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Abstract. We present a deterministic algorithm for computing all irreducible factors of degree
≤ d of a given bivariate polynomial f ∈ K[x, y] over an algebraic number field K and their
multiplicities, whose running time is polynomial in the bit length of the sparse encoding of the
input and in d . Moreover, we show that the factors over Q of degree ≤ d which are not
binomials can also be computed in time polynomial in the sparse length of the input and in d .

Introduction

Effective factorization of polynomials, when possible, is an important task in computational algebra
and number theory. This problem has a long history, going back to I. Newton in 1707, and to
the astronomer F. von Schubert who in 1793 presented an algorithm for factoring a univariate
polynomial, later rediscovered and generalized by L. Kronecker in 1882. Many other more efficient
algorithms were designed since then: we cite [Zas69], based on [Ber70], among the most famous
ones.
In 1982, A.K. Lenstra, H.W. Lenstra Jr. and L. Lovász made a fundamental advance by obtaining
the first deterministic polynomial-time algorithm for factoring a univariate polynomial over the
rationals. Based on [LLL82] and the technique of lattice basis reduction introduced for its proof,
several new factorization algorithms were obtained [CG82, Len84, Kal85, Lan85, Len87, Lec05,
BHKS05]. These algorithms succeeded in bringing to polynomial time the problem of factoring
univariate and multivariate polynomials over algebraic number fields when given by their dense
encoding, that is the input f is given by the list of all its terms of degree ≤ deg(f) including the
zero ones.

For practical purposes, it is worth considering the sparse (or lacunary) encoding of a polynomial.
In this paper we consider the problem of factoring a bivariate polynomial

f =
t∑

i=1

aix
αiyβi ∈ Q[x, y]

given in sparse encoding, i.e. by the list (ai, αi, βi)1≤i≤t of its non-zero coefficients and correspond-
ing exponents. Let `(f) denote the bit length of the sparse encoding of f ; informally speaking
this is the number of bits needed to spell out the data. We obtain a deterministic algorithm for
computing the low degree factors of f in time polynomial in `(f) :

Theorem 1. There is a deterministic algorithm that, given f ∈ Z[x, y] and d ≥ 1 , computes all
irreducible factors of f in Q[x, y] of degree ≤ d together with their multiplicities, in (d · `(f))O(1)

bit operations.
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Actually, this algorithm applies for factoring bivariate polynomials over number fields (see Subsec-
tion 3.2).

Let us observe that the degree of a polynomial can be exponentially big in its sparse length: we
have deg(f) ≤ 2`(f) and this upper bound is attainable. A direct application of the algorithms
for factoring dense polynomials would give an exponential complexity. The restriction to bounded
degree factors is unavoidable: the polynomial f = xp − 1 ( p prime) is of sparse length log2(p) +
O(1) but has the dense irreducible factor xp−1 + · · ·+ 1 .

The first result in this direction appeared in 1998, when F. Cucker, P. Koiran and S. Smale showed
how to find all the integer roots of a univariate polynomial with integer coefficients in polynomial
time in its sparse encoding, and asked whether one can find in the same time the rational roots
as well [CKS99]. This question (and more!) was affirmatively answered by H.W. Lenstra Jr. who
presented an algorithm that —given a number field K and a univariate polynomial f ∈ K[x]—
computes all its irreducible factors of degree ≤ d together with their multiplicities, in (d+`(f))O(1)

bit operations [Len99b, Thm]. The first and inspiring result in the multivariate setting was obtained
by E. Kaltofen and P. Koiran [KK05, Thm 3] last year, who showed how to compute the linear
factors of a bivariate polynomial f ∈ Q[x, y] in polynomial time in `(f) . Our result is then
an extension of Kaltofen-Koiran’s, and a full generalization of Lenstra’s to the case of bivariate
polynomials.

All these algorithms (including ours) are based on a gap principle first applied by Cucker, Koiran
and Smale. The idea is so strikingly simple and natural that it deserves to be explained. Let
f ∈ Z[x] and ξ ∈ Z be given, how can we test if f(ξ) = 0 ? Direct evaluation is not feasible, as
the size of f(ξ) can be exponentially big in the input size; an important exception to this are the
easy cases ξ = 0,±1 . For the other cases, assume that f =

∑t
i=1 aix

αi can be split as

f = r + xuq

for non-zero polynomials r of degree deg(r) = k and q , where there is a gap between the exponents
of r and those of xuq of length

u− k ≥ log2 ||f ||1
(here ||f ||1 :=

∑t
i=1 |ai| denotes as usual the `1 -norm of f ). Then, except for the cases ξ = 0,±1 ,

this implies that f(ξ) = 0 if and only q(ξ) = r(ξ) = 0 : if this were not the case, namely f(ξ) = 0
but q(ξ) 6= 0 , then

|r(ξ)| ≤ ||r||1 · |ξ|k < ||f ||1 · |ξ|k and |r(ξ)| = |ξ|u · |q(ξ)| ≥ |ξ|u
so that ||f ||1 > |ξ|u−k ≥ 2u−k , which contradicts the gap assumption! Therefore, to test if f
vanishes at ξ 6= 0,±1 , one decomposes f into widely spaced short pieces

f =
∑

i

xifi

and tests if fi(ξ) = 0 for all i .

One crucial fact here is that the decomposition is independent of the point ξ ; therefore to find
integer roots it is enough to find the common roots of a set of low degree polynomials.
The other key ingredient that makes the above argument work is that any integer ξ 6= 0,±1
satisfies a uniform lower bound |ξ| ≥ 2 ! In order to apply the same idea to ξ ∈ Q , the correct
generalization of the absolute value is the height, defined as the maximum between relatively prime
expressions for the numerator and denominator. By imitating the argument above, but this time for
the usual absolute value and all the p -adic ones, we arrive at the same conclusion as a consequence
that all rational numbers except 0,±1 have height at least 2 . This is essentially what Lenstra
applied in [Len99b]; more generally, he was able to handle in this way other factors besides the



FACTORING BIVARIATE SPARSE (LACUNARY) POLYNOMIALS 3

linear ones by considering the height of their roots after applying a suitable lower bound for them,
namely Dobrowolski’s theorem [Dob79] in the version of P. Voutier [Vou96]. In [KK05], the authors
succeeded to present the first generalization of this gap principle for non-univariate polynomials,
more precisely for linear factors of bivariate polynomials.

As in these previous works, the key of our algorithm is a suitable gap theorem. We obtain it
as a consequence of a lower bound for the height of Zariski dense points lying on a curve due
to F. Amoroso and S. David [AD00], as explained in detail in Section 2. This result allows to
decompose the given polynomial f ∈ Q[x, y] into short pieces; the factors of f are then computed
as the common factors of these low degree pieces. This strategy works for all factors except
the trivial x and y and the cyclotomic ones, that is, factors which are a product of binomials
(including monomials) whose coefficients are roots of the unity. As in the univariate and linear
bivariate cases, these factors have to be handled separately, see Section 3.
Since our algorithm operates by reducing to the cases of dense bivariate and sparse univariate
polynomials, our concern is only to prove that this reduction can be done in polynomial time in
the sparse encoding. We have not attempted to compute the exponent in the complexity estimate,
which in principle can be quite big. It is certainly possible to improve it in view of practical
implementation: in Subsection 3.4 we present one idea in this direction, which consists on adapting
the decomposition of f to the size of the candidate factor.

As a consequence of the algorithm, we derive that the number of irreducible factors of degree ≤ d
of f ∈ Q[x, y] counted with multiplicities (different from the trivial factors x or y ) is bounded
by (d · `(f))O(1) . This is not trivial, as the degree of f can be exponential in `(f) , but in fact
much better can be said:

Proposition 2. Let f ∈ Z[x1, . . . , xn] and consider the factorization

f = q ·
∏
p

pep

where q is a cyclotomic polynomial, p ∈ Q[x1, . . . , xn] runs over all non-cyclotomic irreducible
factors of f , and ep is the corresponding multiplicity. Then

∑
p

ep ≤ 56 · n3 · log ||f ||1 · log3(8n deg(f)).

In particular the total number of non-cyclotomic irreducible factors of any degree of f is poly-
nomially bounded in terms of the sparse length of f . This fairly unexpected property general-
izes [Dob79, Thm 2] and is a further consequence of the connection with Diophantine Geometry
via the theory of heights: the Amoroso-David lower bound together with the theorem of succes-
sive algebraic minima of S.-W. Zhang [Zha95] imply a lower bound for the Mahler measure of a
non-cyclotomic polynomial, and from this the statement follows easily.
Moreover, a positive answer to Lehmer’s problem would imply in the univariate case, see Subsection
1.2 for details, the stronger estimate

∑
p

ep ≤ c · log ||f ||1.

for some absolute constant c > 0 . This is even more surprising, since the right-hand side depends
on the coefficients of f but not on its degree. It would be interesting to determine if it is possible
to obtain such a bound without assuming Lehmer’s conjecture.
Proposition 2 should be compared with another result of H.J. Lenstra Jr.: the total number of
irreducible factors of degree ≤ d of f ∈ Q[x] counted with multiplicities (different from x ) is
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bounded by
c · t2 · 2d · d · log(2dt)

where t is the number of non zero terms of f [Len99a, Thm 1]. This bound is exponential, but
independent of the degree and coefficients of f . Based on these two results, it seems natural to
consider the following generalization of Descartes’ rule of signs: is the number of all irreducible
(and non-cyclotomic maybe?) factors different from x of a t -nomial in Q[x] uniformly bounded
by some function B(t) depending only on t , and maybe even by tO(1) ?

Trying to get further, one might ask if it is possible to compute in polynomial time the absolute
factorization of a polynomial given in sparse encoding, that is, its irreducible factors over Q .
For the univariate case the answer is clearly “no”: a univariate polynomial splits completely as a
product of linear factors, and this cannot be done in sparse polynomial time. For the bivariate
case, it can be shown that the computation of binomial factors is equivalent to the factorization of
a univariate polynomial, so that binomials factors over Q cannot be computed either.
Here, we show that except for these, we can compute all other irreducible factors over Q of low
degree, in sparse polynomial time. To give sense to such a statement, we have to specify the
way algebraic coefficients are handled: a number field K is described by an irreducible monic
polynomial g =

∑δ−1
j=0 gjz

j ∈ Z[z] such that K = Q(θ) for one of its roots, and this g is given
in dense representation by the list of all coefficients gj in some specified order, including the zero
ones. Each irreducible factor p in the output of the algorithm is encoded by giving a number
field K such that p ∈ K[x, y] and by the dense list of its coefficients, each coefficient b ∈ K
being represented by its vector of rational components b := (b0, . . . , bδ−1) with respect to the basis
(θj)0≤j≤δ−1 .

Theorem 3. There is a deterministic algorithm that, given f ∈ Q[x, y] and d ≥ 1 , computes all
irreducible factors of f in Q[x, y] of degree ≤ d , together with their multiplicities, except for the
binomial ones, in (d · `(f))O(1) bit operations.

This algorithm follows from another suitable gap theorem that we obtain as a consequence of a
further result by Amoroso and David, a quantitative version of the Bomogolov problem over the
torus [AD03]. Furthermore, we deduce from their result an estimate for the number of non-binomial
factors of a given f ∈ Q[x1, . . . , xn] (Proposition 1.4).

Several interesting questions arose during our work. The most obvious is the extension of these
algorithms to multivariate polynomials; this seems quite feasible as the necessary lower bounds
for the height of points in a hypersurface already appeared in the literature [AD00, AD03, Pon01,
Pon05b].
An interesting open problem is the following: the restriction to computing bounded degree factors
keeps their length under control, giving the possibility of computing them in sparse polynomial
time. But, what if we look for factors with a fixed number of monomials, can we still find all of
them in sparse polynomial time? For instance, can we compute all trinomial factors

p = a1x
α1 + a2x

α2 + a3x
α3 ∈ Q[x]

of a given f ∈ Q[x] in polynomial time?

The outline of the paper is as follows. In Section 1 we explain the basics of the height theory for
points, polynomials and curves, and we prove the upper bounds for the number of factors of a
sparse polynomial. In Section 2 we obtain the gap theorems, as a consequence of the lower bounds
for the height of points on curves. In Section 3 we present the algorithms for rational and absolute
factorization and estimate their theoretical complexity.
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Note. Theorem 1 was independently achieved in [KK06] by Kaltofen and Koiran. This article
also relies on the method in [CKS99], [Len99b] and [KK05], although it differs from ours in all
other aspects: the corresponding gap theorem is obtained as a consequence of a lower bound for
the height of numbers in abelian extensions due to Amoroso and F. Zannier, and the binomial
factors are handled differently. As observed by the authors, their algorithm requires the a priori
knowledge of a universal but non-explicit constant c [KK06, Thm 1]. In the present paper this
problem is avoided by using the more explicit results in [AD00] and [Pon01]. Our approach also
allows to compute not only the rational factors but also the absolute ones.

Acknowledgements. We thank Corentin Pontreau for helpful discussions on lower bounds for
the height. The core of this paper was written during October–December 2005 while M. Sombra
was visiting the University of Buenos Aires, Argentina; he particularly thanks Ricardo Durán for
his invitation. He also thanks the Mathematical Sciences Research Institute at Berkeley, USA,
where he stayed during January 2006.

1. Heights

Throughout this paper Q denotes the field of rational numbers, K a number field, L a finite
extension of K , Q an algebraic closure of Q and G∞ the subset of Q of all roots of the unity.
We denote by An the affine space of n dimensions over Q . For a polynomial p ∈ Q[x1, . . . , xn]
we denote by Z(p) ⊂ An the affine hypersurface defined by p . A curve or a variety is assumed to
be equidimensional; by irreducibility of a variety we understand its geometric irreducibility, that
is with respect to Q .

For every rational prime p we denote by | · |p the p -adic absolute value over Q such that
|p|p = p−1 . We also denote the ordinary absolute value over Q by | · |∞ or simply by | · | .
These form a complete set of independent absolute values over Q : we identify the set MQ of
these absolute values with the set {∞, p ; p prime} . More generally, we write MK for the set of
absolute values over K extending the absolute values in MQ , and we note by M∞

K the subset of
Archimedean absolute values of MK .

For v0 ∈ MQ we denote by Qv0 the completion of Q with respect to the absolute value v0 . In
case v0 = ∞ we have Q∞ = R , while in case v0 = p is a prime, Qp is the p -adic field. There
exists a unique extension of v0 to an absolute value over the algebraic closure Qv0

. For v ∈ MK

we also denote by Kv the completion of K with respect to v . If v extends an absolute value
v0 ∈ MQ , then Kv is a finite extension of Qv0 . We denote σv : K ↪→ Qv a (not necessarily
unique) embedding corresponding to v , that is such that |a|v = |σv(a)|v0 for every a ∈ K .

1.1. Height of points and polynomials. In this subsection we introduce the basic definitions
and properties of the height of points and polynomials that we will use in the sequel. We refer for
instance to [HS00] for a complete treatment.

The (logarithmic) height h(ξ) of an algebraic number ξ ∈ Q can be defined in terms of its primitive
integer minimal polynomial

pξ(x) = c ·
∏

σ:K↪→Q
(x− σ(ξ)) ∈ Z[x]

where σ runs over all Q -embeddings of K := Q(ξ) in Q , by the formula

(1) h(ξ) =
1

[K : Q]


log |c|+

∑

σ:K↪→Q
max{0, log |σ(ξ)|}


 .
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We have h(ξ) ≥ 0 , and h(ξ) = 0 if and only if either ξ = 0 or ξ ∈ G∞ , the subset of Q of all
roots of 1 (Kronecker’s theorem). Besides, for a rational ξ = m/n ∈ Q× in reduced expression, we
easily check that h(ξ) = log max{|m|, n} . Alternatively, the height can be defined via the Mahler
measure of the minimal polynomial as

m(pξ) :=
∫ 1

0

log |pξ(e2πiu)| du = [K : Q] · h(ξ);

this identity is a consequence of Jensen’s formula.

More generally, the height of a point ξ := (ξ1, . . . , ξn) ∈ An is defined via the Weil formula

h(ξ) :=
1

[K : Q]

∑

v∈MK

[Kv : Qv] log max{1, |ξ1|v, . . . , |ξn|v}

for any number field K containing the coordinates ξi . For n = 1 this gives

h(ξ) =
1

[K : Q]

∑

v∈MK

[Kv : Qv] log max{1, |ξ|v}

and it can be shown that this coincides with the previous definition. With this expression we
readily verify that for ξ, η ∈ Q we have that h(ξ · η) ≤ h(ξ) + h(η) and

h(ξn) = |n|h(ξ) for n ∈ Z;

in particular h(ξ−1) = h(ξ) and h(ω · ξ) = h(ξ) for any root of unity ω ∈ G∞ . We will be mostly
interested on points in the plane ξ = (ξ1, ξ2) ∈ A2 , in that case the formula reduces to

h(ξ) =
1

[K : Q]

∑

v∈MK

[Kv : Qv] log max{1, |ξ1|v, |ξ2|v}.

Now we introduce a few notions for the height of a polynomial that will prove useful in the sequel.
We will restrict to bivariate polynomials, although it is clear that all this extends to the multivariate
case.

For a polynomial f =
∑t

i=1 ai xαiyβi ∈ K[x, y] , its absolute value with respect to v ∈ MK is

|f |v := max{|a1|v, . . . , |at|v}.
The height of f is then defined as

h(f) :=
1

[K : Q]

∑

v∈MK

[Kv : Qv] log(|f |v),

which is invariant by scalar multiplication because of the product formula
∑

v∈MK

[Kv : Qv] log(|a|v) = 0, ∀ a ∈ K×.

Therefore h(f) is the Weil height of the projective point (a1 : · · · : at) . This is independent of
the chosen field K as long as it contains all of the ai ’s.

For a bivariate polynomial with complex coefficients f ∈ C[x, y] we consider the Mahler measure

m(f) :=
∫ 1

0

∫ 1

0

log |f(e2πiu, e2πiv)| du dv,
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and for a polynomial f ∈ K[x, y] with algebraic coefficients we define its (global) Mahler measure
by the adelic formula

mQ(f) :=
1

[K : Q]


 ∑

v∈M∞
K

[Kv : Qv]m(σv(f)) +
∑

v/∈M∞
K

[Kv : Qv] log |f |v


 .

We also consider the height associated to the `1 -norm:

h1(f) :=
1

[K : Q]


 ∑

v∈M∞
K

[Kv : Qv] log ||σv(f)||1 +
∑

v/∈M∞
K

[Kv : Qv] log |f |v


 ,

where for v ∈ M∞
K , the usual definition ||σv(f)||1 :=

∑
i |σv(ai)| holds.

For a primitive f ∈ Z[x, y] , these notions give

h(f) = log |f | = log max{|a1|, . . . , |at|}, h1(f) = log ||f ||1 = log(|a1|+ · · ·+ |at|), mQ(f) = m(f).

All these are invariant by scalar multiplication. In general for any f ∈ Q[x, y] write f = c · f̃ for
some c ∈ Q× and f̃ ∈ Z[x, y] the primitive polynomial with integer coefficients associated to f ,
then h(f) = log |f̃ | , h1(f) = log ||f̃ ||1 and mQ(f) = m(f̃) .

We will use the following comparison between the heights of a given f ∈ K[x, y] , which can be
directly proven from the definitions:

(2) h(f), mQ(f) ≤ h1(f) ≤ h(f) + log(t).

1.2. Height of and on plane curves. A plane curve C ⊂ A2 can have some isolated points of
small height. For instance the line

Z(x + y − 1) ⊂ A2

has the points (1, 0), (0, 1),
(
(1 ± √3)/2, (1 ∓ √3)/2

)
all of whose coordinates are roots of 1 and

so their height is 0. D. Zagier [Zag93] showed that the height of any other point ξ ∈ Z(x + y − 1)
is bounded from below by a positive constant

h(ξ) ≥ h(ξ0) = 0.1911

where ξ0 denotes the largest real root of the polynomial x6−x4−1 . Somehow the fact that a curve
has some torsion points on it does not reflect its general behavior. A more interesting parameter
is the height of a Zariski dense set of points. This is measured by the essential minimum, which
for a plane curve C ⊂ A2 is defined as

µess(C) := inf
{
η ≥ 0 : {ξ ∈ C : h(ξ) ≤ η} is an infinite set

}
.

For instance, thanks to Zagier’s result,

µess(Z(x + y − 1)) ≥ 0.1911.

This is a particular case of the Bogomolov problem over the torus proved by Zhang [Zha95] which
asserts that for a subvariety of Tn := (Q×)n , the vanishing of the essential minimum is equivalent
to being torsion. This result, and others we are going to use, are stated for the torus, but Tn is
naturally embedded as an open subset of An , and since these results depend on Zariski dense sets,
they can all be translated to An .
For an irreducible plane curve C ⊂ A2 , being torsion is equivalent to say that there exist α, β ≥ 0
not both zero, and ω ∈ G∞ ∪ {0} such that

either C = Z(xα − ωyβ) or C = Z(xαyβ − ω).
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The irreducible curve C is (we should rather say “corresponds to”) a translate of a subgroup
whenever there exists ξ ∈ Q such that

either C = Z(xα − ξyβ) or C = Z(xαyβ − ξ).

By definition, a general affine plane curve is torsion (resp. translate of a subgroup) if and only if
all its irreducible components are so. The statement of the Bogomolov problem (now a theorem)
is that µess(C) = 0 if and only if C is torsion. In other words, if C is not of this form, there
exists a positive constant c(C) > 0 such that

h(ξ) ≥ c(C) for all but a finite number of ξ ∈ C.

There is an extension of the notion of Weil height of points to higher-dimensional varieties. This
notion was first introduced by P. Philippon [Phi91]; for an irreducible hypersurface V ⊂ An

defined by a polynomial p ∈ K[x1, . . . , xn] , it coincides with the global Mahler measure of p
[DP99, Pon01]:

(3) h(V ) = mQ(p).

The distribution of the height of algebraic points in a curve is in close connection with the
height of the curve itself. The relation is given by the theorem of algebraic successive minima
of Zhang [Zha95, Thm 5.2 and Lem. 6.5(3)]:

µess(C) ≤ h(C)
deg(C)

≤ 2µess(C).

Actually, Zhang’s result is more precise (all successive minima appear, not only the first one which
is the essential minimum) and more general, as it works for varieties of any dimension and for any
“reasonable” height function.
The stated version is sufficient for our application; for a more elementary proof we refer to [DP99,
§ 6]. It is an open problem to determine if this estimate is optimal for the case of plane curves or
more generally for hypersurfaces ( it has been shown to be optimal if we allow varieties of higher
codimension [PS04, Thm 5.1]). Thanks to this result, the Bomogolov problem for plane curves can
be rephrased as h(C) = 0 if and only if C is torsion. Under this form, the conjecture was already
proven by W. Lawton in 1977 [Law77].

For ξ ∈ Q× we have that h(ξ) = 0 if and only if ξ ∈ G∞ ; this is the 0-dimensional (easy) case
of the Bogomolov problem. Lehmer’s conjecture gives a lower bound for the height of non-torsion
points, its statement being that there exists a positive constant c > 0 such that

h(ξ) ≥ c

[Q(ξ) : Q]
for ξ /∈ G∞.

This conjecture has been widely generalized. Here we are only interested in the case of curves:

Conjecture 1.1.
(i) Lehmer’s problem for plane curves: Let C ⊂ A2 be an irreducible curve defined over a

number field K which is not torsion. Then there exists a universal c > 0 such that

µess(C) ≥ c

[K : Q] deg(C)
.

(ii) Effective Bogomolov problem for plane curves: Let C ⊂ A2 be an irreducible curve which
is not a translate of a subgroup. Then there exists a universal c > 0 such that

µess(C) ≥ c

deg(C)
.
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These two conjecture look similar but they are not. The generalization of Lehmer’s problem
is of arithmetic nature since the degree of the number field plays a role, while the quantitative
Bogomolov problem is of geometric nature since it makes no reference to the field of definition.
It has been shown that conjecture 1.1(i) is implied by the classical Lehmer’s problem [Law77].
Conjecture 1.1(ii) is [DP99, Conj. 1.1].
Because of the theorem of successive minima, it is equivalent to have lower bounds for the essential
minimum or for the height, that is the (global) Mahler measure of the defining polynomial of C .

Nowadays all these results are proved “up to an ε ”: for the Lehmer’s problem we will be mainly
applying the following lower bound due to Amoroso and David [AD00], in the version of C. Pon-
treau [Pon05a, Prop. IV.1] who simplified the proof and made all constants explicit: if C ⊂ A2 is
a non-torsion curve defined by an irreducible polynomial p ∈ Z[x, y] of degree d , then

(4) µess(C) ≥ 1
56d

×
(

log log(16d)
log(16d)

)3

.

In the reference this result is stated in terms of h(C) ; you have to look into the proof for the
version up here. In fact we will be using the version over a number field:

Corollary 1.2. Let C ∈ A2 be a curve defined by an irreducible polynomial p ∈ K[x, y] which is
not of the form p =

∏
i(x

α − ωiy
β) nor p =

∏
i(x

αyβ − ωi) for some α, β ≥ 0 not both zero and
ωi ∈ G∞ ∪ {0} and set d := deg(C) = deg(p) . Then

µess(C) ≥ 1
56[K : Q]d

×
(

log log(16[K : Q]d)
log(16[K : Q]d)

)3

.

This follows immediately from (4) by considering the norm N(p) :=
∏

σ:K↪→Q
σ(p) ∈ Q[x, y] .

For the effective Bogomolov problem we use another result of Amoroso and David: if C ⊂ A2 is
a curve which is not a translate of a subgroup and d := deg(C) = deg(p) , then [AD03, Thm 1.5]:

(5) µess(C) ≥ 1
270d

× (log log(d + 2))4

(log(d + 2))5
.

1.3. On the number of factors of a sparse polynomial. General lower bounds for the Mahler
measure immediately yield upper bounds for the number of factors of a given polynomial. To the
best of our knowledge, this observation appears for the first time in the work of E. Dobrowol-
ski [Dob79]. Here we treat the general n -dimensional case. The notions and results of the previous
subsection extend to hypersurfaces. We will state them but instead refer the interested reader to
the literature for n ≥ 3 .
We recall that a polynomial is cyclotomic if it is a product of binomials (including monomials)
whose coefficients are roots of the unity.

Proposition 1.3. Let f ∈ K[x1, . . . , xn] and consider the factorization

f = q ·
∏
p

pep

where q is cyclotomic, p ∈ K[x1, . . . , xn] runs over all non-cyclotomic irreducible factors of f ,
and ep is the corresponding multiplicity. Then

∑
p

ep ≤ 56 · n3 · [K : Q] · h1(f) · log3(8n[K : Q] deg(f)).
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Proof. We have that mQ(q) = 0 as q is cyclotomic an so
∑

p

epmQ(p) = mQ(f) ≤ h1(f).

For each non-cyclotomic factor p ∈ Q[x1, . . . , xn] we minorate the Mahler measure by the Amoroso-
David’s lower bound in the version of Pontreau [Pon01, Thm 1.6] (see the estimate (4) above for
the case n = 2 ), from which we derive that if V ⊂ An is an hypersurface defined by an irreducible
polynomial over K , then

[K : Q] · h(V ) ≥ 1
56 · n3

·
(

log(n log(8n[K : Q] deg(V ))
log(8n[K : Q] deg(V ))

)3

.

Therefore, by Identity (3), we have

[K : Q] ·mQ(p) ≥ 1
56 · n3 · log3(8n[K : Q] deg(p))

≥ 1
56 · n3 · log3(8n[K : Q] deg(f))

,

which implies

[K : Q] · h1(f) ≥ 1
56 · n3 · log3(8n[K : Q] deg(f))

∑
p

ep

from where we deduce our result. ¤
This is a generalization to n ≥ 2 of [Dob79, Thm 2]. As said, a positive answer to the classical
Lehmer’s problem would imply a positive lower bound for the Mahler measure of an arbitrary
non-cyclotomic polynomial p ∈ K[x1, . . . , xn] , of the form

mQ(p) ≥ c

[K : Q]
for some universal constant c > 0 , namely Conjecture 1.1(i). Applying this to the argument above,
the previous proposition would improve to

(6)
∑

p

ep ≤ c−1 · [K : Q] · h1(f).

In a similar way, we can produce an upper bound for the number of non-binomial irreducible factors
over Q :

Proposition 1.4. Let f ∈ Q[x1, . . . , xn] and consider the factorization

f = q ·
∏
p

pep

were q is a product of binomials, p ∈ Q[x1, . . . , xn] runs over all non-binomial irreducible factors
of f , and ep is the corresponding multiplicity. Then

∑
p

ep ≤ 1014 · n8 · h1(f) · log5(max{16, n deg(f)}).

Proof. We have that ∑
p

epmQ(p) = mQ(f) ≤ h1(f);

apply the Amoroso-David quantitative Bogomolov problem in the version of Pontreau [Pon05b,
Thm 1.5] (or (5) above for the case n = 2 ). ¤
Similarly, a positive answer to the effective Bogomolov problem (Conjecture 1.1(ii)) would imply
that ∑

p

ep ≤ c−1 · h1(f) for a universal constant c > 0.
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2. Gap theorems

By a gap theorem, following [CKS99, Len99b, KK05], we understand a statement asserting that
for a polynomial f decomposed as

f = r + s

for non-zero polynomials r and s , then f has a given property if and only r and s have it,
provided that r and s are sufficiently separated. We introduce some notation:

Definition 2.1. For p ∈ Q[x, y] such that degy(p) ≥ 1 we set

λ(p) := inf
{
η ≥ 0 : {(ω, ν) ∈ G∞ ×Q : p(ω, ν) = 0, h(ν) ≤ η} is an infinite set

}
.

Since degy(p) ≥ 1 , for all but a finite number of ω ∈ G∞ there exists some ν ∈ Q such that
p(ω, ν) = 0 and so λ(p) is well-defined and non-negative.
In what follows we deal with irreducible polynomials, that are defined up to a scalar factor. For
simplicity we always refer to one (obvious) representant in each class of associate irreducible poly-
nomials.
The following is the main result of this section:

Theorem 2.2. Let f, r, q ∈ Q[x, y] be such that f = r + yu · q . Let also be given an irreducible
polynomial p ∈ Q[x, y] , p 6= y , such that degy(p) ≥ 1 , and suppose that

(u− degy(r)) · λ(p) ≥ h1(f).

Then p divides f if and only if it divides r and q .

For its proof we need the following lemma:

Lemma 2.3. Let f, r, q ∈ Q[x, y] be such that f = r + yu · q . Let also be given ω ∈ G∞ and
ν ∈ Q× be such that f(ω, ν) = 0 but q(ω, ν) 6= 0 . Then there exists a constant δ(f) > 0 not
depending on (ω, ν) such that

(u− degy(r)) · h(ν) ≤ h1(f)− δ(f).

Proof. Let K be a number field containing the coefficients of f , ω and ν , and set k := degy(r) .
For each absolute value v ∈ MK we have two cases:

• |ν|v ≤ 1 : since |ω|v = 1 we have that

|q(ω, ν)|v ≤
{ ||σv(q)||1 for v ∈ M∞

K ,

|q|v for v /∈ M∞
K .

• |ν|v > 1 : using that f(ω, ν) = r(ω, ν) + νuq(ω, ν) = 0 we infer that

|ν|uv · |q(ω, ν)|v = |r(ω, ν)|v ≤
{ |ν|kv · ||σv(r)||1 for v ∈ M∞

K ,

|ν|kv · |r|v for v /∈ M∞
K .

As both r and q are non-zero, ||σv(q)||1, ||σv(r)||1 < ||σv(f)||1 and so

log ||σv(q)||1, log ||σv(r)||1 ≤ log ||σv(f)||1 − δ(f)

for some δ(f) > 0 depending only on f . The previous inequalities imply that

(u− k) log max{1, |ν|v}+ log |q(ω, ν)|v ≤
{

log ||σv(f)||1 − δ(f) for v ∈ M∞
K ,

log |f |v for v /∈ M∞
K .
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By summing up over all absolute values, using the product formula and the definition of the height,
one obtains that

(u− k) · h(ν) =
1

[K : Q]

∑

v∈MK

[Kv : Qv]
(
(u− k) log max{1, |ν|v}+ log |q(ω, ν)|v

)

≤ 1
[K : Q]


 ∑

v∈M∞
K

[Kv : Qv]
(
log ||σv(f)||1 − δ(f)

)
+

∑

v/∈M∞
K

[Kv : Qv] log |f |v




= h1(f)− δ(f).

¤

Proof of Theorem 2.2. The “⇐ ” is trivial, so we show the other implication.
Suppose that p | f but p - q . From the fact that p is irreducible we have that the set of common
roots of p and q is finite. Also, since degy(p) ≥ 1 and p 6= y , the set {(ω, ν) ∈ G∞ × Q× :
p(ω, ν) = 0} is infinite. Given ε > 0 , it follows from the definition of λ(p) that the set {(ω, ν) ∈
G∞ × Q : p(ω, ν) = 0, h(ν) ≤ λ(p) − ε} is finite. Therefore there exist an infinite number of
(ω, ν) ∈ G∞ ×Q× such that p(ω, ν) = 0 and h(ν) > λ(p)− ε , and there still exist some ω ∈ G∞
and ν ∈ Q× such that

p(ω, ν) = 0, q(ω, ν) 6= 0 and h(ν) > λ(p)− ε.

Applying Lemma 2.3

(u− k) (λ(p)− ε) ≤ (u− k)h(ν) ≤ h1(f)− δ(f).

Since this holds for all ε > 0 , we infer

(u− k) λ(p) ≤ h1(f)− δ(f) < h1(f)

because δ(f) does not depend on (ω, ν) and so does not depend on ε either. This contradicts
the hypothesis: (u− k) λ(p) ≥ h1(f) . Therefore p | q and p | − yu · q = r as wanted. 2

Corollary 2.4. Let f, r, q ∈ Q[x, y] be such that f = r + yu · q . Let also be given n ≥ 1 and an
irreducible polynomial p ∈ Q[x, y] , p 6= y , such that degx(p) ≥ 1 , degy(p) ≥ 1 , and suppose that

(u− degy(r)) · λ(p) ≥ h1(f) + (n− 1) log(degx(f)).

Then pn divides f if and only if it divides r and q .

Proof. Since degx(p) ≥ 1 , we have that pn | f if and only if

p | ∂
jf

∂xj
for j = 0, . . . , n− 1.

The result follows by applying the Gap Theorem 2.2 to ∂jf/∂xj : We have

∂jf

∂xj
=

∂jr

∂xj
+ yu ∂jq

∂xj
.

If ∂jr/∂xj or ∂jq/∂xj vanish, there is nothing to prove. Otherwise, u − degy(∂jr/∂xj) ≥
u− degy(r) since degy(∂jr/∂xj) ≤ degy r . Furthermore, from the definition of h1 we infer that

h1(
∂jf

∂xj
) ≤ h1(f) + (n− 1) log(degx(f)),

since for a coefficient ai of f in K and d ∈ N , for v ∈ M∞
K , ||σv(∂f/∂x)||1 ≤ degx f ||σv(f)||1

holds, while for v /∈ M∞
K , |∂f/∂x|v ≤ |f |v since |k|v = 1 for k ∈ N . ¤
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We observe that for instance by [Len99b, Prop. 3.2], we know the a priori bound n ≤ t− 1 .

Of course this result is only useful whenever λ(p) > 0 . What happens is that this parameter is
bounded from below by the essential minimum, and so all existing estimations for the essential
minimum will give us a corresponding gap theorem.

Lemma 2.5. Let p be an irreducible polynomial in K[x, y] such that degy(p) ≥ 1 . Then

λ(p) ≥ µess(Z(p)).

Proof. Observe that h(ν) = h(ω, ν) ; we can then rephrase the definition of λ(p) as

λ(p) = inf
{
η ≥ 0 : {ξ ∈ Z(p) ∩ (G∞ ×Q) : h(ξ) ≤ η} is an infinite set

}
.

Compare with the definition of the essential minimum:

µess(Z(p)) = inf
{
η ≥ 0 : {ξ ∈ Z(p) : h(ξ) ≤ η} is an infinite set

}
,

so that λ(p) is the infimum over a subset of the set used to define µess(Z(p)) and the inequality
is clear. ¤

Equality in Lemma 2.5 above does not necessarily hold: consider p := xα − ξyβ , then for any
(ω, ν) ∈ G∞ ×Q we have that p(ω, ν) = 0 ⇐⇒ νβ = ωα/ξ and so

h(ν) =
h(νβ)

β
=

h(ωα/ξ)
β

=
h(ξ)
β

.

Hence

λ(p(x, y)) = h(ξ)/β while λ(p(y, x)) = h(ξ)/α.

In particular, λ depends on the order of the variables, while of course the essential mini-
mum does not, so there cannot coincide in general. One can prove, however, that µess(p) =
h(ξ)/ max{α, β} [PS04, Prop. 5.4].

From Corollary 1.2 we deduce:

Corollary 2.6. Let f, r, q ∈ K[x, y] be such that f = r + yu · q . Let also be given n ≤ t− 1 and
an irreducible polynomial p ∈ K[x, y] , degx p ≥ 1 , that is non-cyclotomic, that is, not of the form
p =

∏
i(x

α − ωiy
β) nor p =

∏
i(x

αyβ − ωi) for some α, β ≥ 0 not both zero and ωi ∈ G∞ ∪ {0} ,
and set d := deg(p) . Suppose that

u− degy(r) ≥ 56 · [K : Q] · d · log3(16[K : Q]d) · (h1(f) + (t− 2) log(degx(f))).

Then pn divides f if and only if it divides r and q .

Similarly we obtain the following gap theorem from the lower bound (5):

Corollary 2.7. Let f, r, q ∈ Q[x, y] be such that f = r + yu · q . Let also be given n ≤ t− 1 and
an irreducible polynomial p ∈ Q[x, y] which is not a binomial, and set d := deg(p) . Suppose that

u− degy(r) ≥ 270 · d · log5(d + 2) · (h1(f) + (t− 2) log(degx(f))).

Then pn divides f if and only if it divides r and q .
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3. Computing the low degree factors of sparse polynomials

The goal of this section is to present the rational and absolute factorization algorithms for sparse
bivariate polynomials. Our conventions about encoding are the usual ones, the same as in for
instance [Len99b]. The number of bits needed to write down a non-zero integer a ∈ Z is blog2(a)c+
1 for the digits and 1 more for the sign. For a rational a = m/n ∈ Q in reduced expression, we
define its bit length as

`(a) = `(m) + `(n)− 2 = blog2 |m|c+ blog2(n)c+ 2;

the somewhat artificial “−2 ” is there just to make this coincide with the previous notation for an
integer a . The sparse encoding of f =

∑t
i=1 aix

αiyβi ∈ Q[x, y] is the list (ai, αi, βi)1≤i≤t of its
(non-zero) coefficients and corresponding exponents, and so its bit length is

(7) `(f) :=
t∑

i=1

(
`(ai) + blog2(αi)c+ blog2(βi)c+ 2

)
;

observe that `(f) is an upper bound for t , log2(deg f) and h(f) , and in fact is polynomially
equivalent to these quantities: `(f) = (t · log2(deg f) · h(f))O(1) .

For encoding polynomials over number fields we have to say how number fields and algebraic
numbers are handled: a number field K of degree δ = [K : Q] is described by an irreducible
monic polynomial g =

∑δ−1
j=0 gjz

j ∈ Z[z] such that K = Q(θ) for one of its roots, and this g is
given in dense representation by the (ordered) list of all its coefficients gj including the zero ones.
The length of this description is

`(K) :=
δ−1∑

j=0

`(gj);

in particular `(K) ≥ [K : Q], h(g) . An element b ∈ K is represented by its vector of rational
components (b0, . . . , bδ−1) with respect to the basis (θj)0≤j≤δ−1 . It can be shown by (you need
some estimate between the height of an algebraic integer and that of its minimal polynomial) that

h(b) ≤ `K(b) + [K : Q](h(g) + [K : Q] log(2)) = (`(K) + `K(b))O(1).

A sparsely given polynomial f =
∑t

i=1 aix
αiyβi ∈ K[x, y] is then encoded by the list of its

(non-zero) coefficients and corresponding exponents, and its length relative to K is

`K(f) :=
t∑

i=1

(`K(ai) + `(αi) + `(βi)).

Note that the input data is specified by f and K , and so the input length is `(K) + `K(f) . We
have that

t, log2(deg f) ≤ `(f) and h(f) ≤ `K(f) + [K : Q](h(g) + [K : Q] log(2)) = (`(K) + `K(f))O(1).

When the input of our algorithms comprises an inclusion K ↪→ L of number fields, L is described
as an extension of K by a monic irreducible polynomial k(z) ∈ OK [z] such that L = K(ϑ) for
a root ϑ of k ; this polynomial is represented in a dense way. A polynomial p ∈ L[x, y] in the
output is then encoded by the (dense) list of its coefficients with respect to the product basis
(θjϑk)0≤j≤δ−1,0≤k≤γ−1 of L over Q ; here we set γ := [L : K] . Note that for an element b ∈ K
in the base field encoded as b = b0 + · · ·+ bδ−1x

δ−1 with respect to the given basis of K over Q ,
its encoding with respect to the product base will be the same and so

`L(b) ≤ [L : K] `K(b)

since we have to count the zero coefficients corresponding to the monomials θjϑk with k ≥ 1 . In
particular `L(f) ≤ [L : K] `K(f) for f ∈ K[x, y] .
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For the absolute factorization algorithm for f ∈ K[x, y] , the output irreducible polynomials pi ∈
Q[x, y] are encoded by (Li, pi) , where Li consists in the minimal extension of K such that
pi ∈ Li[x, y] (we observe that this encodes a full set (σ(pi))σ:K↪→Q of [Li : K] conjugate factors
of f ). The couple (Li, pi) is encoded by a monic irreducible polynomial ki(z) ∈ OK [z] such that
Li = K[z]/(ki(z)) , and pi is given by its coefficients.

3.1. Binomial factors. The computation of the irreducible factors of a bivariate polynomial that
are binomials or, more generally, products of binomials can be reduced to the univariate case as
we show in this section. We first observe that if an irreducible polynomial p ∈ K[x, y] is a product
of binomials then it has one of the following forms:

(8) p(x, y) =
∏
σ

(xα − σ(ξ)yβ) or p(x, y) =
∏
σ

(xαyβ − σ(ξ)),

where α, β ≥ 0 are not 0 simultaneously, ξ ∈ Q and where σ : K(ξ) ↪→ Q runs over all
K -embeddings of K(ξ) in Q .
We have the following results:

Lemma 3.1. Let α, β, n ∈ N , ξ ∈ Q× and f ∈ Q[x, y] be given. Set z for a new variable and
denote by g ∈ Q[x, y, z] the remainder of the division with respect to the variable x of f(x, y) by
the monic polynomial xα − zyβ . Then

(xα − ξ yβ)n | f(x, y) ⇐⇒ (z − ξ)n | g(x, y, z).

Proof. Consider the ring
A := Q[x, y±1, z]/(xα − zyβ).

We have that xα−ξyβ = (z−ξ)yβ in A , and, since y is invertible, we have the following equality
of ideals

((xα − ξyβ)n) = ((z − ξ)n) in A.

We call this ideal I . By definition f = g in A and so f ∈ I if and only if g ∈ I , that is

(xα − ξ yβ)n | f(x, y) in A ⇐⇒ (z − ξ)n | g(x, y, z) in A.

We have to show that we can take out the words “in A ” from the above statement.
We observe that there is a natural identification A = Q[x, y±1] . Therefore,

(xα − ξ yβ)n | f in A ⇐⇒ (xα − ξ yβ)n | f in Q[x, y±1] ⇐⇒ (xα − ξ yβ)n | f in Q[x, y]

since y is prime to xα − ξ yβ .
We have a second identification

A =
α−1⊕

j=0

Q[y±1, z] · xj ,

and therefore

(z − ξ)n | g in A ⇐⇒ (z − ξ)n | g in Q[x, y±1, z] ⇐⇒ (z − ξ)n | g in Q[x, y, z]

since y is prime to z − ξ . ¤

Corollary 3.2. With the same notations than in the previous lemma, let K be a number field
and suppose that f ∈ K[x, y] . Set

p(x, y) :=
∏
σ

(xα − σ(ξ)yβ) ∈ K[x, y] and q(z) :=
∏
σ

(z − σ(ξ)) ∈ K[z]

where σ runs over all K -embeddings of K(ξ) in Q . Then

p(x, y)n | f(x, y) ⇐⇒ q(z)n | g(x, y, z).
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Proof. The polynomials xα − σ(ξ)yβ for different σ ’s are relatively prime, and the same is true
for the polynomials z − σ(ξ) . Hence p(x, y)n | f(x, y) if and only if (xα − σ(ξ)yβ)n | f(x, y) for
all σ if and only if (z − σ(ξ))n | g(x, y, z) for all σ if and only if q(z)n | g(x, y, z) . ¤
The algorithm to compute the irreducible factors of f ∈ K[x, y] , of degree bounded by d , that
are product of binomials is now clear:
We are looking for factors p(x, y) ∈ K[x, y] of degree ≤ d of one of the forms in (8). The cases
ξ = 0 , α = 0 or β = 0 reduce directly to the univariate case where we apply Lenstra’s algorithm
[Len99b, Thm] to the corresponding content of f .
So we can restrict ourselves to the cases when ξ ∈ Q× and α, β ∈ N . We consider first the factors
of the first form in (8).
We fix 1 ≤ α, β ≤ d , and we set g := gα,β ∈ K[x, y, z] for the remainder of dividing f (with
respect to x ) by xα−zyβ ( g depends only on f and α, β ). It is easy to compute g by Euclidean
division:

g(x, y, z) =
t∑

i=1

aix
αi mod α(z yβ)bαi/αcyβi ,

so that g is as sparse as f . We write

g(x, y, z) =
∑

i,j

gi,j(z)xiyj

and observe that an irreducible factor q ∈ K[z] satisfies qn | g ⇐⇒ qn | gi,j for all i, j , where
there are at most t non-zero polynomials gi,j , and each of them is as sparse as f , with coefficients
obtained as the sum of at most t coefficients of f .
We compute all irreducible factors q ∈ K[z] of g of degree bounded by d/ max{α, β} and their
corresponding multiplicities, by examining the common irreducible factors (and their multiplicities)
of all the gi,j ’s. This is done again applying Lenstra’s univariate algorithm.
Since the irreducible polynomial q is of the form q =

∏
σ(z − σ(ξ)) , the corresponding candidate

factor p of f is then derived as

p(x, y) = (yβ)deg(q)q(xαy−β),

where deg(p) = max{α, β} · deg(q) ≤ d . Before including p within the list of factor, we check
if it is irreducible by applying a factorization algorithm like [Len87, Thm. 3.26] or the recent
improvement in [Lec05]. Corollary 3.2 certifies that for given α, β , we obtain in this way all
irreducible factors of f of degree ≤ d of the first form in (8), as well as their multiplicities.
For the factors in (8) of the second form, we proceed similarly, by considering the remainder
g ∈ K[x, y±1, z] of dividing f (with respect to x ) by xαyβ−z . We observe that the corresponding
extensions of Lemma 3.1 and Corollary 3.2 hold. In this case, p is derived from the factor q ∈ K[z]
of g as p(x, y) = q(xαyβ) .

The algorithm described above yields the following result:

Theorem 3.3. There is a deterministic algorithm that, given f ∈ K[x, y] and d ≥ 1 , computes
all irreducible factors of f in K[x, y] of degree ≤ d which are products of binomials, together with
their multiplicities, in

(
d · (`(K) + `K(f))

)O(1) bit operations.

Proof. We have already established that the previous algorithm gives these factors and their mul-
tiplicities. Its running time is estimated as follows: for each pair α, β , we are applying Lenstra’s
algorithm ≤ t times to the polynomials gi,j of sparse length `(gi,j) = O(`(f)) , in order to com-
pute their irreducible factors of degree ≤ d/max{α, β} and their multiplicities. This task is done
in

(
d · (`(K) + `K(f))

)O(1) bit operations. Since there are at most d2 pairs α, β , the total bit

cost of the algorithm remains of order
(
d · (`(K) + `K(f))

)O(1) . ¤
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3.2. Rational factorization. The search of all the low degree bivariate factors of a sparse f ∈
K[x, y] is done by decomposing it as a sum of short pieces, as in the previous papers [CKS99,
Len99b, KK05]. For given ∆x, ∆y ≥ 0 , these pieces have to be separated by a distance (“gap”)
of at least ∆x in the x -direction or ∆y in the y -direction. This is done here by decomposing f
first with respect to the y -exponents, then with respect to the x -exponents.

Let f =
∑t

i=1 aix
αiyβi and suppose that the monomials are already ordered so that β1 ≤ β2 ≤

· · · ≤ βt . Then we determine

`0 := 0 < `1 < · · · < `s < `s+1 = t

subject to the conditions

βi+1 − βi < ∆y for `j + 1 ≤ i ≤ `j+1, 0 ≤ j ≤ s, and β`j+1 − β`j
≥ ∆y for 1 ≤ j ≤ s,

namely we split the y -exponents β1, . . . , βt into subsets so that consecutive exponents in the same
subset are at distance < ∆y and between different subsets there is a gap of length ≥ ∆y . Set

rj :=
`j+1∑

i=`j+1

aix
αiyβi−β`j+1 for 0 ≤ j ≤ s so that f = yβ`0+1r0 + yβ`1+1r1 + · · ·+ yβ`s+1rs.

Next we do the same procedure over each rj with respect to ∆x : first we reorder the monomials
applying a permutation τ so that

rj =
`j+1∑

i=`j+1

aτ(i)x
ατ(i)yβτ(i)−β`j+1

and ατ(`j+1) ≤ ατ(`j+2) ≤ · · · ≤ ατ(`j+1) . Then for each 0 ≤ j ≤ s we sub-split this set of
`j+1 − `j exponents into subsets such that the consecutive x -exponents in the same subset are
at distance < ∆x , and between different subsets there is a gap of length ≥ ∆x . Using this, we
decompose rj into pieces

rj = xζ0,j r0,j + · · ·+ xζtj ,j rtj ,j

for some exponents {ζi,j : 0 ≤ j ≤ s, 0 ≤ i ≤ tj} ⊂ {α1, . . . , αt} that we do not explicit to avoid
useless proliferation of indexes.

Each ri,j is (up to a monomial) some part of rj , which in time is (up to a monomial) some part
of f . We arrive in this way to a list of k ≤ t non-zero polynomials f1, . . . , fk (after rewriting the
ri,j ’s into fi ’s) such that

(9) f = xγ1yδ1f1 + xγ2yδ2f2 + · · ·+ xγkyδkfk;

and by construction for 1 ≤ i ≤ k ,

`K(fi) ≤ `K(f), degx(fi) < (t− 1)∆x, degy(fi) < (t− 1)∆y

and for i 6= j we have that

either γj − γi − degx(fi) ≥ ∆x or γi − γj − degx(fj) ≥ ∆x

or δj − δi − degy(fi) ≥ ∆y or δi − δj − degx(fj) ≥ ∆y.

We have decomposed f in ≤ t pieces of controlled degree and separated by a gap of length ≥ ∆x

in the x -direction or ≥ ∆y in the y -direction.

The computation of the irreducible factors of f of degree ≤ d is then clear. Pure factors in x
or y reduce to the univariate case [Len99b]. For the truly bivariate factors, we compute first a
constant c such that h1(f) + (t− 2) log(degx(f)) ≤ c in time (`(K) + `K(f))O(1) , as in [Len99b,
Prop.3.6]. We set

∆x := ∆y := ∆ = 56 · [K : Q] · d · log3(16[K : Q]d) · c.
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Applying Corollary 2.6 we infer that for f = xγ1yδ1f1 + xγ2yδ2f2 + · · ·+ xγkyδkfk as in (9), then
for p ∈ K[x, y] , degx p ≥ 1 , that is not a cyclotomic polynomial, we have

pn | f ⇐⇒ pn | fi for all i.

The procedure consists on computing first the cyclotomic factors together with their multiplicity,
by using the algorithm in Subsection 3.1. For the other factors, we compute them as the common
factors of the fi ’s, by using any polynomial-time algorithm for factoring dense bivariate polyno-
mials over a number field, for instance [Len87, Thm 3.26] or [Lec05]. Therefore we obtain the
following result:

Theorem 3.4. There is a deterministic algorithm that, given f ∈ K[x, y] and d ≥ 1 , computes
all irreducible factors of f in K[x, y] of degree ≤ d , together with their multiplicities, in(
d · (`(K) + `K(f))

)O(1) bit operations.

Proof. We have already established that the previous algorithm gives all these factors and their
multiplicities. We estimate its running time. We show that the degree of fi for all i , 1 ≤ i ≤ k ,
in the decomposition (9) is polynomial in the input size. This is a consequence of our estimate for
the gap length:

`(fi) ≤ `(f) and degx(fi),degy(fi) < (t−1)∆ = O(t·([K : Q]·d)1+ε·c) =
(
d·(`(K)+`K(f))

)O(1)
.

Then we apply to each fi a polynomial-time algorithm for factoring dense bivariate polynomials
over K , which would do the task in

(
d · (`(K) + `K(f))

)O(1) bit operations. Since the number of
fi ’s is at most t ≤ ` , the total complexity remains of the same order. ¤

If for an input polynomial f ∈ K[x, y] we are interested in its factors in an extension L , we can
compute them by just including f into L[x, y] and then applying the above algorithm over L ;
its cost would be of

(
d · (`(K) + `K(f) + `K(L)

)O(1) bit operations.
We note that here, for the factors which are products of binomials but not cyclotomic, we have
the choice of computing them either by reduction to the univariate sparse case of Theorem 3.3 or
by reduction to the dense bivariate case.

3.3. Absolute factorization. Given a polynomial f ∈ K[x, y] , we can apply Corollary 2.7 to
extend the previous algorithm to the computation of all irreducible factors of f over Q , of degree
bounded by d , except the binomial ones. We assume that the input f is encoded in K[x, y]
and as before we compute a constant c such that h1(f) + (t − 2) log(degx(f)) ≤ c in time
(`(K) + `K(f))O(1) , then we set

∆x := ∆y := ∆ = 270 · d · log5(d + 2) · c.
Corollary 2.7 implies that for the associated decomposition f = xγ1yδ1f1+xγ2yδ2f2+· · ·+xγkyδkfk

as in (9), any irreducible p ∈ Q[x, y] that is not of the form

p(x, y) = xα − ξyβ or p(x, y) = xαyβ − ξ,

satisfies
pn | f ⇐⇒ pn | fi for all i.

Now we need to determine the common factors of the fi ’s over Q[x, y] and their multiplicity. In
order to do this, we first factor completely each of the fi over K[x, y] by applying any dense
polynomial-time bivariate factorization algorithm over K . An irreducible factor p ∈ Q[x, y] of f
will necessarily divide a common irreducible factor q ∈ K[x, y] of all the fi ’s. Thus it is enough
to keep all common irreducible factors q ∈ K[x, y] of all the fi ’s and their multiplicities, and then
to factor them in Q[x, y] by applying any polynomial-time algorithm for factoring dense bivariate
polynomials over Q , for instance [Kal95, Theorem 11]. We only keep those factors in the output
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which are of degree ≤ d and which are not binomials. We proceed in this way in order to avoid
comparing irreducible factors in Q[x, y] of different fi ’s, that can, although equal, be described
in different field extensions.

Theorem 3.5. There is a deterministic algorithm that, given f ∈ K[x, y] and d ≥ 1 , computes
all irreducible factors of f in Q[x, y] of degree ≤ d , together with their multiplicities, except for
the binomial ones, in

(
d · (`(K) + `K(f))

)O(1) bit operations.

Proof. As with the previous one, the complexity of this algorithm is estimated in
(
d · (`(K) +

`K(f))
)O(1) bit operations, because we have to factor ≤ t polynomials fi of degree polynomially

bounded in the input length to find all possible q , which are of input length `K(q) =
(
d · (`(K) +

`K(f))
)O(1) and at most the same quantity, and then to factor them in Q[x, y] . ¤

3.4. A practical improvement: adaptive gap methods. The practical efficiency of the pro-
posed algorithms depends essentially on the length ∆ defining the gap in f : the degree of the
pieces fi depends on ∆ , and if this degree is large, the dense factorization algorithm will be clearly
slower. In other words, the smaller the gap length ∆ is, the faster the algorithm works. Since the
gap is proportional to the inverse of the essential minimum, the greatest the essential minimum,
the faster the algorithm.

There are some special situations where we can get better bounds, for instance for linear factors
p(x, y) = ax + by + c with integer coefficients, as in [KK05].
The Mahler measure of a polynomial is bounded from below by the Mahler measure of any of its
facet polynomials. Hence for a, b, c ∈ Z relatively prime numbers such that a · b · c 6= 0 , we have
that

m(ax + by + c) ≥ max{m(ax + by),m(by + c),m(ax + c)} = log max{|a|, |b|, |c|}
as it can be proved that the Mahler measure of a binomial coincides with its height. The theorem
of successive minima then implies

µess(Z(ax + by + c)) ≥ 1
2

log max{|a|, |b|, |c|} =
1
2
h(p).

The only case for which this lower bound is meaningless is when a, b, c = 0,±1 . (When a , b or c
vanish, we reduce easily to the univariate case so we do not consider it here.) When a, b, c = ±1 ,
Zagier’s theorem [Zag93], see also Subsection 1.2, shows that h(ξ) ≥ 0.1911 . Hence

µess(Z(ax + by + c)) ≥
{

log(ξ0) = 0.1911 if a, b, c = ±1

h(p) ≥ log(2)
2 = 0.3465 otherwise.

which improves the bound log(1.045) ≈ 0.0440 proposed in [KK05].
Note that in this case the gap size associated with p = ax + by + c gets smaller as the coefficients
of p tend to infinity. Therefore, a good strategy to make the algorithm more efficient might be
to exclude a finite number of candidates by testing them as factors of f (using a rough estimate
for their gap length), and then use a much smaller gap length to find the rest of the factors by
reduction to the dense case.
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