LIMIT CASES IN AN ELLIPTIC PROBLEM WITH A
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ABSTRACT. In this work we discuss existence, uniqueness and asymp-
totic profiles of }ggsitive solutions to the quasilinear problem

< —Apu+ta(x)uP = —u" inQ,
- \Vu|p_28—7: = P! on 09,

for A\ € R, where r > p—1 > 0, a € L™(Q). We analyze the ex-
istence of solutions in terms of a principal eigenvalue, and determine
their asymptotic behavior both when » — p — 1 and when r — oo.

1. INTRODUCTION

The aim of the present paper is to analyze some qualitative features ex-
hibited by the positive solutions to

—Apu(z) + a(z)uP~(z) = —u"(z) z €
(1.1) _,0u 1
[VulP %(a:) = P~ (x) x € 09,

where A € R, r > p—1 > 0, Q@ c RY is a C?> bounded smooth do-
main, 0 < « < 1, and v stands for the outward unit normal field on 9.
The operator A, is the standard p-Laplacian, which is defined in the usual
weak sense of W1P(Q) as Apu = div(|Vu[P72Vu). In addition, it will be
assumed throughout that a € L>°(£2). The main feature of problem (1.1) is
its dependence on the parameter A precisely in the boundary condition.

Problem (1.1) was studied in [4] when p = 2 (in this case A, is the usual
Laplacian) with fixed » > 1 and ¢ = 0. Under these conditions, it was
shown there that this problem admits a unique positive solution w, ) for
every A > 0, and no positive solutions when A < 0. It was further shown
that u, ) is continuous and increasing as a function of A, and its asymptotic
behavior when A — 0 and A — oo was also completely elucidated (see [4]
for additional features). However, as far as we know, the dependence of u, »
on r has not yet been clarified. Thus, one of the objectives of this work is
to analyze the variation of u,\ with respect to r, especially in the extreme
cases where r — 14 or r — oo. This study will be indeed extended to cover
the more general problem (1.1).
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To deal with the quasilinear problem (1.1), a number of auxiliary results
must be developed. In particular, a study of the flux-type eigenvalue prob-
lem

—Apu(z) + a(@)|ulP2u(z) = plulP~2u(z), r e
(1.2) _,0u 9
|VulP 5(3:) = ANulP~?u(x), x € 09,

where )\ is regarded as a parameter and it is assumed that a € L>(£2). A
number € R is said to be an eigenvalue to (1.2) if there exists ¢ € WHP(€),
not vanishing identically in €2, so that

|1V 296Vt awlop 2op = A [ jol o0+ [ 1P 6,
@ [2/9] Q

for all o € WHP(Q). In that case, ¢ is called an eigenfunction associated
to p.

Problem (1.2) has been studied in detail in [5] when p = 2, in which case
it becomes

3 —Au(z) + a(z)u(z) = pu(zx), x €,
' g:j(a:) = Au(z), z € 0N

The next statement is the extension to problem (1.2) of the corresponding
results obtained for (1.3) contained in [5] (a slightly more general version of
(1.3) was in fact considered there).

Theorem 1. Problem (1.2) admits, for every A € R, a unique principal
eigenvalue p = 1, i.e. an eigenvalue with a nonnegative associated eigen-
function ¢ € WHP(Q). It is given by the variational expression

|Vul? + alul? — )\/ |ul?
. 9] o0
p1p = inf
o) [t
Q

In addition, the following properties hold true.

i) p1p is the unique principal eigenvalue.

ii) p1,p is isolated and simple.

iii) Fvery associated eigenfunction ¢1 € WHP(Q) to p1, satisfies ¢ € L>(Q)
and furthermore ¢ € CLP(Q) N C?*(U,) for certain 3 € (0,1), n > 0, with
Uy =A{z € Q: dist(z,00) < n}.

iv) As a function of \, p1, is concave, decreasing and verifies
m 1, = A1 p(a), lim 1, = —o0,
A——00 A—00

where A1 p(a) is the first Dirichlet eigenvalue of —Apu + a(z)|ulP~?u in .
Another auxiliary eigenvalue problem we will need is

—Apu(z) + a(z)|ulP~2u(z) = 0, x €Q,

(1.4) ou

|Vu\p_2£(a;) = o|ulP~2u(z), x € 09,
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which constitutes an extension to the p-Laplacian setting of the well-known
Steklov problem (see [10] for a detailed analysis of the case a = 0). As a
direct consequence of Theorem 1 the following statement holds true.

Theorem 2. Problem (1.4) possesses a principal eigenvalue if and only if
(1.5) )\Lp(a) > 0.

Furthermore,
i) Provided that (1.5) is satisfied, (1.4) admits a unique principal eigenvalue
o1,p which is isolated and simple. In addition,

(1.6) sign o1, = sign A ,(a)

where A} (a) stands for the first Neumann eigenvalue of —Apu+a(x)|ulP~2u
in Q.

ii) Any eigenfunction 1 € WP (Q) associated to a1, satisfies 1 € CHP(Q) N
C%2(U,) for certain B € (0,1), n > 0, with U, = {z : dist(x € Q,00Q) < n}.

Remark 1. We will set 01, = —oco when A\ ,(a) < 0, for reasons that will
become clear later on (see (1.8) in Theorem 4 and Remark 3).

The well-known sub and supersolutions method is another tool that must
be properly adapted to problem (1.1). A function w € W1P(Q) is said to be
a supersolution to problem

~Apu(e) + @)l () = faw),  zen
(1.7)
V=29 @) = gla,w) v e o0,

if
/ VaP-2VaVy + a(z)|al2ap > / gz, @0 + / f(a,0),
Q o0 Q

holds for all nonnegative ¢ € W1P(€2). Subsolutions are defined in a sym-
metric way. Of course, the existence of the integrals involving f and g is
implicitly assumed.

In order to avoid the use of comparison, which is certainly a delicate
issue when dealing with the p-Laplacian, the next statement furnishes a
variational version of the method of sub a supersolutions for problem (1.7)
(cf. also [14]). Recall that a function h : X x R — R, (X, ) a measure
space, is a Carathéodory function if A(-,u) is measurable in X for all u € R
while h(z,-) is continuous in R for almost all z € X.

Theorem 3. Let f : QxR — R, g: 002 xR — R be Carathéodory functions
satisfying | f(z,u)] < M and |g(z,u)| < M if (z,u) € Q x (=R, R) and
(r,u) € 09 x (=R, R), respectively, for arbitrary R, where M = M(R).
Suppose u, w € WIP(Q) N L>®(Q) N L>(99) are a sub and a supersolution
to (1.7) so that u < W in Q. Then (1.7) admits a solution u € WhP((Q)
verifying

u <u<u,

i .

After these preliminary tools have been introduced, we can state a first
group of results concerning problem (1.1).
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Theorem 4. Assume Q C RN is a class C*® bounded domain and r >
p—1>0. Then the following properties hold:
i) Problem (1.1) admits a positive solution if and only if

(1.8) A> O1,p,

where the value o1, = —o0 is allowed. When (1.8) holds, the positive solu-
tion is unique, and it will be denoted by u, \ € WHP(Q).

i) u, ) € CHP(Q)NC3(U,) for a certain 3 € (0,1) and n > 0 small enough,
where Uy = {x € Q : dist(z,0Q) < n}.

iii) The mapping A — u, ) is increasing and continuous with values in C*(€2).
Moreover,
(1.9) lim w, =0

A—o1p+

in C1P(Q) provided o1, > —oc. If 01, = —00 then

{0 if Aipla) =0

1.10 Iim w,y =
(1-10) A if Mpla) <0,

A—0o1,p+
where u = w(x) stands for the unique positive solution to

{—Apu(:z‘) + a(x)|ulP~2u(z) = —u"(z), x e Q,

(L.11) u(z) =0, x € 0N

when A1 p(a) < 0.
iv) Let uw = U(z) be the minimal solution to the singular boundary value
problem

(1.12) —Apu(x) + a(@)ulP~?u(z) = —u’ (), reQ,
| t=oe x € 0.
Then,
(113) >\hm Up ) = U,
in C1(Q).

We turn now to study the asymptotic behavior of the positive solution
urx to (1.1) both as r — (p — 1)+ and when r — oo. Let us begin with
the former case and to this purpose notice that Theorem 1-iv) implies the
existence of a value

o1p <A <00
such that

pp(A7) = —1.
In particular,

0<—pip(A) <1  for  o1p <A<,

while
—p1p(A) >1 if A >\

Then we have:
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Theorem 5. For A > o1, let u = u, ) be the unique positive solution to
problem (1.1) forr > p—1. Then,

1
SUp iy = (—pi1,p(A) + 0(1)) 777

as r — p — 1+ while
Up\ = (sgp ur ) {01(A) +o(1)}

in CH(Q) as r — p — 14, where ¢1(\) stands for the positive eigenfunction
associated to p11 ,(N) normalized so as supg ¢1(A) = 1. In particular
a) uy\ — 0 uniformly in Q asr — (p— 1)+ if A < \* ;

b) wu, ) — oo uniformly in Q asr — (p — 1)+ when X > \*.
Moreover, for A = X\* and p =2 in problem (1.1) then
ury — A ¢1(\")

uniformly in Q as r — p — 14+ where A is given by

/ ¢1 log ¢1
e

Note that in the previous theorem the case A = A\* with p # 2 is left open.

As for the behavior of the solution u, y to (1.1) when r — oo the first in-
teresting conclusion is that for every A > o1 4, u, x keeps uniformly bounded
in Q as 7 — 0o0. On the other hand, provided that coefficient a = 0 in (1.1)
we achieve a better result. Namely, solutions become flat throughout the
domain €2 as r increases.

(1.14) = exp

Theorem 6. Assume that a = 0 in problem (1.1). Then, for any X > o1,
we have u,.x — 1 uniformly in Q as r — oo.

It should be mentioned that a similar analysis for the logistic problem

—Au(z) = Au(z) — b(x)u" (x), x €,
pasy AR S Hw e, een

which is somehow related to (1.1), was performed in [3], [2]. However, the
situation was substantially different there when r — oo, since the limit
problem so obtained is of a free boundary type, mainly due to the Dirichlet
condition. On the other hand, if u = 4, ) stands for the unique positive
solution to (1.15) for A > AP (the first Dirichlet eigenvalue of —A in ), an
important feature in the analysis in [3] is the fact that
(sup &n,\)’ul
Q

remains bounded as r — oo. This follows easily from the boundary condition
when b > 0 in Q. This fact is in strong contrast with the next result.

Theorem 7. Let a € L*°(2). Then, for fized A > o1 4

$1(N\) < lim Up ) < hm ury <1,

r—00
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where ¢1(A) is the positive eigenfunction associated to py ,(X) normalized so
that sup ¢1(\) = 1. In particular,

lim supu, ) =1,

r—00
However, if either a = 0 or a € L*®(Q) is arbitrary but A\ > o01(|ale) in
(1.1) then
r—p+1

lim sup(uy )
rT—0 O

= OQ.

The rest of the paper is organized as follows: in Section 2 we analyze the
eigenvalue problems (1.2) and (1.4). Section 3 is dedicated to develop the
method of sub and supersolutions for problem (1.7), that will be used here
for the proof of Theorem 4. Finally, in Section 4 the asymptotic behavior of
the positive solution to (1.1) as 7 — p — 1 and r — +o0 is considered.

2. EIGENVALUE PROBLEMS

In this section we perform the analysis of the eigenvalue problems (1.2)
and (1.4). We begin with a fundamental result concerning the boundedness
of eigenfunctions.

Lemma 8. Let ¢ € WIP(Q) be an eigenfunction associated to an arbitrary
eigenvalue A of (1.2). Then ¢ € L>=(Q).

Proof. Notice that we may assume 1 < p < N, since otherwise W1P(Q) C
L>(Q). Also, for the sake of simplicity we will only consider p < N, the
case p = N being handled in a similar way.

For k > 0set v = (¢— k)", Ay, = {z € Q: ¢(x) > k}. We show an
estimate of the form

(2.1) vl < CKO|Ax |,
for every k > kg and certain positive constants kg, C, d, € with § < 1+ ¢,
where |v]1 = [v|1(q)-

By using v as a test function in the equation for ¢ we obtain

/Q VolP + pp(@)0 < A /a )0+ (ol + 1) /Q eold)

<c {/89 e+ | sop<¢>>v} ,

where ¢, (¢) = |p|P~2¢ and C will stand in the sequel for a positive constant
independent of ¢ and k, not necessarily the same everywhere.

Next notice that 0 < v < ¢ in the support of v and ¢ < v + k, hence
op(¢) < C(vP~! 4+ kP~1). Thus (2.2) implies

(2.3) |v|ﬁ’p<0{/ vp+kp—1/ U+/vp+kp—1/v},
’ o0 o0 Q Q

for all k£ > 0, where [v]1,, = |v]w1p(q)-
On the other hand, we notice that, thanks to Holder’s and Sobolev’s
inequalities:

/'l)p < ‘Ak‘% </ ,Up*>
Q Q

(2.2)

b

< ClAF (/ ywu/vp)
Q Q

]



LIMIT CASES IN AN ELLIPTIC PROBLEM 7

where p* = NN—_’;, and, since |Ag| — 0,

(2.4) /vpgcmk\ﬁ/ VP,
Q Q

for k > ko and certain positive k.
Furthermore, it is useful to recall that for every € > 0 there exists a
constant C'(¢) > 0 such that

(2.5) [ e [ [wurce [

for every u € W1P(Q) (see for instance Lemma 6 in [5] for a proof when
p = 2). This inequality combined with (2.4) yields

(2.6) /a < e+ OE)IALF) /Q VP,

for k > ko. Inequalities (2.3), (2.4) and (2.6) imply, taking e sufficiently
small,

(2.7) wff, < CkP o

Loa +[vl1},
for k > ko, where |v[1 90 = |v[1150)-
Observe now that, thanks to the immersion L'(9Q) c WH1(Q) and
Hoélder’s inequality
_1
o900 < Clolwiq) < ClAk " 7[vl1p,
while the Sobolev immersion gives
1
(2.8) [o]1 < ClAKI" " [vl1p-
Thus, from (2.7) we get

01 < CR{|AR]? + A7 10759} < Ck| Ag|?

1 1

for all k > ko, since = < [ﬁ(l — —) and |Ag| — 0. This inequality allows

p p*
us to conclude, thanks to (2.8), that
(2.9) ol < Ck|Ag| T,

for large k, which is the desired inequality.

Finally, when (2.9) is combined with Lemma 5.1 in Chapter 2 in [9] we
obtain ¢t € L*°(f), and since —¢ is also an eigenfunction, the preceding
argument also says that ¢ € L(9). O

Remark 2. Lemma 8 can be also shown by means of a Moser’s iteration
procedure following the ideas in [5] (see Lemma 5 there).

Proof of Theorem 1. To show the existence of a principal eigenvalue we bor-
row ideas from Lemma 7 in [5]. Thus, consider M = {u € WhP(Q) :
Jq lulP = 1}, and the functional

J(u) = /Q (IVul? + a(o)]ul?} — A /8 Jul

Inequality (2.5) implies that

J(u) > (1 elA) /Q VP — (Jalse + CE)A) /Q uf?,
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for all uw € WP(Q). This means that J is coercive in M and the direct
method in the calculus of variations ([14]) implies the finiteness of

/Q (IVul? + a(z) ul?} - A /a Ju
)

b
/ uf?
Q

and the existence of ¢ € W1P(Q) such that the infimum is achieved at u = ¢.
Since the infimum is also attained at |¢|, it is easily checked that |¢| defines
an eigenfunction associated to f1,p, hence piq ), is a principal eigenvalue.

Next, let ¢ € W1P(Q) be a nonnegative eigenfunction associated to jg .
Lemma 8 and Lieberman’s regularity results ([12]) imply that ¢ € C15(Q)
for a certain 0 < # < 1 while the Strong Maximum Principle in [15] implies
that ¢ > 0 throughout © together with |V¢| > 0 in some strip U, = {z €
Q : dist(x,09) < n}. Then, the equation for ¢ becomes strictly elliptic
in U, and standard theory of quasilinear equations yields ¢ € C%(U,) (cf.
).

As a consequence of the preceding assertions it follows that every eigen-
function ¢ associated to p1 ), is either positive or negative in . In fact, if
¢t # 0 then, since ¢ is also an eigenfunction associated to p,, we get
¢t > 0in Q. Thus, ¢~ = 0 and ¢ is positive.

We show now the simplicity of pi,. To this purpose, for two positive
eigenfunctions ¢, 1) associated to p1, consider the integral

_ 2 P — P 2 P — P
1._/9{|v¢|1) VoV <¢p_1> — | VPIVV <¢p—1> }
Under the sole assumption that both ¢,v € WYP(Q) are positive and
bounded in Q it follows (see [13]) that I > 0, and I = 0 only when ¢ = c¢
for a positive constant ¢. However, when ¢, are eigenfunctions associated
to p1, we easily see that I vanishes. Thus u = ¢ and the simplicity of p1,,

is proved.

The same argument implies that jq, is the unique principal eigenvalue.
In fact, suppose that ¢ is a positive eigenfunction associated to ui, while
i # p1p is another eigenvalue which possesses a positive eigenfunction .
In this case we have

1,p = inf
Hip u€W1.r(Q

I=(up=n) [ (@ =020

However p > p1, and ¢ can be chosen greater than ¢ in €. Since this
contradicts the inequality, such an eigenvalue p cannot exist.

To show the isolation of s, we follow the spirit of the corresponding
statement in [1] (see also [10] for the case of the principal eigenvalue of
(1.4) and @ = 1), which we simplify in view of Lemma 8. Thus, assume
on the contrary that there exists a sequence of eigenvalues p, # p1, with
associated eigenfunction ¢, normalized by fQ |pn|P = 1 for all n, verifying
fn — p1,p- Notice that ¢F # 0 for all n. Then, from the weak formulation
of (1.2), we obtain

/ Vonl? + alénl? — A/ bul? = tin.
9] o0
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By means of (2.5) we see that |¢y,|1, is bounded and so, passing to a sub-
sequence, ¢, — ¢ weakly in WHP(Q). It follows that ¢; is a principal
eigenfunction which can be assumed to be positive.

On the other hand, from the weak formulation of the equation satisfied
by ¢, and by using ¢,, as a test function, arguments similar as the ones
employed in Lemma 8 show that

bl < C/QWIP,
for a positive constant C', not depending on n. Hence

(2.10) H{on <0} > k>0

for some k£ > 0 and all n. However, since modulus a subsequence, ¢, — ¢1 in
LP(Q) and ¢, is positive, Egorov’s theorem implies that the uniform estimate
(2.10) is not possible. Therefore, p1 ), is isolated.

Finally, the features and asymptotic behavior of f,(\) contained in
statement iv) can be shown by following the corresponding proof of Lemma 8
in [5]. O

Proof of Theorem 2. By using the terminology of Theorem 1, the key point
is that o is a principal eigenvalue of (1.4) if and only if

/’LI,P(O—) = O'
In view of property iv) in Theorem 1 it is clear that (1.5) characterizes the

existence of a zero of 11, and so it characterizes the existence of a unique
principal eigenvalue o := o1 ), of (1.4) as well.

In addition
/vap+www—a/ P = 0,
Q o0

if o is a principal eigenvalue. Since A1 p(a) > 0 it follows that ¢ # 0 on 0Q
and so

/Wv¢w+aww /WVup+amw
QO S 0

| wr | o

for all u € WP(Q), u # 0 on 9Q. Thus, ¢ = 01, also defines the first
eigenvalue to (1.4). Relation (1.6) follows from the decreasing character of
p1p and the fact that A} , = p1 5(0).

The remaining assertions in Theorem 2 are consequences of Theorem 1.
O

(2.11) o1p =

Remark 3. Inequality (2.11) states

/vap+amw
(2.12) o1p= inf 7Y .

ueWLr(Q) / uf?
a0

As already seen, such infimum is finite when A; ,(a) > 0. However, it can
be checked that the infimum is —oo when Aj ,(a) < 0 (details are omitted
for brevity). This suggests setting o1, = —oo in that case.
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3. EXISTENCE AND UNIQUENESS

Our first objective is to prove the variational version of the method of sub
and supersolutions. For p > 1 we recall the notation ¢, (t) = [t|P~2¢.

Proof of Theorem 3. Following the ideas in [14] we introduce the functional

I = [ {Sivup+a@iop - P} - [ G,

(F, G being primitives of f and g) which we consider in the convex set
M={uecW"(Q):u <u<T}.

Then J is sequentially lower semicontinuous and since u, w are bounded it
is coercive in M. Thus J achieves its infimum at some u € M.
Now, for € > 0 and arbitrary ¢ € C1(Q) we set

Pe,+ = (u+5‘:0_ﬂ)+ Pe,— = (H_U_5‘P)+a
and observe that
Us = U+ EP — Pe 4 + e € M,

for all 0 < € < gp. By taking the derivative of J at u in the direction of
Us — U We get

DJ(u)[us —u] > 0.
This implies that,
(3.1) eDJ(u)lg] = DJ(u)[pe] — DJ(u)]ee, -],
and we are showing next that

DJ(u)lpe+] = ple),
where p(e) = o(¢) as ¢ — 0+. In fact, since DJ(u)[pe 4] > 0,

DJ(u)lpe ] = (DJ(u) = DJ(@))[e 1],

and,

3.2) (DJ(u) = DJ(@))[pe,+] =
/(IVUVHVU — [ValP 2 va) V. + +/(<Pp(U) = ¢p(@)) e+
Q Q

- / (F(,u) — f(2,))pes — / (902, u) — 9z, T))ge 4.
Q

o0
By using the monotonicity of the p-Laplacian,

(3.3) / ([VulP~2Vu — |ValP2Va) Ve. .
Q
> 5/ (|Vu|P~2Vu — |ValP~2Va)Ve
{pe,+>0}

> e / (|VulP~2Vu — |Va|P~2Va) Ve,
{pe,+>0N{T>u}

since Vu = Vu almost everywhere in {u = w} ([8]). Observe now that
H{ee+ >0} N{u > u}| — 0 as ¢ — 0+ and so the latter integral in (3.3) is
o(e) as e — 0+.
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On the other hand, |¢: 4| < e|¢| in {¢e 4+ > 0} N{u > u}. Hence,

(3.4)

t/U@wO—f@mD%ﬁ
Q

< Faw) = fa @)l = ofe),
{pe,+ >0 N{u>u}
as € — 0+. The remaining terms in (3.2) can be treated in the same way
and so we achieve that,

DI(W)lper] > ofe) €0+,

A complementary argument shows that DJ(u)[p. -] < o(e) as € — 0+.
Therefore, (3.1) implies that

DJ(u)lg] = 0,
for arbitrary ¢ € C1(Q2). This means that u is a solution to (1.7). O

Remark 4. Theorem 3 can be extended to cover slightly more general set-
tings. Namely, suppose that @ C RY is smooth and 9Q = I'; UT'y with
I'1, 'y disjoint (N — 1)—dimensional closed manifolds. Consider the mixed
problem

~Apu(z) + a(z)|ulP~?u(z) = f(z,u), x € Q,
(3.5) yww—?%(x) = g(z,u), zel,
u(z) = h(z) z €Ty,

with h € L*°(T'2). Then, under the extra condition
u<h<u on 0f)

and the hypotheses of Theorem 3 we achieve again a solution u € W1P(Q)
to (3.5) lying between u and w. The proof runs by the same lines of Theorem
3. As minor modifications, we have to take care of the condition v = h on
I"y that must be incorporated to the definition of M and testing must be
performed with functions ¢ € W1P(Q) vanishing on T's.

As an immediate application of Theorem 3 we undertake the proof of
Theorem 4.

Proof of Theorem 4. To prove the necessity of (1.8) we only consider, obvi-
ously, the case 01, > —oo. If a positive solution u to (1.1) exists then u # 0
on J€). Otherwise,

—Apu+ app(u) <0

implies v < 0 in Q if upo = 0 (notice that oy, is finite if and only if
A p(a) > 0). Thus, since u # 0 on 92 we conclude that

/ |Vul? 4+ alulP
< L0 < A\

Olp >
[ 1l
l9]
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Assume now that A > 01, > —oo. It can checked that u = A¢1 (), T
Bg1(N), ¢1(A) the principal positive eigenfunction satisfying sup ¢1(\) =
define a sub and a supersolution to (1.1) provided that

1
(—pap)

inf ¢1(A)

Notice that a choice of A and B for all values of X is possible when o1, =
—oo. Thus, for suitable values of A and B we obtain, via Theorem 3, a
positive solution to (1.1).

As for the uniqueness of a positive solution to (1.1) we first assert that all
positive solutions u € W1P(Q) lie in L>(€2). In fact, observe that by setting
v=(u—k)", k>0, and employing v as a test function in the equation for
u we arrive at

0<A<(~py) ™7 B>

/Q IVolP + a(@)gp(w) < | /a eyt

By adding to both sides of the inequality a term M [, ¢, (u)v with large

enough M we get
ol <c{ [ enwet [ pntwe}.
0 a0

But such an estimate (see (2.2), (2.3)) is just the starting point that leads
to the boundedness of u if one proceeds as in Lemma 8. Thus u € L*(9Q).
Notice in passing that the same argument works for the mixed problem (3.5)
with f = —u", g = App(u) since the test function v = (u — k)™ vanishes on
[y provided that k& > |h|eo.

Since a positive solution u € W1P(Q) is bounded, then v € C#(Q) N
C%*%(U,) by the same reasons as those providing the smoothness of the
eigenfunction ¢7 in Theorem 1. Hence, for two positive solutions ui, uo
to (1.1) we can consider the test functions p; = (uf — ub)/ul™", @y =
(uf — ub)/ub~. With them we obtain the inequality (see [13])

I = / ‘Vul‘p72VU1V(p1 — ’VUQ’p72VUQVg02 > 0.
Q
However, since
—p+1 —p+1 -1 -1
== [ = -,

then u; = wuo is the unique option permitted by the former inequality. Thus,
(1.1) admits a unique positive solution.

Regarding iii), that u, ) increases with A is implied by the fact that u, x
is subsolution to (1.1) with A replaced by X' > X. The uniqueness of positive
solutions together with the existence, via [12], of uniform C'*# bounds of u,.
when A varies in bounded intervals, yield the continuous dependence of w,. »
with values in, say, C'(2). Moreover, such continuity and the nonexistence
of positive solutions for A = o1, entail (1.9) when oy, > —oc.

To show (1.10), assume o1, = —o0, take A, — —oo and set u, = u,\,.
From the equality

/ |Vu,|P + aul + (—)\n)/ ub —|—/ ul Tt =0,
Q a0 Q
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together with the fact 0 < w, < wu,, € L*(Q) for n > ng we conclude,
passing to a subsequence, that u, — u weakly in WHP(Q), with u > 0.
Since

(~An) /8 b= o)

we have v = 0 on 0Q2. By using test functions in VVO1 P(Q) in the weak
formulation of the equation for u, and passing to the limit, we see that u
defines a solution to
A+ agy(u) = —

in Q. When A p(a) = 0, this yields u = 0, so that u, y — 0 in W1P(Q) as
A — 00.

On the other hand, when X\ ,(a) < 0 we obtain that u > 0 in Q. In fact,
let ¢, be the positive eigenfunction associated to j1 (), normalized by
supq ¢n = 1. Then we have

(3.6) (115 (M)} P T b <y in €.

Next take a,, such that gZ;n = ap¢, verifies |g5n\p = 1 and observe that
an > Q7L We find that ¢, — ¢ weakly in WP (Q), where ¢ > 0 (indeed
|¢|p, = 1). On the other hand, a careful analysis of the proof of Lemma 8
reveals that
sup o, < 00.
Hence we achieve, by passing to a subsequence if necessary,
1 -

an 5(;5’
weakly in W1P(Q), where 6 := lim o, > 0. Passing to the limit in (3.6), we
finally obtain

1 N
07 (—Mp(a)) =) < w

in . Thus, v > 0, and it defines the unique positive solution to (1.11) when
A1p(a) < 0. By uniqueness, we obtain u, — u weakly in W'?(Q). This

concludes the proof of iii).
The proof of part iv) will be included in the next section. O

4. LIMIT PROFILES

To prove Theorem 5 our first ingredient is a property on the maximum of
solutions to (1.1) with varying . The proof is based on a simple comparison
argument.

Lemma 9. For r > p — 1 let M, ) := supqu,). Then M:;p+l s an
increasing function of r.

Proof. Assume r > g > p—1 > 0. Then we clearly have

_ r—q .
—Apury + a@p(ur,)\) =—u,)\" > —-M N upA? in Q,

- T,

while the boundary condition rests unchanged. It follows that the function

T

—q
27— q—p+1
U= Mr,/\ Up )
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is a supersolution to problem (1.1) with r replaced by ¢. Since u = eug, is

a small enough subsolution (for small €) we obtain by uniqueness @ > ug.,.
r—p+1

Thus M2 """ > My x, which is the desired inequality. O

We can now proceed to prove Theorem 5.
Proof of Theorem 5. Let v, = u, x/M, x. This function verifies
~Apu(z) + avPH(z) = —M;;p+lvr(x), z €,

4.1
(1) ]V’U|p_28—:/)(:n) = P (x), x € 09,

and |v;|oc = 1. Thanks to Lemma 9 we have 0 < MT Pl < M, , when

—1 < r < p, so that by the estimates in [12] we obtaln that v, is bounded
in C’1 #B(Q) for certain B € (0,1). Thus for every sequence r, — p — 1+ we
may extract a subsequence, which will be relabeled as v,,, such that

Up — U

in C1(Q2). We may also assume that

M P

T A — 0

for some real number §. Passing to the limit in the weak formulation of
(4.1) we arrive at

—Apv(z) + P (z) = —0vP (), x €,
—(x) = WP (z), x € 09,

with v > 0, |v|oo = 1 and thus v > 0 in Q. Hence, thanks to the uniqueness
assertion in Theorem 1 we have that

0 = —p1p(A),
while
v = ¢1()
where ¢1()) stands for the positive eigenfunction associated to p1, with

supq ¢1(A) = 1. It follows that v, — ¢1(\) in oL (ﬁ)
By writing

tin = My, 30 = (—pi1,p(N) + 0(1) 777 (61(N) + o(1),

it is clear that assertions a) and b) follow immediately from the fact that
0 < —p1p(A) <1if X < A* while —pq,(A) > 1 in case A > \*.

When A = X\*, we have 11, = —1, so that MT PP qasr —p—14.
However, no further information on M, , is avallable from this convergence
and a more subtle analysis is required.

Now, for technical reasons we restrict ourselves to the case of linear dif-
fusion, that is, we consider p = 2. Multiplying (4.1) by ¢1 and integrating
in Q2 leads to

/ (pl(M:;lU: —v) =0.
Q b
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We may rewrite this equality as

My -1 1 —vp~
(4.2) 7“—1 /(;511) —/d)lw r—1

Taking into account that v, — ¢; uniformly in £, and since ¢; > 0 in Q, we

obtain
1—ort

vp———— — —¢1log ¢y
r—1

uniformly in € and hence, from (4.2),

. 1m ’

—14 r—1 N
' /451
Q

where A is given by (1.14). Now, since from (4.3) we have

M; s = exp { ~Tog (14 (log A)(r — 1) +o{r 1>>}

=log A,

then we obtain
lim M, = A,
r—1+
as was to be shown. The proof is finished. O
Now we deal with the limit as r — oo.

Proof of Theorem 6. Since a = 0 we consider the problem

Apu(z) = u"(z), x €,
4.4
44) ]Vu\p*Q%(:r) = P~ 1(z), x € 0N

To obtain the asymptotic behavior of u, ) as r — oo we construct suitable

sub and supersolutions. To get a subsolution we pick ¢» € WhP(Q)NCHP(Q)
the solution to

—Apu(z) =1, x €,
(4:5) { u(z) =0, x € oS

The strong maximum principle ([15]) yields ¢ > 0 in Q while
0
c < —‘V¢|p_2£ <cz on 04,
ov

for some positive constants ci, cs.
We look for a subsolution » under the form
p

4.6 =A e =—)
(16) w= Ay +7) o=t
where positive constants A,y must be found. The condition

|vg’p—2% < )\yp—l
ov

on 0f) is furnished by the choice v = y_ with

()
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On the other hand, in order that u be a subsolution it is required that
P Hp = D(a+DIVYP + (¥ + )} > AP
in . Setting
®=(p-1IVylP + ¢,
such inequality is satisfied if A = A_ with

p—1 1
A_ = arptl (igf O)r-ptt,

A supersolution of the form

satisfying

in  is found by choosing the values:
= _p=1_ 1
T+ = (%) o Ay =aTer (2sup @)
Q

provided that r is conveniently large (notice that v; — 0 as r — o0).
Finally, since

(4.7) A_(p(z) +7-)"" Supp(z) < Ap((2) +94)7°

in €2 for large r we conclude that u, » — 1 uniformly in € as r — oo. O
Now we use the previous construction to conclude the proof of Theorem 4.

Proof of Theorem 4-iv). We first briefly discuss the existence of solutions to
(1.12). Observe that the problem

—Apu+ auP~t = —u” €N
uw=M x € 09,

has a unique positive solution u = uy; € CHP(Q) for every M > 0. In
fact u = 0, w = Bg1(A\g) with B > 0 large can be used as a sub and a
supersolution provided f11,,(Ag) < 0. Uniqueness, which is achieved by the
same ideas as in Theorem 1, implies that uy, is increasing with M.
On the other hand, local uniform C%# bounds for uy; follow from the
estimate
uy < vp r€B

for every ball B C B C €, where v = vp is the minimal solution to

~Ap(@) = [aloct? (@) ~ v"(z), @€ B,
v =00 r € 0B.

The existence of vp is well documented (see for instance [11] and Theorem
3 in [7]). In conclusion,
upy — U
in C1(Q)) where U defines a weak solution to (1.12) in the sense that U — oo
as dist(z,02) — 0.
We now claim that, for fixed r > p — 1,

Up )\ — OO
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uniformly on 02 as A — oo. Since upy < u,p < U in Q for A large we
immediately achieve (1.13).

To show the claim we construct a suitable subsolution u, to the auxiliary
problem

—Apu(x) + auP~1(x) = —u"(x), x € Uy,
(4.8) |Vu|p_2gu(:z) = AP (2), x €09,
14
u(z) = upx(2), dist(z,0Q) = n,

where U, = {z € Q : dist(z,082) < n} and n > 0 is small. Notice that
u = u,) is its unique solution (check once more the uniqueness proof in
Theorem 1).
Following the preceding proof, a subsolution of the form
uy =AY +7)",

with 1 and « as before, can be found in U,, by choosing
y=a {sup \vwrf’”(—aw)} A=),
20 ov
and taking A > Ag, n < 1p and 0 < A < Ay. Remark that

Up ) 2 Uprg = A¢7a > Uy
on dist(x, 0Q) = n for all A > ¢ provided A < A;.
Now, by using uy = Bu, , B large enough, as a supersolution, Theorem 3
(see Remark 4) implies in particular that
Uy \ > Uy
for large A. This shows the claim. O
Prof of Theorem 7. As observed in Theorem 4, sub and supersolutions to

(1.1) of the form u = A¢1(N), w = B¢1(A) can be found. Thus one arrives
at

(a1 @) < 1ra(0) < ()71 A,

for all » > p — 1. This implies that
lim u, z(x) > ¢1(N)(2), x €.

r—00

On the other hand, as in the proof of Theorem 6, a supersolution to (1.1)
can be obtained in the form

= AW() +7) ",
with «, v = v4 and % as in that proof, while A is chosen such that
AT =14 oo (supy + 1)P,
Q
for sufficiently large r. From the inequality u, x» < u one easily gets,
lim ur () < 1.
r—00
A combination of these inequalities also gives

lim supu, ) = 1.
T—00 ()
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To study the behavior of supu, \” *1 we first consider a = 0 in (1.1) but

p > 1 arbitrary. In this case, inequality (4.7) directly leads to
wp AT P () > AP

on 0f). Since y7_ ~ Ca as r — oo such inequality says that

TPl — o,

(4.9) lim (sup u, y)
T—00

To conclude with the case a € L*°(Q2) arbitrary with A large, we use an

argument inspired in [3]. Let us begin assuming a > 0 in 2 and assume,

arguing by contradiction, that supu, " *1 is bounded. Choose r,, — 0o and

set u, = Uy, x, tn = SUP Uy, Uy = tyV,. Then v, solves

—Apvn () + avh N (z) = —upr TP (), r e,
\an\p‘zgv(x) = xh (@), x € 09.
v

Now, passing to a subsequence, vy" 1 hin L1(Q) for a nonnegative
h € L*°(Q) and a conveniently large chosen ¢ > 1. On the other hand,
the estimates in [12] permit us showing that v, — v in C17(Q) where v is
positive, |[v|o = 1 and solves

—Apv(z) + avP~H(z) = —hoP~1(z), T €,
ov
p—2 — )Pl
|Vl ey (x) = AP~ (2), x € 0f.

Sice 0 < v(z) < 1in 2 and v is p-subharmonic it follows that v(z) < 1 for
all z € Q. Otherwise, v = 1 and from the equation a + h = 0 in  what is
impossible. However, v < 1 implies h = 0 in 2. Hence, v solves

—Ap(z) + avP~H(x) = 0, x €,
ov
p—22"7 — \pyp—1
|Vl ay(:r) AP~ H(x), x € oS

But this implies u1(A) = 0 which contradicts the existence of a positive
solution to (1.1) (Theorem 1).

For an arbitrary a € L*°(2), not necessarily positive let u = @, \ be the
solution to (1.1) with a replaced by |a|o > 0 and notice that

Up ) > ﬂr,)w
The conclusion follows from the fact that @, ) satisfies (4.9). O
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