊆ Z(U). This shows the existence. For the second assertion and the uniqueness,
assume that there exist ζ and ξ zeros of f in Z(U). Let x, y ∈ U be such that ζ ∈ Bf (x),
and ξ ∈ Bf (y). Since U is connected, there exist x0 = x, x1, . . . , xk−1, xk := y in A(f) such
that (xi, xi+1) is an edge of Gη for i = 0, . . . , k−1, that is, Bf (xi)∩Bf (xi+1) 6= ∅. If ζi and
ζi+1 are the associated zeros of xi and xi+1 in Z(f) respectively, then by Lemma 5.1(ii) we
have ζi = ζi+1, and thus ζ = ξ ∈ Bf (x) ∩Bf (y).
(ii) Assume ζU = ζV ∈ Bf (x) ∩Bf (y) ⊂ Z(U) ∩ Z(V), then x and y are joined by an edge
and belong to the same connected component.

5.2 The infinite precision algorithm

Count Roots 1(f)

let η := 2
√

2
π
√

n+1

(1) let U1, . . . , Ur be the connected components of Gη

if
(i) for 1 ≤ i < j ≤ r

for all xi ∈ Ui and all xj ∈ Uj , d(xi, xj) > πη
√

n + 1
and

(ii) for all x ∈ Gη \A(f), ‖f(x)‖∞ > π
2
η
p

(n + 1)D‖f‖
then HALT and return r/2
else η := η/2

go to (1)

5.3 Proof of Theorem 1.1(1–3)

Proof of Part (1) This proof requires some arguments of convexity. We can natu-
rally define spherical convex hulls for sets of points in Hn, an open half-sphere in Sn. If
x1, . . . , xq ∈ Hn we define

SCH(x1, . . . , xq) := Cone(x1, . . . , xq) ∩ Sn

where Cone(x1, . . . , xq) is the smallest convex cone with vertex at the origin and containing
the points x1, . . . , xq. Alternatively, we have,

SCH(x1, . . . , xq) =
{

λ1x1 + · · ·+ λqxq

‖λ1x1 + · · ·+ λqxq‖ | λ1, . . . , λq ≥ 0,
∑

λi = 1
}

.

We will use the following fact.

Lemma 5.3. Let x1, ..., xq ∈ Hn ⊂ Rn+1. If
⋂q

i=1 B(xi, ri) 6= ∅, then SCH(x1, . . . , xq) ⊂⋃q
i=1 B(xi, ri).

Proof. Let x ∈ SCH(x1, . . . , xq) and y ∈ ⋂q
i=1 B(xi, ri). We will prove that x ∈ B(xi, ri)

for some i.
If x = y, this is obvious.
If x 6= y, let H be the half-space

H :=
{
z ∈ Rn+1 : 〈z, y − x〉 < 0

}
.

11

Since ‖x‖ = ‖y‖ = 1, we have 〈x + y, y − x〉 = 0, and we note that in this case, x + y
determines the mid-line between x and y. Moreover, since x 6= y, we have x ∈ H since
〈x, y − x〉 = 〈x, y〉 − ‖x‖2 < ‖x‖ ‖y‖ − ‖x‖2 = 0. Therefore the half-space H is the set of
points z in Rn+1 such that the Euclidean distance ‖z − x‖ < ‖z − y‖.

On the other hand, H must contain at least one point of the set {x1, ..., xq} since if
this were not the case, the convex set Cone(CH(x1, . . . , xq)) would be contained in {z :
〈z, y − x〉 ≥ 0}, contradicting x ∈ SCH(x1, . . . , xq). Let, therefore, xi ∈ H. It follows that

‖x− xi‖ < ‖y − xi‖

which implies
d(x, xi) < d(y, xi) ≤ ri.

We can now proceed. Assume the algorithm halts, we want to show that if r equals
the number of connected components of Gη, then #R(f) = #Z(f)/2 = r/2. We already
know by Lemma 5.2 that each connected component U of Gη determines uniquely a zero
ζU ∈ Z(f). Thus it is enough to prove that Z(f) ⊂ Z(Gη).
Assume that there is a zero ζ of f in Sn such that ζ is not in Z(Gη). Let B∞(φ−1(ζ), η) :=
{y ∈ Uη | ‖y − φ−1(ζ)‖∞ ≤ η} = {y1, . . . , yq}, the set of all neighbors of φ−1(ζ) in Uη, and
let xi = φ(yi), i = 1, . . . , q. Clearly, φ−1(ζ) is in the cone spanned by {y1, . . . , yq} and hence
ζ ∈ SCH(x1, . . . , xq).

We claim that there exists j ≤ q such that xj 6∈ A(f). Indeed, assume this is not the
case. We consider two cases.
(a) All the xi belong to the same connected component U of Gη. By Lemma 5.2 there
exists a unique zero ζU ∈ Sn of f in Z(U) and ζU ∈ ∩iBf (xi). We may apply Lemma 5.3
to deduce that

SCH(x1, . . . , xq) ⊆
⋃

Bf (xi).

It follows that, for some i ∈ {1, . . . , q}, ζ ∈ Bf (xi) ⊆ Z(U), contradicting that ζ 6∈ Z(Gη).
(b) There exist ` 6= s and 1 ≤ i < j ≤ r such that x` ∈ Ui and xs ∈ Uj . Since condition
(i) in the algorithm is satisfied, d(x`, xs) > πη

√
n + 1. But, by (7),

d(x`, xs) ≤ π

2
√

n + 1‖y`−ys‖∞ ≤ π

2
√

n + 1
(‖y` − φ−1(ζ)‖∞ + ‖φ−1(ζ)− ys‖∞

) ≤ πη
√

n + 1,

a contradiction.
We have thus proved the claim. Let then 1 ≤ j ≤ q be such that xj 6∈ A(f). Since

condition (ii) in the algorithm is satisfied ‖f(xj)‖∞ > π
2 η

√
(n + 1)D‖f‖. It follows from

the inequality d(xj , ζ) ≤ π
2

√
n + 1η and Lemma 3.1 that ‖f(ζ)‖∞ > 0, a contradiction.

Proof of Part (2) We need a few lemmas.

Lemma 5.4. If ζ1 6= ζ2 ∈ Z(f) then

d(ζ1, ζ2) ≥ 2(3−√7)D−3/2

κ(f)
.

12

Proof. For i = 1, 2, using (6) and Proposition 2.2,

R(f, ζi) = min

{
π,

3−√7
2γ(f, ζi)

}
≥ min

{
π,

(3−√7)D−3/2

κ(f)

}
=

(3−√7)D−3/2

κ(f)
.

Now suppose that d(ζ1, ζ2) < R(f, ζ1) + R(f, ζ2) and choose x ∈ Sn such that d(x, ζ1) <
R(f, ζ1) and d(x, ζ2) < R(f, ζ2). Then Theorem 4.4 implies that ζ1 = ζ2, a contradiction.

Lemma 5.5. Let x1, x2 ∈ Gη with associated zeros ζ1 6= ζ2. If η ≤ 2(3−√7)D−3/2

3πκ(f)
√

n+1
then

d(x1, x2) > πη
√

n + 1.

Proof. Assume d(x1, x2) ≤ πη
√

n + 1. Since x2 6∈ Bf (x1), d(x1, x2) > σβ(f, x1).
Consequently,

d(x1, ζ1) ≤ σβ(f, x1) < d(x1, x2) ≤ πη
√

n + 1

and, similarly, d(x2, ζ2) < πη
√

n + 1. But then,

d(ζ1, ζ2) ≤ d(ζ1, x1) + d(x1, x2) + d(x2, ζ2) < 3πη
√

n + 1 ≤ 2(3−√7)D−3/2

κ(f)

contradicting Lemma 5.4.

Lemma 5.6. Let x ∈ Sn such that x 6∈ A(f). If η ≤ α∗
(n+1)D2κ(f)2 then ‖f(x)‖∞ >

π
2 η

√
(n + 1)D‖f‖.

Proof. Since x 6∈ A(f) we have α(f, x) ≥ α∗. We divide the proof in two cases.

Case I. min
{

µnorm(f, x), ‖f‖
‖f(x)‖∞

}
= ‖f‖

‖f(x)‖∞

In this case

η ≤ α∗
(n + 1)D2κ(f)2

≤ α∗‖f(x)‖2∞
(n + 1)D2‖f‖2

which implies, since η ≤ 1
2 < 4D

π2α∗
,

‖f(x)‖∞ ≥
√

η
√

n + 1D‖f‖√
α∗

>
π

2
η
√

(n + 1)D‖f‖.

Case II. min
{

µnorm(f, x), ‖f‖
‖f(x)‖∞

}
= µnorm(f, x)

In this case
η ≤ α∗

(n + 1)D2κ(f)2
≤ α∗

(n + 1)D2µnorm(f, x)2

which implies α∗ ≥ η(n + 1)D2µnorm(f, x)2. Also,

α∗ ≤ α(f, x) =
1
2
β(f, x)µnorm(f, x)D3/2 ≤ 1

2‖f‖µnorm(f, x)2D3/2‖f(x)‖∞.

13

Putting both inequalities together we obtain

η(n + 1)D2µnorm(f, x)2 ≤ 1
2‖f‖µnorm(f, x)2D3/2‖f(x)‖∞

or yet,
‖f(x)‖∞ ≥ 2η(n + 1)D1/2‖f‖ >

π

2
η
√

(n + 1)D‖f‖.

We can now conclude the proof of Part (2). Assume η ≤ α∗
(n+1)D2κ(f)2 . Then the

hypotheses of Lemmas 5.5 and 5.6 hold. The first of these lemmas ensures that condition (i)
in the algorithm is satisfied. The second, that condition (ii) is so. Therefore, the algorithm
halts as soon as α∗

2(n+1)D2κ(f)2 < η ≤ α∗
(n+1)D2κ(f)2 . This gives a bound of O(ln(nDκ(f)))

for the number of iterations. Since the number of grid points considered at this iteration
(η = α∗

(n+1)D2κ(f)2) is at most 2(n+1)
(

2(n+1)D2κ(f)2

α∗

)n

, the bound for the total complexity
follows.

Proof of Parts (3) and (5) We have already seen that the number of iterations is
bounded by O(ln(nDκ(f))). At each of these iterations, we need to perform a number of

computations on the (at most) 2(n+1)
(

2(n+1)D2κ(f)2

α∗

)n

grid points to decide whether they
are in A(f). These can be done independently. Then, we need to compute the number of
connected components of Gη. This can be done (see, e.g., [15]) in parallel time O(ln(|Vη|))2
where |Vη| denotes the number of vertices of Gη and therefore, in parallel time at most
O(n2(ln(nDκ(f))2 + ln(α∗)2)). Since this is the dominant step in the computation at a
given iteration, it follows that the total parallel time consumed by the algorithm is at most
O(n2 ln(nDκ(f))(ln(nDκ(f))2 + ln(α∗)2)). This shows part (3). For part (5), just note
that, for i = 1, . . . , r, any vertex xi of Ui is an approximate zero of the only zero of f in
Z(Ui).

6 Finite Precision

6.1 Making room to allow errors

Our finite precision algorithm will be a variation of Algorithm Count Roots 1. But since
finite precision computations will be affected by errors, we need to make room in the infinite
precision algorithm to allow them. For this aim, we state the corresponding version of
Theorem 4.3.

Theorem 6.1. There exist a universal constant α• = 0.028268 · · · such that, for all x ∈ Sn,
if α(f, x) < α•, then

(i) x is an approximate zero of f .

(ii) If ζ denotes its associated zero then ζ ∈ Bf (x).

(iii) Furthermore, for each point z s.t. d(x, z) ≤ 2σβ(f, x) the Newton sequence starting at
z converges to ζ.

14

Proof. Parts (i) and (ii) follow from Theorem 4.3 and the fact that α• < α∗. Part (iii)
is proved by taking ν• = 0.046158 · · · to be the only real root of the polynomial Ψ(u) :=
(3 − √7)(1 − u)ψ(u) − 6u, and α• = ν•

σ = 0.028268. Then, one proves as in Theorem 4.3
that 3σβ(f, x) ≤ R(f, ζ) from which it follows that, for all z s.t. d(x, z) ≤ 2σβ(f, x),

d(z, ζ) ≤ d(z, x) + d(x, ζ) ≤ 3σβ(f, x) ≤ R(f, ζ)

and hence, that the Newton sequence {zk}k∈N starting at z converges to ζ.

The proofs of Lemmas 5.5 and 5.6 yield, mutatis mutandis, the following results.

Lemma 6.2. Let x1, x2 ∈ Gη with associated zeros ξ1 and ξ2, ξ1 6= ξ2. If η ≤ (3−√7)D−3/2

3πκ(f)
√

n+1

then d(x1, x2) > 2πη
√

n + 1.

Lemma 6.3. Let x ∈ Sn such that α(f, x) > α•
3 . If η ≤ α•

4D2(n+1)κ(f)2 then ‖f(x)‖∞ >

πη
√

(n + 1)D‖f‖.

6.2 Basic facts

We recall the basics of a floating-point arithmetic which idealizes the usual IEEE standard
arithmetic. This system is defined by a set F ⊂ R containing 0 (the floating-point numbers),
a transformation r : R→ F (the rounding map), and a constant u ∈ R (the round-off unit)
satisfying 0 < u < 1. The properties we require for such a system are the following:

(i) For any x ∈ F, r(x) = x. In particular, r(0) = 0.

(ii) For any x ∈ R, r(x) = x(1 + δ) with |δ| ≤ u.

We also define on F arithmetic operations following the classical scheme

x◦̃y = r(x ◦ y)

for any x, y ∈ F and ◦ ∈ {+,−,×, /}, so that

◦̃ : F× F→ F.

The following is an immediate consequence of property (ii) above.

Proposition 6.4. For any x, y ∈ F we have

x◦̃y = (x ◦ y)(1 + δ), |δ| ≤ u.

When combining many operations in floating-point arithmetic, quantities such as∏n
i=1(1 + δi)ρi naturally appear. Our round-off analysis uses the notations and ideas in

Chapter 3 of [17], from where we quote the following results:

Proposition 6.5. If |δi| ≤ u, ρi ∈ {−1, 1}, and nu < 1, then

n∏

i=1

(1 + δi)ρi = 1 + θn,

where
|θn| ≤ γn =

nu

1− nu
.

15

Proposition 6.6. For any positive integer k such that ku < 1, let θk, θj be any quantities
satisfying

|θk| ≤ γk =
ku

1− ku
|θj | ≤ γj =

ju

1− ju
.

The following relations hold.

1. (1 + θk)(1 + θj) = 1 + θk+j for some |θk+j | ≤ γk+j.

2.
1 + θk

1 + θj
=

{
1 + θk+j if j ≤ k,
1 + θk+2j if j > k.

for some |θk+j | ≤ γk+j or some |θk+2j | ≤ γk+2j.

3. If ku, ju ≤ 1/2, then γkγj ≤ γmin{k,j}.

4. iγk ≤ γik.

5. γk + u ≤ γk+1.

6. γk + γj + γkγj ≤ γk+j.

From now on, whenever we write an expression containing θk we mean that the same
expression is true for some θk, with |θk| ≤ γk.

When computing an arithmetic expression q with a round-off algorithm, errors will
accumulate and we will obtain another quantity which we will denote by fl(q). We write
Error (q) = |q − fl(q)|.

An example of round-off analysis which will be useful in what follows is given in the next
proposition, the proof of which can be found in Section 3.1 of [17].

Proposition 6.7. There is a round-off algorithm which, with input x, y ∈ Rn, computes
the dot product of x and y. The computed value fl(〈x, y〉) satisfies

fl(〈x, y〉) = 〈x, y〉+ θdlog2 ne+1〈|x|, |y|〉,

where |x| = (|x1|, . . . , |xn|). In particular, if x = y, the algorithm computes fl(‖x‖2)
satisfying

fl(‖x‖2) = ‖x‖2(1 + θdlog2 ne+1).

We will also have to deal with square roots and arccosinus. The following result will
help us to do so.

Lemma 6.8. (i) Let θ ∈ R such that |θ| ≤ 1/2. Then,
√

1− θ = 1− θ′ with |θ′| ≤ |θ|.
(ii) Let 0 < a ≤ 1 and ε ∈ R such that 0 < a + ε < 1. Then, arccos(a + ε) = arccos(a) +

υ 1√
1−(a+ε)2

with |υ| ≤ |ε|.

Proof. Assume θ > 0 (if θ < 0 it is done similarly). By the intermediate value theorem
we have that 1−√1− θ = θ(

√
ξ)′ with ξ ∈ (1− θ, 1). But

(
√

ξ)′ =
1

2
√

ξ
≤ 1√

2
,

16

the last since ξ ≥ 1/2. This proves (i).
Part (ii) is shown similarly. Again, assume for simplicity that ε > 0. Then, for some

ξ ∈ (a, a + ε),

arccos(a + ε)− arccos(a) = ε arccos′(ξ) = ε
1√

1− ξ2
=

υ√
1− (a + ε)2

.

We assume that, besides the four basic arithmetic operations, we are allowed to compute
square roots and arccosinus with finite precision. That is, if op denotes any of these two
operators, we compute õp such that

õp(x) = op(x)(1 + δ), |δ| ≤ u.

From Lemma 6.8(i) it follows that, for all a > 0,

˜√
a(1 + θk) =

√
a(1 + θk+1).

Remark 6.9. Our choice of the precision u in Theorem 1.1(4) guarantees that ku < 1/2
holds whenever we encounter θk in what follows, and consequently, |θk| ≤ γk ≤ 2ku. This
implies that in all what follows we have γg = O(ug) for all the expressions g we will
encounter.

According to the previous remark we will introduce a further notation that will consid-
erably simplify our exposition. For all expression g, we will write

[[g]] := O(ug).

This notation will avoid we burden ourselves with the consideration of multiplicative con-
stants.

6.3 The finite precision algorithm

Our finite precision algorithm is a variation of Algorithm Count Roots 1 in Section 5.3.
Given x ∈ Sn we define below fl(A′(f)) and fl(B

′
f (x)), which are convenient floating

versions of the sets A′(f) =
{
x ∈ Sn | α(f, x) < 1

2α•
}

and B
′
f (y) = {z ∈ Sn | d(x, y) ≤

3
2σβ(f, x)} respectively.

Given f ∈ Hd and x ∈ Sn, we let M ∈ Rn×n be a matrix representing



1√
d1

1√
d2

. . .
1√
dn




Df(x)|TxSn .

and we set σmin(M) = ‖M−1‖−1. Therefore

µnorm(f, x) = ‖f‖√n ‖M−1‖ = ‖f‖√nσmin(M)−1,

β(f, x) = µnorm(f, x)
‖f(x)‖∞
‖f‖ =

√
nσmin(M)−1‖f(x)‖∞,

α(f, x) = β(f, x)µnorm(f, x)
D3/2

2
= ‖f‖nσmin(M)−2‖f(x)‖∞D3/2

2
.

17

This implies that

y ∈ B
′
f (x) ⇐⇒ d(x, y) ≤ 3

2σβ(f, x) ⇐⇒ σmin(M)d(x, y) ≤ 3
2σ
√

n‖f(x)‖∞,

x ∈ A′(f) ⇐⇒ α(f, x) < α•
2 ⇐⇒ ‖f‖n‖f(x)‖∞D3/2 < α•σmin(M)2.

These statements are equivalent under infinite precision, but the expressions at the right-
hand side are more convenient to handle when working with finite precision. This motivates
our definitions of

fl(B
′
f (x)) :=

{
y ∈ Sn | fl(σmin(M)d(x, y)) ≤ fl(

3
2
σ
√

n‖f(x)‖∞)
}

fl(A′(f)) :=
{

x ∈ Sn | fl(‖f‖n ‖f(x)‖∞D3/2) < fl(α•σmin(M)2)
}

We also define accordingly the graph fl(G′η) whose vertices are the points in Gη ∩
fl(A′(f)), and with two vertices x, y joined by an edge if and only if fl(B

′
f (x))∩fl(B′

f (x)) 6=
∅. Its connected components are denoted by fl(U).

Our algorithm is the following:

Count Roots 2(f)

let η := 2
√

2
π
√

n+1

(1) let fl(U1), . . . , fl(Ur) be the connected components of fl(Gη)
if

(i) for 1 ≤ i < j ≤ r
for all xi ∈ fl(Ui) and all xj ∈ fl(Uj), fl(d(xi, xj)) > fl(3

2
πη
√

n + 1)
and

(ii) for all x ∈ Gη \ fl(A′(f)), fl(‖f(x)‖∞) > fl(
√

2
2

πη
p

(n + 1)D‖f‖)
then HALT and return r/2
else η := η/2

go to (1)

In the rest of the section we will see that, when the precision u satisfies u ≤
1

O(D2n5/2κ(f)3(log S+n3/2D2κ(f)2)) , this algorithm is correct and halts as soon as η ≤
α•

4D2(n+1)κ(f)2 .

6.4 Bounding errors for elementary computations

The goal of this subsection is to exhibit bounds for the accumulated error in the main
computations of Count Roots 2. We will rely on the basic notations and results described
in §6.2.

To simplify notation, and without loss of generality, in all what follows we assume that
‖f‖ = 1. We denote by S(Hd) the sphere of such systems. Also, we do not discuss in what
follows the accumulated error in the computation of φ : Cn → Sn. This is a minor detail
which can be taken care of using Lemma 6.8(i).

Proposition 6.10. Given f ∈ S(Hd) and x ∈ Sn, we can compute ‖f(x)‖∞ with finite
precision u such that

Error (‖f(x)‖∞) = [[D + log S]]

where S is a bound on the number of coefficients of each fi.

18

Proof. Let f = (f1, . . . , fn). For i ≤ n write fi =
∑

cJXJ and let S be the number
of coefficients of fi. To compute f(x) one computes each monomial cJxJ with fl(cJxJ) =
cJxJ(1 + θD). Then, one computes fi(x) to get

fl(fi(x)) = fl(
∑

fl(cJxJ))

= fl(
∑

cJxJ(1 + θ
(J)
D))

=
∑

cJxJ(1 + θ
(J)
D) + θlog S

∑
|cJxJ |(1 + θ

(J)
D)

= fi(x) +
∑

cJxJθ
(J)
D + θlog S

∑
|cJxJ |(1 + θ

(J)
D)

where in the third line we reasoned as in the proof of Proposition 6.7. Therefore

Error (‖f(x)‖∞) ≤
∣∣∣
∑

cJxJθ
(J)
D + θlog S

∑
|cJxJ |(1 + θ

(J)
D)

∣∣∣
≤

∑
|cJ | ‖xJ‖(γD + γlog S + γDγlog S)

≤ γD+log S

where we used that for any x ∈ Sn, |∑ |cJ |xJ | ≤ ‖∑ |cJ |xJ‖ = ‖fi‖ ≤ ‖f‖ = 1 and
Proposition 6.6 (6). The conclusion follows from Remark 6.9.

Proposition 6.11. Given f ∈ S(Hd) and x ∈ Sn, let M ∈ Rn×n be a matrix representing



1√
d1

1√
d2

. . .
1√
dn




Df(x)|TxSn

in some orthonormal basis of TxSn. Then ‖M‖ ≤ √
n. In addition, we can compute such a

matrix M with finite precision u such that

‖Error (M)‖F = [[n(log S + D + log n)]].

Proof. Step 1: Let y = x−en+1
‖x−en+1‖ . The Householder symmetry

Hy = In+1 − 2yyt

swaps vectors en+1 and x, and fixes y⊥. The first n columns of Hy are therefore an orthonor-
mal basis of TxSn, while the last column is x. Let H ∈ R(n+1)×n denote the submatrix
obtained from the first n columns of Hy. With that notation, we set

M =




1√
d1

1√
d2

. . .
1√
dn




Df(x)H.

Step 2: We claim that Pi,x : Hdi → Rn, fi 7→ 1√
di

Dfi(x)|TxSn is an orthogonal projection,
in the sense that for any fixed x, the map (Pi,x)| ker(Pi,x)⊥ is an isometry.

19

We use an orthogonal invariance argument. The special orthogonal group SO(n + 1)
acts on Hdi

and on Rn+1 isometrically as follows: to a given Q ∈ SO(n + 1), we associate
respectively the following isometries:

x 7→ Qx , fi 7→ fi ◦Qt.

We set y = Qx and gi = fi ◦Qt. Differentiating the equality gi(Qx) = fi(x), we obtain:

Dgi(y)Q = Dfi(x).

When x is fixed, we can set Q conveniently so that y = en+1. Therefore

Dgi(en+1)Q|TxSn = Dfi(x)|TxSn .

Since Q(TxSn) = Ten+1S
n we obtain

Dgi(en+1)|Ten+1Sn = Dfi(x)|TxSn .

This means that Pi,en+1(fi ◦Qt) = Pi,x(fi). Thus, in order to prove our claim, it is enough
to show that Pi,en+1 is an orthogonal projection.

Since for g =
∑

J gJXJ , ∂g
∂Xj

(en+1) = g(ej+(d−1)en+1) and since Ten+1S
n = 〈e1, . . . , en〉,

we have that for any gi ∈ Hdi ,

Pi,en+1(gi) =
1√
di

(
gi(e1+(di−1)en+1), . . . , gi(en+(di−1)en+1)

)
.

Hence, for any gi ∈ ker(Pi,en+1)
⊥, i.e. such that giJ = 0 for all J 6= ej + (di − 1)en+1,

1 ≤ j ≤ n, we have

‖gi‖2 =
∑

J

g2
iJ(
di

J

) = ‖Pi,en+1(gi)‖22.

We conclude that Pi,x is an orthogonal projection.
Step 3: From the previous step, for any fi ∈ Hdi , using the orthogonal decomposition
fi = f◦i + f⊥i with f◦i ∈ kerPi,x and f⊥i ∈ kerP⊥i,x, we have

‖Pi,x(fi)‖22 = ‖Pi,x(f⊥i)‖22 = ‖f⊥i ‖2 ≤ ‖fi‖2.

It is now immediate from Step 1 and from the definition of ‖f‖ = maxi ‖fi‖ that the
Frobenius norm ‖M‖F of the matrix M satisfies

‖M‖2F =
n∑

i=1

‖Pi,x(fi)‖22 ≤
n∑

i=1

‖fi‖2 ≤ n‖f‖2 = n

and hence its spectral norm ‖M‖ satisfies ‖M‖ ≤ ‖M‖F ≤ √
n. This bound is independent

of the choice of the basis for the space TxSn.
Step 4: We next present the algorithm to compute M , given f and x. This is a non-
optimal algorithm, and can be significantly improved if more is known on the structure of
the polynomial system f .

We can compute each entry mij of the matrix M as the scalar product of 1√
di

Dfi(x)
and the jth column Hj := (hkj)1≤k≤n+1 of H.

20

Proceeding as in the proof of Proposition 6.10, we can compute 1√
di

∂fi

∂Xk
(x) with

Error

(
1√
di

∂fi

∂Xk
(x)

)
= [[D + log S]].

On the other hand, the vector y = x−en+1
‖x−en+1‖ can be computed using 2n + 4 operations, and

clearly Error (yj) = [[log(n)]] for all j. Hence, for all coefficients hkj of H,

Error (hkj) = [[log(n)]].

Applying Proposition 6.7 we conclude

Error (mij) = [[D + log S + log n]]
∥∥∥∥

1√
di

Dfi(x)
)∥∥∥∥ ‖Hj‖

= [[D + log S + log n]].

The second equality holds because ‖Hj‖ = 1 since H is unitary, and because, as in the proof
of Step 2,
∥∥∥∥

1√
di

Dfi(x)
∥∥∥∥

2

=
∥∥∥∥

1√
di

Dgi(en+1)
∥∥∥∥

2

=
1
di
‖(gi(e1+(di−1)en+1), . . . , gi(dien+1))‖2 ≤ ‖gi‖2 ≤ 1.

This implies
‖Error (M)‖F ≤ [[n(D + log S + log n)]].

Lemma 6.12. Let x ∈ Sn and M be as in Proposition 6.11. We can compute σmin(M) =
‖M−1‖−1 satisfying

Error (σmin(M)) = [[n(log S + D + n3/2)]].

Proof. Let E′ = M − fl(M). By Proposition 6.11,

‖E′‖ ≤ ‖E′‖F ≤ [[n(log S + D + log n)]].

Let M = fl(M). We compute σmin(M) = ‖M−1‖−1 using a backward stable algorithm
(e.g., QR factorization). Then the computed fl(σmin(M)) is the exact σmin(M+ E′′) for a
matrix E′′ with

‖E′′‖ ≤ cn2u‖M‖
for some universal constant c (see, e.g., [11, 17]). Thus,

fl(σmin(M)) = fl(σmin(M)) = σmin(M+ E′′) = σmin(M + E′ + E′′).

Write E = E′ + E′′. Then, using ‖M‖ ≤ √
n,

‖E‖ ≤ ‖E′‖+ ‖E′′‖ ≤ ‖E′‖+ cn2u‖M‖ ≤ ‖E′‖+ cn2u(‖M‖+ ‖E′‖)
= [[n(log S + D + log n)]] + cn2u(

√
n + [[n(log S + D + log n)]])

= [[n(log S + D + log n)]] + cn2u(
√

n + c′un(log S + D + n3/2))
= [[n(log S + D + n3/2)]]

since the hypothesis on u implies c′un(log S + D + n3/2) is bounded by a constant term.
Therefore, fl(σmin(M)) = σmin(M + E) which implies by [11, Corollary 8.3.2]:

Error (σmin(M)) ≤ ‖E‖ < [[n(log S + D + n3/2)]].

21

Proposition 6.13. Let f ∈ S(Hd)). Assume u ≤ K
κ(f)2n2D log S for a small enough constant

and let x ∈ Sn. Then

(i) If x /∈ fl(A′(f)) then α(f, x) ≥ 1
3α•.

(ii) If x ∈ fl(A′(f)) then α(f, x) < α•.

Proof. From Proposition 6.10

fl(n‖f(x)‖∞D3/2) = (‖f(x)‖∞ + [[D + log S]])(nD3/2)(1 + θ4)
≤ nD3/2‖f(x)‖∞ + [[nD3/2(D + log S)]]

. Also, from Lemma 6.12, using that σmin(M) ≤ √
n,

fl(α•σmin(M)2) = α•
(
σmin(M) + [[n(log S + D + n3/2)]]

)2

(1 + θ2)

≥ α•σmin(M)2 − 2α•σmin(M)[[n(log S + D + n3/2)]]
≥ α•σmin(M)2 − [[n3/2(log S + D + n3/2)]].

Therefore,

n‖f(x)‖∞D3/2 + [[nD3/2(D + log S)]] ≥ fl(n‖f(x)‖∞D3/2) ≥ fl(α•σ2
min)

≥ α•σ2
min − [[n3/2(log S + D + n3/2)]]

or yet,

n‖f(x)‖∞D3/2 − α•σ2
min ≥ −([[nD3/2(D + log S)]] + [[n3/2(log S + D + n3/2)]])

≥ −[[n3D5/2 log S]].

Case I. min
{

µnorm(f, x), 1
‖f(x)‖∞

}
= 1

‖f(x)‖∞

In this case κ(f) ≥ 1
‖f(x)‖∞ and, therefore, using the hypothesis on u and the inequality

κ(f) ≥ 1,

[[n3D5/2 log S]] = uO(n3D5/2 log S) ≤ K
O(n3D5/2 log S)
κ(f)n2D log S

≤ KO(1)n‖f(x)‖∞D3/2 ≤ n‖f(x)‖∞D3/2

2

the last by choosing K small enough. Hence, n‖f(x)‖∞D3/2−α•σ2
min ≥ −

(
n‖f(x)‖∞D3/2

2

)
,

which implies 3
2n‖f(x)‖∞D3/2 ≥ α•σmin(M)2, i.e., α(f, x) ≥ α•

3 .

Case II. min
{

µnorm(f, x), 1
‖f(x)‖∞

}
= µnorm(f, x)

In this case κ(f) ≥ µnorm(f, x) =
√

n
σmin(M) . By the hypothesis on u,

[[n3D5/2 log S]] = uO(n3D5/2 log S) ≤ K
O(n3D5/2 log S)
κ(f)2n2D log S

≤ KO(1)σmin(M)2D3/2 ≤ α•σmin(M)2

3

22

the last by choosing K small enough. This implies n‖f(x)‖∞D3/2 − α•σmin(M)2 ≥
−α•σmin(M)2

3 or, equivalently, α(f, x) ≥ α•
3 .

This shows part (i). For part (ii), one shows as above that

n‖f(x)‖∞D3/2 − α•σ2
min ≤ [[n3D5/2 log S]].

Then, one proceeds as well by considering the two cases min
{

µnorm(f, x), 1
‖f(x)‖∞

}
=

1
‖f(x)‖∞ and min

{
µnorm(f, x), 1

‖f(x)‖∞

}
= µnorm(f, x).

Lemma 6.14. Let y1, y2 ∈ Uη and let xi = φ(yi), i = 1, 2. Then d(x1, x2) ≥ η
2
√

n+1
.

Proof. The distance d(x1, x2) is minimized at y1 = (1, . . . , 1, 1) and y2 = (1, . . . , 1, 1−η).
Let N = n + 1. Then

cos(d(x1, x2))2 =
〈y1, y2〉2
‖y1‖2‖y2‖2

=
(N − η)2

N(N − 2η + η2)

= 1− (N − 1)η2

N2 − 2Nη + Nη2

≤ 1− η2 N − 1
N2

.

Hence

d(x1, x2) ≥ arccos

(√
1− η2

N − 1
N2

)
= arcsin

(η

N

√
N − 1

)
≥ η

2
√

N
.

Lemma 6.15. Let u < Kη2

n log n for a small enough constant K. For x1, x2 ∈ Gη we can
compute d(x1, x2) such that

Error (d(x1, x2)) ≤
[[√

n log n

η

]]
.

Proof. Let yi = φ−1(xi), i = 1, 2, and a = cos(d(x1, x2)), i.e.,

a =
〈y1, y2〉
‖y1‖‖y2‖ .

We have, using Proposition 6.7,

fl(〈y1, y2〉) = 〈y1, y2〉+ θlog n‖y1‖‖y2‖
and fl(‖y1‖‖y2‖) = ‖y1‖‖y2‖(1+θlog n). Using now Propositions 6.4, 6.5, and 6.6, it follows
that fl(a) = a + ε with ε = [[log n]].

By choosing K sufficiently small, ε ≤ η2n
12(n+1)2 . Also, from the proof of Lemma 6.14,

a = cos(d(x1, x2)) ≤
√

1− η2n

(n + 1)2

23

and hence, using that
√

z + y ≤ √
z + 3y whenever 0 < z, y ≤ 1, we obtain

a + ε ≤
√

1− η2n

(n + 1)2
+

η2n

12(n + 1)2
≤

√
1− 3η2n

4(n + 1)2
≤

√
1− η2

3(n + 1)
.

Using Lemma 6.8(ii) it follows that,

arccos(a + ε) = arccos(a) + ε

∣∣∣∣∣
1√

1− (a + ε)2

∣∣∣∣∣

= arccos(a) + [[log n]]

∣∣∣∣∣

√
3(n + 1)

η

∣∣∣∣∣ .

Therefore,

Error (d(x1, x2)) ≤
[[√

n log n

η

]]
.

Lemma 6.16. Let f ∈ S(Hd). Assume that η ≥ α•
8D2(n+1)κ(f)2 and u ≤

K
D2n5/2κ(f)3(log S+n3/2D2κ(f)2)

with K small enough, and let x, y ∈ Gη. Then

(i) If y ∈ fl(B
′
f (x)) then d(x, y) ≤ 2σβ(f, x).

(ii) If y /∈ fl(B
′
f (x)) then d(x, y) > σβ(f, x).

Proof. By Lemmas 6.12 and 6.15 (and using σmin(M) ≤ √
n and the bound d(x, y) ≤

π
2 η
√

n + 1 which follows from (7)),

Error (σmin(M)d(x, y)) = O(
d(x, y)Error (σmin(M)) + σmin(M)Error (d(x, y))

)

= η
π

2
√

n + 1[[n(log S + D + n3/2)]] +
√

n

[[√
n log n

η

]]

= η[[n3/2(log S + D + n3/2)]] +
[[

n log n

η

]]

≤ [[n3/2 log S + n3D2κ(f)2]]

the last by the bounds on η. Also, using Proposition 6.10,

Error

(
3
2
σ
√

n‖f(x)‖∞
)
≤ [[

√
n(D + log S)]].

Therefore, for part (i),

σmin(M)d(x, y)− 3
2
σ
√

n‖f(x)‖∞

≤ fl(σmin(M)d(x, y))− fl

(
3
2
σ
√

n‖f(x)‖∞
)

+ [[n3/2 log S + n3D2κ(f)2]] + [[
√

n(D + log S)]]

≤ [[n3/2 log S + n3D2κ(f)2]] + [[
√

n(D + log S)]]

= [[n3/2 log S + n3D2κ(f)2]].

24

Case I. min
{

µnorm(f, x), 1
‖f(x)‖∞

}
= 1

‖f(x)‖∞

In this case κ(f) ≥ 1
‖f(x)‖∞ and, therefore, by the hypothesis on u,

[[n3/2 log S + n3D2κ(f)2]] = O(n3/2 log S + n3D2κ(f)2)
K

κ(f)n(log S + n3/2D2κ(f)2)

≤ σ
√

n

2κ(f)
≤ σ

√
n‖f(x)‖∞

2

the last line by taking K small enough. This implies that σmin(M)d(x, y) ≤ 2σ
√

n‖f(x)‖∞,
i.e., that d(x, y) ≤ 2σβ(f, x).

Case II. min
{

µnorm(f, x), 1
‖f(x)‖∞

}
= µnorm(f, x)

In this case κ(f) ≥ µnorm(f, x) =
√

n
σmin(M) . By the hypothesis on u

[[n3/2 log S + n3D2κ(f)2]] = O(n3/2 log S + n3D2κ(f)2)
K

D2n5/2κ(f)3(log S + n3/2D2κ(f)2)

≤
√

nα•
48D2(n + 1)3/2κ(f)3

≤
√

nη

8
√

n + 1κ(f)
≤
√

nd(x, y)
4κ(f)

≤ σmin(M)d(x, y)
4

by taking K small enough and Lemma 6.14. This implies that 3
4σmin(M)d(x, y) ≤

3
2σ
√

n‖f(x)‖∞, i.e., that d(x, y) ≤ 2σβ(f, x).

This shows part (i). Part (ii) is shown in a similar way.

Lemma 6.17. Let u ≤ Kη2

log n with K small enough and x1, x2 ∈ Gη.

(i) If fl(d(x1, x2)) ≤ fl(3
2πη

√
n + 1) then d(x1, x2) ≤ 2πη

√
n + 1.

(ii) If fl(d(x1, x2)) > fl(3
2πη

√
n + 1) then d(x1, x2) > πη

√
n + 1.

Proof. By Lemma 6.15 and the hypothesis on u, we obtain

Error (d(x1, x2)) =
[[√

n log n

η

]]
≤ O

(√
n log n

η

)
Kη2

log n
≤ π

2
η
√

n + 1,

the last by taking K small enough. Also, Error (3
2πη

√
n + 1) ≤ 3

2πη
√

n + 1 γ3. The
statement easily follows from these two bounds.

Lemma 6.18. Let u ≤ Kη
√

nD

D+log S+η
√

nD
with K small enough, f ∈ S(Hd) and x ∈ Sn.

(i) If fl(‖f(x)‖∞) ≤ fl(
√

2
2 πη

√
(n + 1)D) then ‖f(x)‖∞ ≤ πη

√
(n + 1)D.

(ii) If fl(‖f(x)‖∞) > fl(
√

2
2 πη

√
(n + 1)D) then ‖f(x)‖∞ > π

2 η
√

(n + 1)D.

25

Proof. For part (i), from Proposition 6.10,

‖f(x)‖∞ ≤ fl(‖f(x)‖∞) + [[D + log S]].

Also, √
2

2
πη

√
(n + 1)D ≥ fl(

√
2

2
πη

√
(n + 1)D)− [[η

√
(n + 1)D]].

Therefore,

‖f(x)‖∞ −
√

2
2

πη
√

(n + 1)D ≤ fl(‖f(x)‖∞)− fl(
√

2
2

πη
√

(n + 1)D) + [[D + log S + η
√

(n + 1)D]]

≤ [[D + log S + η
√

(n + 1)D]]

= O(
D + log S + η

√
(n + 1)D

) Kη
√

nD
D + log S + η

√
nD

≤ (1−
√

2
2

)η
√

(n + 1)D,

the last by taking K sufficiently small. It follows that ‖f(x)‖∞ ≤ πη
√

(n + 1)D and hence,
part (i) of the statement.

Part (ii) is proved similarly.

6.5 Proof of Theorem 1.1(4): Correctness

We will show that, if u ≤ 1

O(D2n5/2κ(f)3(log S+n3/2D2κ(f)2)) , and the algorithm halts with

η ≥ α•
8D2(n+1)κ(f)2 , then the value r/2 returned by the algorithm is #R(f). This is a

consequence of the floating following versions of Lemmas 5.1 and 5.2.

Lemma 6.19. Let f ∈ S(Hd), η ≥ α•
8D2(n+1)κ(f)2 and u ≤ 1

O(D2n5/2κ(f)3(log S+n3/2D2κ(f)2)) .

(i) For each x ∈ fl(A′(f)) there exists ζx ∈ Z(f) such that ζx ∈ Bf (x). Moreover for each
point z ∈ fl(B

′
f (x)), the Newton sequence starting at z converges to ζx.

(ii) Let x, y ∈ fl(A′(f)). Then ζx = ζy ⇐⇒ fl(B
′
f (x)) ∩ fl(B

′
f (y)) 6= ∅.

Proof. (i) Applying Proposition 6.13(ii), x ∈ fl(A′(f)) implies that α(f, x) < α•.
Therefore, by Theorem 6.1, there exists ζx ∈ Z(f) such that ζx ∈ Bf (x). Moreover, if
z ∈ fl(B

′
f (x)), by Lemma 6.16(i), d(x, z) ≤ 2σβ(f, x) and the Newton sequence starting at

z converges to ζx.
(ii) If ζx = ζy, then Bf (x) ∩ Bf (y) 6= ∅ which implies by Lemma 6.16(ii) that there exists
z ∈ fl(B

′
f (x)) ∩ fl(B

′
f (y)).

This immediately implies, using that Bf (x) ⊂ fl(B
′
f (x)) by Lemma 6.16(ii), the follow-

ing corresponding floating version of Lemma 5.2.

Lemma 6.20. Let f ∈ S(Hd), η ≥ α•
8D2(n+1)κ(f)2 and u ≤ 1

O(D2n5/2κ(f)3(log S+n3/2D2κ(f)2)) .

(i) For each component fl(U) of fl(G′η), there is a unique zero ζU ∈ Z(f) such that
ζU ∈ Z(fl(U)). Moreover ζU ∈ ∩x∈fl(U)Bf (x).

26

(ii) If fl(U) and fl(V) are different components of fl(G′η), then ζU 6= ζV .

In order to show the correctness of Count Roots 2, we only need to prove that Z(f) ⊂
Z(fl(G′η)). This easily follows adapting the proof of Part (1) in Section 5.3 to this situation,
making use of Lemma 6.20 and the facts that Condition (i), fl(d(xi, xj)) > fl(3

2πη
√

n + 1),
implies that d(xi, xj) > πη

√
n + 1 (Lemma 6.17(ii)) and Condition (ii), fl(‖f(x)‖∞) >

fl(
√

2
2 πη

√
(n + 1)D), implies that ‖f(x)‖∞ > π

2 η
√

(n + 1)D (Lemma 6.18(ii)).

6.6 Proof of Theorem 1.1(4): Complexity

We want to show that if η ≤ α•
4D2(n+1)κ(f)2 then Count Roots 2(f) halts. Note that this

means that
α•

8D2(n + 1)κ(f)2
< η ≤ α•

4D2(n + 1)κ(f)2

and hence, by § 6.5, that it correctly returns #R(f).
Because of the hypothesis on η, the hypotheses of Lemmas 6.2, and 6.3 are satisfied.

Let fl(U) 6= fl(V) be different components of fl(G′η), and therefore, by Lemma 6.20,
ζU 6= ζV , and for all x ∈ fl(U), y ∈ fl(V), by Lemma 6.2, d(x, y) > 2πη

√
n + 1 holds. This

implies, by Lemma 6.17(i), that Condition (i) in Count Roots 2 is satisfied.
Consider now x 6∈ fl(A′(f)). By Proposition 6.13(i), α(f, x) ≥ α•

3 . This implies, by
Lemma 6.3, that ‖f(x)‖∞ > πη

√
(n + 1)D, which in turn, by Lemma 6.18(i), ensures that

Condition (ii) in Count Roots 2 is satisfied. Hence, the algorithm halts.

Aknowledgement. We are grateful to André Galligo for a helpful discussion.

References

[1] B. Bank, M. Giusti, J. Heintz, and L. Pardo. Generalized polar varieties: geometry and
algorithms. J. Compl., 21:377–412, 2005.

[2] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer-
Verlag, 1998.

[3] P. Bürgisser and F. Cucker. Counting complexity classes for numeric computations II: Algebraic
and semialgebraic sets. J. Compl., 22:147–191, 2006.

[4] D. Cheung and F. Cucker. Solving linear programs with finite precision: II. Algorithms. J.
Compl., 22:305–335, 2006.

[5] G.E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic deccomposi-
tion, volume 33 of Lect. Notes in Comp. Sci., pages 134–183. Springer-Verlag, 1975.

[6] F. Cucker. Approximate zeros and condition numbers. J. Compl., 15:214–226, 1999.

[7] F. Cucker and J. Peña. A primal-dual algorithm for solving polyhedral conic systems with a
finite-precision machine. SIAM J. Optim., 12:522–554, 2002.

[8] F. Cucker and S. Smale. Complexity estimates depending on condition and round-off error.
Journal of the ACM, 46:113–184, 1999.

[9] F. Cucker and D.X. Zhou. Learning Theory: An Approximation Theory Viewpoint. Cambridge
Univ. Press, 2007.

[10] J.-P. Dedieu, P. Priouret, and G. Malajovich. Newton method on Riemannian manifolds:
Covariant alpha-theory. IMA Journal of Numerical Analysis, 23:395–419, 2003.

27

[11] G. Golub and C. Van Loan. Matrix Computations. John Hopkins Univ. Press, 3rd edition,
1996.

[12] D.Yu. Grigoriev. Complexity of deciding Tarski algebra. Journal of Symbolic Computation,
5:65–108, 1988.

[13] D.Yu. Grigoriev and N.N. Vorobjov. Solving systems of polynomial inequalities in subexpo-
nential time. Journal of Symbolic Computation, 5:37–64, 1988.

[14] D.Yu. Grigoriev and N.N. Vorobjov. Counting connected components of a semialgebraic set
in subexponential time. Computational Complexity, 2:133–186, 1992.

[15] Y. Han and R.A. Wagner. An efficient and fast parallel-connected component algorithm.
Journal of the ACM, 37(3):626–642, 1990.

[16] J. Heintz, M.-F. Roy, and P. Solerno. Single exponential path finding in semi-algebraic sets
II: The general case. In C.L. Bajaj, editor, Algebraic Geometry and its Applications, pages
449–465. Springer-Verlag, 1994.

[17] N. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 1996.

[18] T.Y. Li. Numerical solution of polynomial systems by homotopy continuation methods. In
P.G. Ciarlet and F. Cucker, editors, Handbook of numerical analysis, volume 11, pages 209–304.
North-Holland, 2003.

[19] G. Malajovich. On generalized Newton algorithms: Quadratic convergence, path-following and
error analysis. Theoret. Comp. Sci., 133:65–84, 1994.

[20] K. Meer. Counting problems over the reals. Theoret. Comp. Sci., 242:41–58, 2000.

[21] M. Shub and S. Smale. Complexity of Bézout’s theorem I: geometric aspects. Journal of the
Amer. Math. Soc., 6:459–501, 1993.

[22] M. Shub and S. Smale. Complexity of Bézout’s theorem III: condition number and packing.
Journal of Complexity, 9:4–14, 1993.

[23] M. Shub and S. Smale. Complexity of Bézout’s theorem IV: probability of success; extensions.
SIAM J. of Numer. Anal., 33:128–148, 1996.

[24] S. Smale. Newton’s method estimates from data at one point. In R. Ewing, K. Gross, and
C. Martin, editors, The Merging of Disciplines: New Directions in Pure, Applied, and Com-
putational Mathematics. Springer-Verlag, 1986.

[25] A. Tarski. A Decision Method for Elementary Algebra and Geometry. University of California
Press, 1951.

[26] H. Weyl. The Theory of Groups and Quantum Mechanics. Dover, 1932.

[27] H.R. Wüthrich. Ein Entscheidungsverfahren für die Theorie der reell-abgeschlossenen Körper.
volume 43 of Lect. Notes in Comp. Sci., pages 138–162. Springer-Verlag, 1976.

28

