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Abstract. In this work we discuss existence, uniqueness and asymp-
totic profiles of positive solutions to the quasilinear problem8

<
:

−∆pu + a(x)up−1 = −ur in Ω,

|∇u|p−2 ∂u

∂ν
= λup−1 on ∂Ω,

for λ ∈ R, where r > p − 1 > 0, a ∈ L∞(Ω). We analyze the ex-
istence of solutions in terms of a principal eigenvalue, and determine
their asymptotic behavior both when r → p− 1 and when r →∞.

1. Introduction

The aim of the present paper is to analyze some qualitative features ex-
hibited by the positive solutions to

(1.1)




−∆pu(x) + a(x)up−1(x) = −ur(x) x ∈ Ω

|∇u|p−2 ∂u

∂ν
(x) = λup−1(x) x ∈ ∂Ω,

where λ ∈ R, r > p − 1 > 0, Ω ⊂ RN is a C2,α bounded smooth do-
main, 0 < α ≤ 1, and ν stands for the outward unit normal field on ∂Ω.
The operator ∆p is the standard p-Laplacian, which is defined in the usual
weak sense of W 1,p(Ω) as ∆pu = div(|∇u|p−2∇u). In addition, it will be
assumed throughout that a ∈ L∞(Ω). The main feature of problem (1.1) is
its dependence on the parameter λ precisely in the boundary condition.

Problem (1.1) was studied in [4] when p = 2 (in this case ∆p is the usual
Laplacian) with fixed r > 1 and a = 0. Under these conditions, it was
shown there that this problem admits a unique positive solution ur,λ for
every λ > 0, and no positive solutions when λ ≤ 0. It was further shown
that ur,λ is continuous and increasing as a function of λ, and its asymptotic
behavior when λ → 0 and λ → ∞ was also completely elucidated (see [4]
for additional features). However, as far as we know, the dependence of ur,λ

on r has not yet been clarified. Thus, one of the objectives of this work is
to analyze the variation of ur,λ with respect to r, especially in the extreme
cases where r → 1+ or r →∞. This study will be indeed extended to cover
the more general problem (1.1).
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To deal with the quasilinear problem (1.1), a number of auxiliary results
must be developed. In particular, a study of the flux-type eigenvalue prob-
lem

(1.2)




−∆pu(x) + a(x)|u|p−2u(x) = µ|u|p−2u(x), x ∈ Ω

|∇u|p−2 ∂u

∂ν
(x) = λ|u|p−2u(x), x ∈ ∂Ω,

where λ is regarded as a parameter and it is assumed that a ∈ L∞(Ω). A
number µ ∈ R is said to be an eigenvalue to (1.2) if there exists φ ∈ W 1,p(Ω),
not vanishing identically in Ω, so that

∫

Ω
|∇φ|p−2∇φ∇ϕ + a(x)|φ|p−2φϕ = λ

∫

∂Ω
|φ|p−2φϕ + µ

∫

Ω
|φ|p−2φϕ,

for all ϕ ∈ W 1,p(Ω). In that case, φ is called an eigenfunction associated
to µ.

Problem (1.2) has been studied in detail in [5] when p = 2, in which case
it becomes

(1.3)




−∆u(x) + a(x)u(x) = µu(x), x ∈ Ω,

∂u

∂ν
(x) = λu(x), x ∈ ∂Ω.

The next statement is the extension to problem (1.2) of the corresponding
results obtained for (1.3) contained in [5] (a slightly more general version of
(1.3) was in fact considered there).

Theorem 1. Problem (1.2) admits, for every λ ∈ R, a unique principal
eigenvalue µ = µ1,p, i.e. an eigenvalue with a nonnegative associated eigen-
function φ ∈ W 1,p(Ω). It is given by the variational expression

µ1,p = inf
W 1,p(Ω)

∫

Ω
|∇u|p + a|u|p − λ

∫

∂Ω
|u|p

∫

Ω
|u|p

.

In addition, the following properties hold true.
i) µ1,p is the unique principal eigenvalue.
ii) µ1,p is isolated and simple.
iii) Every associated eigenfunction φ1 ∈ W 1,p(Ω) to µ1,p satisfies φ ∈ L∞(Ω)
and furthermore φ ∈ C1,β(Ω) ∩ C2,α(Uη) for certain β ∈ (0, 1), η > 0, with
Uη = {x ∈ Ω : dist(x, ∂Ω) < η}.

iv) As a function of λ, µ1,p is concave, decreasing and verifies

lim
λ→−∞

µ1,p = λ1,p(a), lim
λ→∞

µ1,p = −∞,

where λ1,p(a) is the first Dirichlet eigenvalue of −∆pu + a(x)|u|p−2u in Ω.

Another auxiliary eigenvalue problem we will need is

(1.4)




−∆pu(x) + a(x)|u|p−2u(x) = 0, x ∈ Ω,

|∇u|p−2 ∂u

∂ν
(x) = σ|u|p−2u(x), x ∈ ∂Ω,



LIMIT CASES IN AN ELLIPTIC PROBLEM 3

which constitutes an extension to the p-Laplacian setting of the well-known
Steklov problem (see [10] for a detailed analysis of the case a = 0). As a
direct consequence of Theorem 1 the following statement holds true.

Theorem 2. Problem (1.4) possesses a principal eigenvalue if and only if

(1.5) λ1,p(a) > 0.

Furthermore,
i) Provided that (1.5) is satisfied, (1.4) admits a unique principal eigenvalue
σ1,p which is isolated and simple. In addition,

(1.6) sign σ1,p = sign λ∗1,p(a)

where λ∗1,p(a) stands for the first Neumann eigenvalue of −∆pu+a(x)|u|p−2u
in Ω.

ii) Any eigenfunction ψ ∈ W 1,p(Ω) associated to σ1,p satisfies ψ ∈ C1,β(Ω) ∩
C2,α(Uη) for certain β ∈ (0, 1), η > 0, with Uη = {x : dist(x ∈ Ω, ∂Ω) < η}.
Remark 1. We will set σ1,p = −∞ when λ1,p(a) ≤ 0, for reasons that will
become clear later on (see (1.8) in Theorem 4 and Remark 3).

The well-known sub and supersolutions method is another tool that must
be properly adapted to problem (1.1). A function u ∈ W 1,p(Ω) is said to be
a supersolution to problem

(1.7)




−∆pu(x) + a(x)|u|p−2u(x) = f(x, u), x ∈ Ω,

|∇u|p−2 ∂u

∂ν
(x) = g(x, u), x ∈ ∂Ω,

if ∫

Ω
|∇u|p−2∇u∇ϕ + a(x)|u|p−2uϕ ≥

∫

∂Ω
g(x, u)ϕ +

∫

Ω
f(x, u)ϕ,

holds for all nonnegative ϕ ∈ W 1,p(Ω). Subsolutions are defined in a sym-
metric way. Of course, the existence of the integrals involving f and g is
implicitly assumed.

In order to avoid the use of comparison, which is certainly a delicate
issue when dealing with the p-Laplacian, the next statement furnishes a
variational version of the method of sub a supersolutions for problem (1.7)
(cf. also [14]). Recall that a function h : X × R → R, (X, µ) a measure
space, is a Carathéodory function if h(·, u) is measurable in X for all u ∈ R
while h(x, ·) is continuous in R for almost all x ∈ X.

Theorem 3. Let f : Ω×R→ R, g : ∂Ω×R→ R be Carathéodory functions
satisfying |f(x, u)| ≤ M and |g(x, u)| ≤ M if (x, u) ∈ Ω × (−R,R) and
(x, u) ∈ ∂Ω × (−R, R), respectively, for arbitrary R, where M = M(R).
Suppose u, u ∈ W 1,p(Ω) ∩ L∞(Ω) ∩ L∞(∂Ω) are a sub and a supersolution
to (1.7) so that u ≤ u in Ω. Then (1.7) admits a solution u ∈ W 1,p(Ω)
verifying

u ≤ u ≤ u,

in Ω.

After these preliminary tools have been introduced, we can state a first
group of results concerning problem (1.1).
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Theorem 4. Assume Ω ⊂ RN is a class C2,α bounded domain and r >
p− 1 > 0. Then the following properties hold:

i) Problem (1.1) admits a positive solution if and only if

(1.8) λ > σ1,p,

where the value σ1,p = −∞ is allowed. When (1.8) holds, the positive solu-
tion is unique, and it will be denoted by ur,λ ∈ W 1,p(Ω).

ii) ur,λ ∈ C1,β(Ω)∩C2,α(Uη) for a certain β ∈ (0, 1) and η > 0 small enough,
where Uη = {x ∈ Ω : dist(x, ∂Ω) < η}.

iii) The mapping λ → ur,λ is increasing and continuous with values in C1(Ω).
Moreover,

(1.9) lim
λ→σ1,p+

ur,λ = 0

in C1,β(Ω) provided σ1,p > −∞. If σ1,p = −∞ then

(1.10) lim
λ→σ1,p+

ur,λ =

{
0 if λ1,p(a) = 0
w if λ1,p(a) < 0,

where u = w(x) stands for the unique positive solution to

(1.11)

{
−∆pu(x) + a(x)|u|p−2u(x) = −ur(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

when λ1,p(a) < 0.
iv) Let u = U(x) be the minimal solution to the singular boundary value
problem

(1.12)

{
−∆pu(x) + a(x)|u|p−2u(x) = −ur(x), x ∈ Ω,

u = ∞ x ∈ ∂Ω.

Then,

(1.13) lim
λ→∞

ur,λ = U,

in C1(Ω).

We turn now to study the asymptotic behavior of the positive solution
ur,λ to (1.1) both as r → (p − 1)+ and when r → ∞. Let us begin with
the former case and to this purpose notice that Theorem 1-iv) implies the
existence of a value

σ1,p < λ∗ < ∞
such that

µ1,p(λ∗) = −1.

In particular,

0 < −µ1,p(λ) < 1 for σ1,p < λ < λ∗,

while
−µ1,p(λ) > 1 if λ > λ∗.

Then we have:
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Theorem 5. For λ > σ1,p, let u = ur,λ be the unique positive solution to
problem (1.1) for r > p− 1. Then,

sup
Ω

ur,λ = (−µ1,p(λ) + o(1))
1

r−p+1

as r → p− 1+ while

ur,λ = (sup
Ω

ur,λ){φ1(λ) + o(1)}

in C1(Ω) as r → p− 1+, where φ1(λ) stands for the positive eigenfunction
associated to µ1,p(λ) normalized so as supΩ φ1(λ) = 1. In particular

a) ur,λ → 0 uniformly in Ω as r → (p− 1)+ if λ < λ∗ ;

b) ur,λ →∞ uniformly in Ω as r → (p− 1)+ when λ > λ∗.

Moreover, for λ = λ∗ and p = 2 in problem (1.1) then

ur,λ → A φ1(λ∗)

uniformly in Ω as r → p− 1+ where A is given by

(1.14) A = exp


−

∫

Ω
φ2

1 log φ1

∫

Ω
φ2

1


 .

Note that in the previous theorem the case λ = λ∗ with p 6= 2 is left open.
As for the behavior of the solution ur,λ to (1.1) when r →∞ the first in-

teresting conclusion is that for every λ > σ1,p, ur,λ keeps uniformly bounded
in Ω as r →∞. On the other hand, provided that coefficient a = 0 in (1.1)
we achieve a better result. Namely, solutions become flat throughout the
domain Ω as r increases.

Theorem 6. Assume that a = 0 in problem (1.1). Then, for any λ > σ1,p

we have ur,λ → 1 uniformly in Ω as r →∞.

It should be mentioned that a similar analysis for the logistic problem

(1.15)
{ −∆u(x) = λu(x)− b(x)ur(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

which is somehow related to (1.1), was performed in [3], [2]. However, the
situation was substantially different there when r → ∞, since the limit
problem so obtained is of a free boundary type, mainly due to the Dirichlet
condition. On the other hand, if u = ũr,λ stands for the unique positive
solution to (1.15) for λ > λD1 (the first Dirichlet eigenvalue of −∆ in Ω), an
important feature in the analysis in [3] is the fact that

(sup
Ω

ũr,λ)r−1

remains bounded as r →∞. This follows easily from the boundary condition
when b > 0 in Ω. This fact is in strong contrast with the next result.

Theorem 7. Let a ∈ L∞(Ω). Then, for fixed λ > σ1,p

φ1(λ) ≤ lim
r→∞

ur,λ ≤ lim
r→∞ur,λ ≤ 1,
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where φ1(λ) is the positive eigenfunction associated to µ1,p(λ) normalized so
that supφ1(λ) = 1. In particular,

lim
r→∞ sup

Ω
ur,λ = 1,

However, if either a = 0 or a ∈ L∞(Ω) is arbitrary but λ > σ1(|a|∞) in
(1.1) then

lim
r→∞ sup

Ω
(ur,λ)r−p+1 = ∞.

The rest of the paper is organized as follows: in Section 2 we analyze the
eigenvalue problems (1.2) and (1.4). Section 3 is dedicated to develop the
method of sub and supersolutions for problem (1.7), that will be used here
for the proof of Theorem 4. Finally, in Section 4 the asymptotic behavior of
the positive solution to (1.1) as r → p− 1 and r → +∞ is considered.

2. Eigenvalue problems

In this section we perform the analysis of the eigenvalue problems (1.2)
and (1.4). We begin with a fundamental result concerning the boundedness
of eigenfunctions.

Lemma 8. Let φ ∈ W 1,p(Ω) be an eigenfunction associated to an arbitrary
eigenvalue λ of (1.2). Then φ ∈ L∞(Ω).

Proof. Notice that we may assume 1 < p ≤ N , since otherwise W 1,p(Ω) ⊂
L∞(Ω). Also, for the sake of simplicity we will only consider p < N , the
case p = N being handled in a similar way.

For k > 0 set v = (φ − k)+, Ak = {x ∈ Ω : φ(x) > k}. We show an
estimate of the form

(2.1) |v|1 ≤ Ckδ|Ak|1+ε,

for every k ≥ k0 and certain positive constants k0, C, δ, ε with δ ≤ 1 + ε,
where |v|1 = |v|L1(Ω).

By using v as a test function in the equation for φ we obtain

(2.2)

∫

Ω
|∇v|p + ϕp(φ)v ≤ λ

∫

∂Ω
ϕp(φ)v + (µ + |a|∞ + 1)

∫

Ω
ϕp(φ)v

≤ C

{∫

∂Ω
ϕp(φ)v +

∫

Ω
ϕp(φ)v

}
,

where ϕp(φ) = |φ|p−2φ and C will stand in the sequel for a positive constant
independent of φ and k, not necessarily the same everywhere.

Next notice that 0 < v < φ in the support of v and φ ≤ v + k, hence
ϕp(φ) ≤ C(vp−1 + kp−1). Thus (2.2) implies

(2.3) |v|p1,p ≤ C

{∫

∂Ω
vp + kp−1

∫

∂Ω
v +

∫

Ω
vp + kp−1

∫

Ω
v

}
,

for all k > 0, where |v|1,p = |v|W 1,p(Ω).
On the other hand, we notice that, thanks to Hölder’s and Sobolev’s

inequalities:
∫

Ω
vp ≤ |Ak|

p
N

(∫

Ω
vp∗

) p
p∗
≤ C|Ak|

p
N

(∫

Ω
|∇v|p +

∫

Ω
vp

)
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where p∗ = Np
N−p , and, since |Ak| → 0,

(2.4)
∫

Ω
vp ≤ C|Ak|

p
N

∫

Ω
|∇v|p,

for k ≥ k0 and certain positive k0.
Furthermore, it is useful to recall that for every ε > 0 there exists a

constant C(ε) > 0 such that

(2.5)
∫

∂Ω
|u|p ≤ ε

∫

Ω
|∇u|p + C(ε)

∫

Ω
|u|p,

for every u ∈ W 1,p(Ω) (see for instance Lemma 6 in [5] for a proof when
p = 2). This inequality combined with (2.4) yields

(2.6)
∫

∂Ω
vp ≤ (ε + C(ε))|Ak|

p
N )

∫

Ω
|∇v|p,

for k ≥ k0. Inequalities (2.3), (2.4) and (2.6) imply, taking ε sufficiently
small,

(2.7) |v|p1,p ≤ Ckp−1{|v|1,∂Ω + |v|1},
for k ≥ k0, where |v|1,∂Ω = |v|L1(∂Ω).

Observe now that, thanks to the immersion L1(∂Ω) ⊂ W 1,1(Ω) and
Hölder’s inequality

|v|1,∂Ω ≤ C|v|W 1,1(Ω) ≤ C|Ak|1−
1
p |v|1,p,

while the Sobolev immersion gives

(2.8) |v|1 ≤ C|Ak|1−
1

p∗ |v|1,p.

Thus, from (2.7) we get

|v|1,p ≤ Ck{|Ak|
1
p + |Ak|

1
p−1

(1− 1
p∗ )} ≤ Ck|Ak|

1
p

for all k ≥ k0, since 1
p < 1

p−1(1 − 1
p∗ ) and |Ak| → 0. This inequality allows

us to conclude, thanks to (2.8), that

(2.9) |v|1 ≤ Ck|Ak|1+ 1
N ,

for large k, which is the desired inequality.
Finally, when (2.9) is combined with Lemma 5.1 in Chapter 2 in [9] we

obtain φ+ ∈ L∞(Ω), and since −φ is also an eigenfunction, the preceding
argument also says that φ ∈ L∞(Ω). ¤
Remark 2. Lemma 8 can be also shown by means of a Moser’s iteration
procedure following the ideas in [5] (see Lemma 5 there).

Proof of Theorem 1. To show the existence of a principal eigenvalue we bor-
row ideas from Lemma 7 in [5]. Thus, consider M := {u ∈ W 1,p(Ω) :∫
Ω |u|p = 1}, and the functional

J(u) =
∫

Ω
{|∇u|p + a(x)|u|p} − λ

∫

∂Ω
|u|p.

Inequality (2.5) implies that

J(u) ≥ (1− ε|λ|)
∫

Ω
|∇u|p − (|a|∞ + C(ε)|λ|)

∫

Ω
|u|p,
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for all u ∈ W 1,p(Ω). This means that J is coercive in M and the direct
method in the calculus of variations ([14]) implies the finiteness of

µ1,p = inf
u∈W 1,p(Ω)

∫

Ω
{|∇u|p + a(x)|u|p} − λ

∫

∂Ω
|u|p

∫

Ω
|u|p

,

and the existence of φ ∈ W 1,p(Ω) such that the infimum is achieved at u = φ.
Since the infimum is also attained at |φ|, it is easily checked that |φ| defines
an eigenfunction associated to µ1,p, hence µ1,p is a principal eigenvalue.

Next, let φ ∈ W 1,p(Ω) be a nonnegative eigenfunction associated to µ1,p.
Lemma 8 and Lieberman’s regularity results ([12]) imply that φ ∈ C1,β(Ω)
for a certain 0 < β < 1 while the Strong Maximum Principle in [15] implies
that φ > 0 throughout Ω together with |∇φ| > 0 in some strip Uη = {x ∈
Ω : dist(x, ∂Ω) < η}. Then, the equation for φ becomes strictly elliptic
in Uη and standard theory of quasilinear equations yields φ ∈ C2,α(Uη) (cf.
[9]).

As a consequence of the preceding assertions it follows that every eigen-
function φ associated to µ1,p is either positive or negative in Ω. In fact, if
φ+ 6= 0 then, since φ+ is also an eigenfunction associated to µ1,p, we get
φ+ > 0 in Ω. Thus, φ− = 0 and φ is positive.

We show now the simplicity of µ1,p. To this purpose, for two positive
eigenfunctions φ, ψ associated to µ1,p consider the integral

I :=
∫

Ω

{
|∇φ|p−2∇φ∇

(
φp − ψp

φp−1

)
− |∇ψ|p−2∇ψ∇

(
φp − ψp

ψp−1

) }
.

Under the sole assumption that both φ, ψ ∈ W 1,p(Ω) are positive and
bounded in Ω it follows (see [13]) that I ≥ 0, and I = 0 only when ψ = cφ
for a positive constant c. However, when φ, ψ are eigenfunctions associated
to µ1,p we easily see that I vanishes. Thus u = cψ and the simplicity of µ1,p

is proved.
The same argument implies that µ1,p is the unique principal eigenvalue.

In fact, suppose that φ is a positive eigenfunction associated to µ1,p while
µ 6= µ1,p is another eigenvalue which possesses a positive eigenfunction ψ.
In this case we have

I = (µ1,p − µ)
∫

Ω
(φp − ψp) ≥ 0.

However µ > µ1,p and φ can be chosen greater than ψ in Ω. Since this
contradicts the inequality, such an eigenvalue µ cannot exist.

To show the isolation of µ1,p we follow the spirit of the corresponding
statement in [1] (see also [10] for the case of the principal eigenvalue of
(1.4) and a = 1), which we simplify in view of Lemma 8. Thus, assume
on the contrary that there exists a sequence of eigenvalues µn 6= µ1,p with
associated eigenfunction φn normalized by

∫
Ω |φn|p = 1 for all n, verifying

µn → µ1,p. Notice that φ±n 6= 0 for all n. Then, from the weak formulation
of (1.2), we obtain∫

Ω
|∇φn|p + a|φn|p − λ

∫

∂Ω
|φn|p = µn.



LIMIT CASES IN AN ELLIPTIC PROBLEM 9

By means of (2.5) we see that |φn|1,p is bounded and so, passing to a sub-
sequence, φn ⇀ φ1 weakly in W 1,p(Ω). It follows that φ1 is a principal
eigenfunction which can be assumed to be positive.

On the other hand, from the weak formulation of the equation satisfied
by φn and by using φ−n as a test function, arguments similar as the ones
employed in Lemma 8 show that

|φ−n |p1,p ≤ C

∫

Ω
|φ−n |p,

for a positive constant C, not depending on n. Hence

(2.10) |{φn < 0}| ≥ k > 0

for some k > 0 and all n. However, since modulus a subsequence, φn → φ1 in
Lp(Ω) and φ1 is positive, Egorov’s theorem implies that the uniform estimate
(2.10) is not possible. Therefore, µ1,p is isolated.

Finally, the features and asymptotic behavior of µ1,p(λ) contained in
statement iv) can be shown by following the corresponding proof of Lemma 8
in [5]. ¤
Proof of Theorem 2. By using the terminology of Theorem 1, the key point
is that σ is a principal eigenvalue of (1.4) if and only if

µ1,p(σ) = 0.

In view of property iv) in Theorem 1 it is clear that (1.5) characterizes the
existence of a zero of µ1,p and so it characterizes the existence of a unique
principal eigenvalue σ := σ1,p of (1.4) as well.

In addition ∫

Ω
|∇ψ|p + a|ψ|p − σ

∫

∂Ω
|ψ|p = 0,

if σ is a principal eigenvalue. Since λ1,p(a) > 0 it follows that ψ 6= 0 on ∂Ω
and so

(2.11) σ1,p =

∫

Ω
|∇ψ|p + a|ψ|p
∫

∂Ω
|ψ|p

≤

∫

Ω
|∇u|p + a|u|p
∫

∂Ω
|u|p

,

for all u ∈ W 1,p(Ω), u 6= 0 on ∂Ω. Thus, σ = σ1,p also defines the first
eigenvalue to (1.4). Relation (1.6) follows from the decreasing character of
µ1,p and the fact that λ∗1,p = µ1,p(0).

The remaining assertions in Theorem 2 are consequences of Theorem 1.
¤

Remark 3. Inequality (2.11) states

(2.12) σ1,p = inf
u∈W 1,p(Ω)

∫

Ω
|∇u|p + a|u|p
∫

∂Ω
|u|p

.

As already seen, such infimum is finite when λ1,p(a) > 0. However, it can
be checked that the infimum is −∞ when λ1,p(a) ≤ 0 (details are omitted
for brevity). This suggests setting σ1,p = −∞ in that case.
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3. Existence and uniqueness

Our first objective is to prove the variational version of the method of sub
and supersolutions. For p > 1 we recall the notation ϕp(t) = |t|p−2t.

Proof of Theorem 3. Following the ideas in [14] we introduce the functional

J(u) =
∫

Ω

{1
p
|∇u|p + a(x)|u|p − F (x, u)

}
−

∫

∂Ω
G(x, u),

(F , G being primitives of f and g) which we consider in the convex set

M = {u ∈ W 1,p(Ω) : u ≤ u ≤ u}.
Then J is sequentially lower semicontinuous and since u, u are bounded it
is coercive in M. Thus J achieves its infimum at some u ∈M.

Now, for ε > 0 and arbitrary ϕ ∈ C1(Ω) we set

ϕε,+ = (u + εϕ− u)+ ϕε,− = (u− u− εϕ)+,

and observe that

uε := u + εϕ− ϕε,+ + ϕε,− ∈M,

for all 0 < ε < ε0. By taking the derivative of J at u in the direction of
uε − u we get

DJ(u)[uε − u] ≥ 0.

This implies that,

(3.1) εDJ(u)[ϕ] ≥ DJ(u)[ϕε,+]−DJ(u)[ϕε,−],

and we are showing next that

DJ(u)[ϕε,+] ≥ ρ(ε),

where ρ(ε) = o(ε) as ε → 0+. In fact, since DJ(u)[ϕε,+] ≥ 0,

DJ(u)[ϕε,+] ≥ (DJ(u)−DJ(u))[ϕε,+],

and,

(3.2) (DJ(u)−DJ(u))[ϕε,+] =∫

Ω
(|∇u|p−2∇u− |∇u|p−2∇u)∇ϕε,+ +

∫

Ω
(ϕp(u)− ϕp(u))ϕε,+

−
∫

Ω
(f(x, u)− f(x, u))ϕε,+ −

∫

∂Ω
(g(x, u)− g(x, u))ϕε,+.

By using the monotonicity of the p-Laplacian,

(3.3)
∫

Ω
(|∇u|p−2∇u− |∇u|p−2∇u)∇ϕε,+

≥ ε

∫

{ϕε,+>0}
(|∇u|p−2∇u− |∇u|p−2∇u)∇ϕ

≥ ε

∫

{ϕε,+>0}∩{u>u}
(|∇u|p−2∇u− |∇u|p−2∇u)∇ϕ,

since ∇u = ∇u almost everywhere in {u = u} ([8]). Observe now that
|{ϕε,+ > 0} ∩ {u > u}| → 0 as ε → 0+ and so the latter integral in (3.3) is
o(ε) as ε → 0+.
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On the other hand, |ϕε,+| < ε|ϕ| in {ϕε,+ > 0} ∩ {u > u}. Hence,

(3.4)
∣∣∣∣
∫

Ω
(f(x, u)− f(x, u))ϕε,+

∣∣∣∣

≤ ε

∫

{ϕε,+>0}∩{u>u}
|f(x, u)− f(x, u)||ϕ| = o(ε),

as ε → 0+. The remaining terms in (3.2) can be treated in the same way
and so we achieve that,

DJ(u)[ϕε,+] ≥ o(ε) ε → 0 + .

A complementary argument shows that DJ(u)[ϕε,−] ≤ o(ε) as ε → 0+.
Therefore, (3.1) implies that

DJ(u)[ϕ] ≥ 0,

for arbitrary ϕ ∈ C1(Ω). This means that u is a solution to (1.7). ¤

Remark 4. Theorem 3 can be extended to cover slightly more general set-
tings. Namely, suppose that Ω ⊂ RN is smooth and ∂Ω = Γ1 ∪ Γ2 with
Γ1, Γ2 disjoint (N − 1)−dimensional closed manifolds. Consider the mixed
problem

(3.5)





−∆pu(x) + a(x)|u|p−2u(x) = f(x, u), x ∈ Ω,

|∇u|p−2 ∂u

∂ν
(x) = g(x, u), x ∈ Γ1,

u(x) = h(x) x ∈ Γ2,

with h ∈ L∞(Γ2). Then, under the extra condition

u ≤ h ≤ u on ∂Ω

and the hypotheses of Theorem 3 we achieve again a solution u ∈ W 1,p(Ω)
to (3.5) lying between u and u. The proof runs by the same lines of Theorem
3. As minor modifications, we have to take care of the condition u = h on
Γ1 that must be incorporated to the definition of M and testing must be
performed with functions ϕ ∈ W 1,p(Ω) vanishing on Γ2.

As an immediate application of Theorem 3 we undertake the proof of
Theorem 4.

Proof of Theorem 4. To prove the necessity of (1.8) we only consider, obvi-
ously, the case σ1,p > −∞. If a positive solution u to (1.1) exists then u 6= 0
on ∂Ω. Otherwise,

−∆pu + aϕp(u) ≤ 0

implies u ≤ 0 in Ω if u∂Ω = 0 (notice that σ1,p is finite if and only if
λ1,p(a) > 0). Thus, since u 6= 0 on ∂Ω we conclude that

σ1,p ≤

∫

Ω
|∇u|p + a|u|p
∫

∂Ω
|u|p

< λ.
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Assume now that λ > σ1,p ≥ −∞. It can checked that u = Aφ1(λ), u =
Bφ1(λ), φ1(λ) the principal positive eigenfunction satisfying supφ1(λ) = 1,
define a sub and a supersolution to (1.1) provided that

0 < A ≤ (−µ1,p)
1

r−p+1 B ≥ (−µ1,p)
1

r−p+1

inf φ1(λ)
.

Notice that a choice of A and B for all values of λ is possible when σ1,p =
−∞. Thus, for suitable values of A and B we obtain, via Theorem 3, a
positive solution to (1.1).

As for the uniqueness of a positive solution to (1.1) we first assert that all
positive solutions u ∈ W 1,p(Ω) lie in L∞(Ω). In fact, observe that by setting
v = (u− k)+, k > 0, and employing v as a test function in the equation for
u we arrive at ∫

Ω
|∇v|p + a(x)ϕp(u)v ≤ |λ|

∫

∂Ω
ϕp(u)v.

By adding to both sides of the inequality a term M
∫
Ω ϕp(u)v with large

enough M we get

|v|p1,p ≤ C
{∫

Ω
ϕp(u)v +

∫

∂Ω
ϕp(u)v

}
.

But such an estimate (see (2.2), (2.3)) is just the starting point that leads
to the boundedness of u if one proceeds as in Lemma 8. Thus u ∈ L∞(Ω).
Notice in passing that the same argument works for the mixed problem (3.5)
with f = −ur, g = λϕp(u) since the test function v = (u− k)+ vanishes on
Γ2 provided that k ≥ |h|∞.

Since a positive solution u ∈ W 1,p(Ω) is bounded, then u ∈ C1,β(Ω) ∩
C2,α(Uη) by the same reasons as those providing the smoothness of the
eigenfunction φ1 in Theorem 1. Hence, for two positive solutions u1, u2

to (1.1) we can consider the test functions ϕ1 = (up
1 − up

2)/up−1
1 , ϕ2 =

(up
1 − up

2)/up−1
2 . With them we obtain the inequality (see [13])

I =
∫

Ω
|∇u1|p−2∇u1∇ϕ1 − |∇u2|p−2∇u2∇ϕ2 ≥ 0.

However, since

I = −
∫

Ω
(ur−p+1

1 − ur−p+1
2 )(up−1

1 − up−1
2 ),

then u1 = u2 is the unique option permitted by the former inequality. Thus,
(1.1) admits a unique positive solution.

Regarding iii), that ur,λ increases with λ is implied by the fact that ur,λ

is subsolution to (1.1) with λ replaced by λ′ ≥ λ. The uniqueness of positive
solutions together with the existence, via [12], of uniform C1,β bounds of ur,λ

when λ varies in bounded intervals, yield the continuous dependence of ur,λ

with values in, say, C1(Ω). Moreover, such continuity and the nonexistence
of positive solutions for λ = σ1,p entail (1.9) when σ1,p > −∞.

To show (1.10), assume σ1,p = −∞, take λn → −∞ and set un = ur,λn .
From the equality∫

Ω
|∇un|p + aup

n + (−λn)
∫

∂Ω
up

n +
∫

Ω
ur+1

n = 0,



LIMIT CASES IN AN ELLIPTIC PROBLEM 13

together with the fact 0 < un ≤ un0 ∈ L∞(Ω) for n ≥ n0 we conclude,
passing to a subsequence, that un ⇀ u weakly in W 1,p(Ω), with u ≥ 0.
Since

(−λn)
∫

∂Ω
up

n = O(1)

we have u = 0 on ∂Ω. By using test functions in W 1,p
0 (Ω) in the weak

formulation of the equation for un and passing to the limit, we see that u
defines a solution to

−∆pu + aϕp(u) = −ur

in Ω. When λ1,p(a) = 0, this yields u = 0, so that ur,λ → 0 in W 1,p(Ω) as
λ →∞.

On the other hand, when λ1,p(a) < 0 we obtain that u > 0 in Ω. In fact,
let φn be the positive eigenfunction associated to µ1,p(λn), normalized by
supΩ φn = 1. Then we have

(3.6) {−µ1,p(λn)} 1
r−p+1 φn ≤ un in Ω.

Next take αn such that φ̂n = αnφn verifies |φ̂n|p = 1 and observe that
αn ≥ |Ω|−1. We find that φ̂n ⇀ φ̂ weakly in W 1,p(Ω), where φ̂ > 0 (indeed
|φ̂|p = 1). On the other hand, a careful analysis of the proof of Lemma 8
reveals that

supαn < ∞.

Hence we achieve, by passing to a subsequence if necessary,

φn ⇀
1
θ
φ̂,

weakly in W 1,p(Ω), where θ := limαn > 0. Passing to the limit in (3.6), we
finally obtain

θ−1(−λ1,p(a))
1

r−p+1 φ̂ ≤ u

in Ω. Thus, u > 0, and it defines the unique positive solution to (1.11) when
λ1,p(a) < 0. By uniqueness, we obtain un → u weakly in W 1,p(Ω). This
concludes the proof of iii).

The proof of part iv) will be included in the next section. ¤

4. Limit profiles

To prove Theorem 5 our first ingredient is a property on the maximum of
solutions to (1.1) with varying r. The proof is based on a simple comparison
argument.

Lemma 9. For r > p − 1 let Mr,λ := supΩ ur,λ. Then M r−p+1
r,λ is an

increasing function of r.

Proof. Assume r > q > p− 1 > 0. Then we clearly have

−∆pur,λ + aϕp(ur,λ) = −ur,λ
r ≥ −M r−q

r,λ ur,λ
q in Ω,

while the boundary condition rests unchanged. It follows that the function

u = M
r−q

q−p+1

r,λ ur,λ
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is a supersolution to problem (1.1) with r replaced by q. Since u = εuq,r is
a small enough subsolution (for small ε) we obtain by uniqueness u ≥ uq,r.

Thus M
r−p+1
q−p+1

r,λ ≥ Mq,λ, which is the desired inequality. ¤

We can now proceed to prove Theorem 5.

Proof of Theorem 5. Let vr = ur,λ/Mr,λ. This function verifies

(4.1)




−∆pv(x) + avp−1(x) = −M r−p+1

r,λ vr(x), x ∈ Ω,

|∇v|p−2 ∂v

∂ν
(x) = λvp−1(x), x ∈ ∂Ω,

and |vr|∞ = 1. Thanks to Lemma 9 we have 0 < M r−p+1
r,λ ≤ Mp,λ, when

p− 1 < r < p, so that by the estimates in [12] we obtain that vr is bounded
in C1,β(Ω) for certain β ∈ (0, 1). Thus for every sequence rn → p − 1+ we
may extract a subsequence, which will be relabeled as vn, such that

vn → v

in C1(Ω). We may also assume that

M rn−p+1
rn,λ → θ

for some real number θ. Passing to the limit in the weak formulation of
(4.1) we arrive at




−∆pv(x) + avp−1(x) = −θvp−1(x), x ∈ Ω,

|∇v|p−2 ∂v

∂ν
(x) = λvp−1(x), x ∈ ∂Ω,

with v ≥ 0, |v|∞ = 1 and thus v > 0 in Ω. Hence, thanks to the uniqueness
assertion in Theorem 1 we have that

θ = −µ1,p(λ),

while
v = φ1(λ)

where φ1(λ) stands for the positive eigenfunction associated to µ1,p with
supΩ φ1(λ) = 1. It follows that vn → φ1(λ) in C1(Ω).

By writing

un = Mrn,λvn = (−µ1,p(λ) + o(1))
1

rn−p+1 (φ1(λ) + o(1)),

it is clear that assertions a) and b) follow immediately from the fact that
0 < −µ1,p(λ) < 1 if λ < λ∗ while −µ1,p(λ) > 1 in case λ > λ∗.

When λ = λ∗, we have µ1,p = −1, so that M r−p+1
r,λ → 1 as r → p − 1+.

However, no further information on Mr,λ is available from this convergence
and a more subtle analysis is required.

Now, for technical reasons we restrict ourselves to the case of linear dif-
fusion, that is, we consider p = 2. Multiplying (4.1) by φ1 and integrating
in Ω leads to ∫

Ω
φ1(M r−1

r,λ vr
r − vr) = 0.
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We may rewrite this equality as

(4.2)
M r−1

r,λ − 1

r − 1

∫

Ω
φ1v

r
r =

∫

Ω
φ1vr

1− vr−1
r

r − 1
.

Taking into account that vr → φ1 uniformly in Ω, and since φ1 > 0 in Ω, we
obtain

vr
1− vr−1

r

r − 1
→ −φ1 log φ1

uniformly in Ω and hence, from (4.2),

(4.3) lim
r→1+

M r−1
r,λ − 1

r − 1
= −

∫

Ω
φ2

1 log φ1

∫

Ω
φ2

1

= log A,

where A is given by (1.14). Now, since from (4.3) we have

Mr,λ = exp
{

1
r − 1

log (1 + (log A)(r − 1) + o(r − 1))
}

then we obtain
lim

r→1+
Mr,λ = A,

as was to be shown. The proof is finished. ¤
Now we deal with the limit as r →∞.

Proof of Theorem 6. Since a = 0 we consider the problem

(4.4)





∆pu(x) = ur(x), x ∈ Ω,

|∇u|p−2 ∂u

∂ν
(x) = λup−1(x), x ∈ ∂Ω.

To obtain the asymptotic behavior of ur,λ as r → ∞ we construct suitable
sub and supersolutions. To get a subsolution we pick ψ ∈ W 1,p(Ω)∩C1,β(Ω)
the solution to

(4.5)

{
−∆pu(x) = 1, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

The strong maximum principle ([15]) yields ψ > 0 in Ω while

c1 ≤ −|∇ψ|p−2 ∂ψ

∂ν
≤ c2 on ∂Ω,

for some positive constants c1, c2.
We look for a subsolution u under the form

(4.6) u = A(ψ + γ)−α α =
p

r − p + 1
,

where positive constants A, γ must be found. The condition

|∇u|p−2 ∂u

∂ν
≤ λup−1

on ∂Ω is furnished by the choice γ = γ− with

γ− =
(c2

λ

) 1
p−1

α.
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On the other hand, in order that u be a subsolution it is required that

αp−1{(p− 1)(α + 1)|∇ψ|p + (ψ + γ)} ≥ Ar−p+1

in Ω. Setting
Φ = (p− 1)|∇ψ|p + ψ,

such inequality is satisfied if A = A− with

A− = α
p−1

r−p+1 (inf
Ω

Φ)
1

r−p+1 .

A supersolution of the form

u = A+(ψ + γ+)−α,

satisfying
u ≤ u

in Ω is found by choosing the values:

γ+ =
(c1

λ

) 1
p−1

α A+ = α
p−1

r−p+1 (2 sup
Ω

Φ)
1

r−p+1 ,

provided that r is conveniently large (notice that γ+ → 0 as r →∞).
Finally, since

(4.7) A−(ψ(x) + γ−)−α ≤ ur,λ(x) ≤ A+(ψ(x) + γ+)−α

in Ω for large r we conclude that ur,λ → 1 uniformly in Ω as r →∞. ¤
Now we use the previous construction to conclude the proof of Theorem 4.

Proof of Theorem 4-iv). We first briefly discuss the existence of solutions to
(1.12). Observe that the problem

{
−∆pu + aup−1 = −ur ∈ Ω
u = M x ∈ ∂Ω,

has a unique positive solution u = uM ∈ C1,β(Ω) for every M > 0. In
fact u = 0, u = Bφ1(λ0) with B > 0 large can be used as a sub and a
supersolution provided µ1,p(λ0) < 0. Uniqueness, which is achieved by the
same ideas as in Theorem 1, implies that uM is increasing with M .

On the other hand, local uniform C1,β bounds for uM follow from the
estimate

uM ≤ vB x ∈ B

for every ball B ⊂ B ⊂ Ω, where v = vB is the minimal solution to{
−∆pv(x) = |a|∞vp−1(x)− vr(x), x ∈ B,

v = ∞ x ∈ ∂B.

The existence of vB is well documented (see for instance [11] and Theorem
3 in [7]). In conclusion,

uM → U

in C1(Ω) where U defines a weak solution to (1.12) in the sense that U →∞
as dist(x, ∂Ω) → 0.

We now claim that, for fixed r > p− 1,

ur,λ →∞
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uniformly on ∂Ω as λ → ∞. Since uM ≤ ur,λ ≤ U in Ω for λ large we
immediately achieve (1.13).

To show the claim we construct a suitable subsolution uλ to the auxiliary
problem

(4.8)





−∆pu(x) + aup−1(x) = −ur(x), x ∈ Uη,

|∇u|p−2 ∂u

∂ν
(x) = λup−1(x), x ∈ ∂Ω,

u(x) = ur,λ(x), dist(x, ∂Ω) = η,

where Uη = {x ∈ Ω : dist(x, ∂Ω) < η} and η > 0 is small. Notice that
u = ur,λ is its unique solution (check once more the uniqueness proof in
Theorem 1).

Following the preceding proof, a subsolution of the form

uλ = A(ψ + γ)−α,

with ψ and α as before, can be found in Uη by choosing

γ = α

{
sup
∂Ω

|∇ψ|p−2(−∂ψ

∂ν
)
}

λ−(p−1),

and taking λ ≥ λ0, η ≤ η0 and 0 < A ≤ A0. Remark that

ur,λ ≥ ur,λ0 ≥ Aψ−α ≥ uλ

on dist(x, ∂Ω) = η for all λ ≥ λ0 provided A < A1.
Now, by using uλ = Bur,λ, B large enough, as a supersolution, Theorem 3

(see Remark 4) implies in particular that

ur,λ ≥ uλ

for large λ. This shows the claim. ¤
Prof of Theorem 7. As observed in Theorem 4, sub and supersolutions to
(1.1) of the form u = Aφ1(λ), u = Bφ1(λ) can be found. Thus one arrives
at

(−µ1,p(λ))
1

r−p+1 φ1(λ)(x) ≤ ur,λ(x) ≤ (−µ1,p(λ))
1

r−p+1
φ1(λ)(x)
infΩ φ1(λ)

for all r > p− 1. This implies that

lim
r→∞

ur,λ(x) ≥ φ1(λ)(x), x ∈ Ω.

On the other hand, as in the proof of Theorem 6, a supersolution to (1.1)
can be obtained in the form

u = A(ψ(x) + γ)−α,

with α, γ = γ+ and ψ as in that proof, while A is chosen such that

Ar−p+1 = 1 + |a|∞(sup
Ω

ψ + 1)p,

for sufficiently large r. From the inequality ur,λ ≤ u one easily gets,

lim
r→∞ur,λ(x) ≤ 1.

A combination of these inequalities also gives

lim
r→∞ sup

Ω
ur,λ = 1.
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To study the behavior of supur−p+1
r,λ we first consider a = 0 in (1.1) but

p > 1 arbitrary. In this case, inequality (4.7) directly leads to

ur,λ
r−p+1(x) ≥ Ar−p+1

− γ−p
−

on ∂Ω. Since γ− ∼ Cα as r →∞ such inequality says that

(4.9) lim
r→∞(supur,λ)r−p+1 = ∞.

To conclude with the case a ∈ L∞(Ω) arbitrary with λ large, we use an
argument inspired in [3]. Let us begin assuming a > 0 in Ω and assume,
arguing by contradiction, that supur−p+1

r,λ is bounded. Choose rn →∞ and
set un = urn,λ, tn = supun, un = tnvn. Then vn solves




−∆pvn(x) + avp−1

n (x) = −urn−p+1
n vp−1

n (x), x ∈ Ω,

|∇vn|p−2 ∂v

∂ν
(x) = λvp−1

n (x), x ∈ ∂Ω.

Now, passing to a subsequence, vrn−p+1
n ⇀ h in Lq(Ω) for a nonnegative

h ∈ L∞(Ω) and a conveniently large chosen q > 1. On the other hand,
the estimates in [12] permit us showing that vn → v in C1,γ(Ω) where v is
positive, |v|∞ = 1 and solves




−∆pv(x) + avp−1(x) = −hvp−1(x), x ∈ Ω,

|∇v|p−2 ∂v

∂ν
(x) = λvp−1(x), x ∈ ∂Ω.

Sice 0 < v(x) ≤ 1 in Ω and v is p-subharmonic it follows that v(x) < 1 for
all x ∈ Ω. Otherwise, v = 1 and from the equation a + h = 0 in Ω what is
impossible. However, v < 1 implies h = 0 in Ω. Hence, v solves




−∆pv(x) + avp−1(x) = 0, x ∈ Ω,

|∇v|p−2 ∂v

∂ν
(x) = λvp−1(x), x ∈ ∂Ω.

But this implies µ1(λ) = 0 which contradicts the existence of a positive
solution to (1.1) (Theorem 1).

For an arbitrary a ∈ L∞(Ω), not necessarily positive let u = ũr,λ be the
solution to (1.1) with a replaced by |a|∞ > 0 and notice that

ur,λ ≥ ũr,λ.

The conclusion follows from the fact that ũr,λ satisfies (4.9). ¤
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