LIMIT CASES IN AN ELLIPTIC PROBLEM WITH A PARAMETER-DEPENDENT BOUNDARY CONDITION

JORGE GARCÍA-MELIÁN, JULIO D. ROSSI AND JOSÉ C. SABINA DE LIS

ABSTRACT. In this work we discuss existence, uniqueness and asymptotic profiles of positive solutions to the quasilinear problem

$$\begin{cases} -\Delta_p u + a(x)u^{p-1} = -u^r & \text{in } \Omega, \\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = \lambda u^{p-1} & \text{on } \partial\Omega, \end{cases}$$

for $\lambda \in \mathbb{R}$, where r > p - 1 > 0, $a \in L^{\infty}(\Omega)$. We analyze the existence of solutions in terms of a principal eigenvalue, and determine their asymptotic behavior both when $r \to p - 1$ and when $r \to \infty$.

1. INTRODUCTION

The aim of the present paper is to analyze some qualitative features exhibited by the positive solutions to

(1.1)
$$\begin{cases} -\Delta_p u(x) + a(x)u^{p-1}(x) = -u^r(x) & x \in \Omega\\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu}(x) = \lambda u^{p-1}(x) & x \in \partial\Omega, \end{cases}$$

where $\lambda \in \mathbb{R}$, r > p - 1 > 0, $\Omega \subset \mathbb{R}^N$ is a $C^{2,\alpha}$ bounded smooth domain, $0 < \alpha \leq 1$, and ν stands for the outward unit normal field on $\partial\Omega$. The operator Δ_p is the standard *p*-Laplacian, which is defined in the usual weak sense of $W^{1,p}(\Omega)$ as $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$. In addition, it will be assumed throughout that $a \in L^{\infty}(\Omega)$. The main feature of problem (1.1) is its dependence on the parameter λ precisely in the boundary condition.

Problem (1.1) was studied in [4] when p = 2 (in this case Δ_p is the usual Laplacian) with fixed r > 1 and a = 0. Under these conditions, it was shown there that this problem admits a unique positive solution $u_{r,\lambda}$ for every $\lambda > 0$, and no positive solutions when $\lambda \leq 0$. It was further shown that $u_{r,\lambda}$ is continuous and increasing as a function of λ , and its asymptotic behavior when $\lambda \to 0$ and $\lambda \to \infty$ was also completely elucidated (see [4] for additional features). However, as far as we know, the dependence of $u_{r,\lambda}$ on r has not yet been clarified. Thus, one of the objectives of this work is to analyze the variation of $u_{r,\lambda}$ with respect to r, especially in the extreme cases where $r \to 1+$ or $r \to \infty$. This study will be indeed extended to cover the more general problem (1.1).

Date: July 13, 2010.

²⁰⁰⁰ Mathematics Subject Classification. 35B40, 35J70.

Key words and phrases. Linear and nonlinear eigenvalue problems, sub and supersolutions, variational methods.

To deal with the quasilinear problem (1.1), a number of auxiliary results must be developed. In particular, a study of the flux-type eigenvalue problem

(1.2)
$$\begin{cases} -\Delta_p u(x) + a(x)|u|^{p-2}u(x) = \mu|u|^{p-2}u(x), & x \in \Omega\\ |\nabla u|^{p-2}\frac{\partial u}{\partial \nu}(x) = \lambda|u|^{p-2}u(x), & x \in \partial\Omega. \end{cases}$$

where λ is regarded as a parameter and it is assumed that $a \in L^{\infty}(\Omega)$. A number $\mu \in \mathbb{R}$ is said to be an eigenvalue to (1.2) if there exists $\phi \in W^{1,p}(\Omega)$, not vanishing identically in Ω , so that

$$\int_{\Omega} |\nabla \phi|^{p-2} \nabla \phi \nabla \varphi + a(x) |\phi|^{p-2} \phi \varphi = \lambda \int_{\partial \Omega} |\phi|^{p-2} \phi \varphi + \mu \int_{\Omega} |\phi|^{p-2} \phi \varphi,$$

for all $\varphi \in W^{1,p}(\Omega)$. In that case, ϕ is called an eigenfunction associated to μ .

Problem (1.2) has been studied in detail in [5] when p = 2, in which case it becomes

(1.3)
$$\begin{cases} -\Delta u(x) + a(x)u(x) = \mu u(x), & x \in \Omega, \\ \frac{\partial u}{\partial \nu}(x) = \lambda u(x), & x \in \partial \Omega. \end{cases}$$

The next statement is the extension to problem (1.2) of the corresponding results obtained for (1.3) contained in [5] (a slightly more general version of (1.3) was in fact considered there).

Theorem 1. Problem (1.2) admits, for every $\lambda \in \mathbb{R}$, a unique principal eigenvalue $\mu = \mu_{1,p}$, i.e. an eigenvalue with a nonnegative associated eigenfunction $\phi \in W^{1,p}(\Omega)$. It is given by the variational expression

$$\mu_{1,p} = \inf_{W^{1,p}(\Omega)} \frac{\int_{\Omega} |\nabla u|^p + a|u|^p - \lambda \int_{\partial \Omega} |u|^p}{\int_{\Omega} |u|^p}.$$

In addition, the following properties hold true.

- i) $\mu_{1,p}$ is the unique principal eigenvalue.
- ii) $\mu_{1,p}$ is isolated and simple.
- iii) Every associated eigenfunction $\phi_1 \in W^{1,p}(\Omega)$ to $\mu_{1,p}$ satisfies $\phi \in L^{\infty}(\Omega)$ and furthermore $\phi \in C^{1,\beta}(\overline{\Omega}) \cap C^{2,\alpha}(U_{\eta})$ for certain $\beta \in (0,1), \eta > 0$, with $U_{\eta} = \{x \in \Omega : dist(x, \partial\Omega) < \eta\}.$
- iv) As a function of λ , $\mu_{1,p}$ is concave, decreasing and verifies

$$\lim_{\lambda \to -\infty} \mu_{1,p} = \lambda_{1,p}(a), \qquad \lim_{\lambda \to \infty} \mu_{1,p} = -\infty,$$

where $\lambda_{1,p}(a)$ is the first Dirichlet eigenvalue of $-\Delta_p u + a(x)|u|^{p-2}u$ in Ω .

Another auxiliary eigenvalue problem we will need is

(1.4)
$$\begin{cases} -\Delta_p u(x) + a(x)|u|^{p-2}u(x) = 0, & x \in \Omega, \\ |\nabla u|^{p-2}\frac{\partial u}{\partial \nu}(x) = \sigma |u|^{p-2}u(x), & x \in \partial\Omega, \end{cases}$$

which constitutes an extension to the *p*-Laplacian setting of the well-known Steklov problem (see [10] for a detailed analysis of the case a = 0). As a direct consequence of Theorem 1 the following statement holds true.

Theorem 2. Problem (1.4) possesses a principal eigenvalue if and only if

(1.5)
$$\lambda_{1,p}(a) > 0$$

Furthermore,

i) Provided that (1.5) is satisfied, (1.4) admits a unique principal eigenvalue $\sigma_{1,p}$ which is isolated and simple. In addition,

(1.6)
$$\operatorname{sign} \sigma_{1,p} = \operatorname{sign} \lambda_{1,p}^*(a)$$

where $\lambda_{1,p}^*(a)$ stands for the first Neumann eigenvalue of $-\Delta_p u + a(x)|u|^{p-2}u$ in Ω .

ii) Any eigenfunction $\psi \in W^{1,p}(\Omega)$ associated to $\sigma_{1,p}$ satisfies $\psi \in C^{1,\beta}(\overline{\Omega}) \cap C^{2,\alpha}(U_{\eta})$ for certain $\beta \in (0,1), \eta > 0$, with $U_{\eta} = \{x : dist(x \in \Omega, \partial\Omega) < \eta\}.$

Remark 1. We will set $\sigma_{1,p} = -\infty$ when $\lambda_{1,p}(a) \leq 0$, for reasons that will become clear later on (see (1.8) in Theorem 4 and Remark 3).

The well-known sub and supersolutions method is another tool that must be properly adapted to problem (1.1). A function $\overline{u} \in W^{1,p}(\Omega)$ is said to be a supersolution to problem

(1.7)
$$\begin{cases} -\Delta_p u(x) + a(x)|u|^{p-2}u(x) = f(x,u), & x \in \Omega, \\ |\nabla u|^{p-2}\frac{\partial u}{\partial \nu}(x) = g(x,u), & x \in \partial\Omega, \end{cases}$$

if

$$\int_{\Omega} |\nabla \overline{u}|^{p-2} \nabla \overline{u} \nabla \varphi + a(x) |\overline{u}|^{p-2} \overline{u} \varphi \ge \int_{\partial \Omega} g(x, \overline{u}) \varphi + \int_{\Omega} f(x, \overline{u}) \varphi,$$

holds for all nonnegative $\varphi \in W^{1,p}(\Omega)$. Subsolutions are defined in a symmetric way. Of course, the existence of the integrals involving f and g is implicitly assumed.

In order to avoid the use of comparison, which is certainly a delicate issue when dealing with the *p*-Laplacian, the next statement furnishes a variational version of the method of sub a supersolutions for problem (1.7) (cf. also [14]). Recall that a function $h : X \times \mathbb{R} \to \mathbb{R}$, (X, μ) a measure space, is a Carathéodory function if $h(\cdot, u)$ is measurable in X for all $u \in \mathbb{R}$ while $h(x, \cdot)$ is continuous in \mathbb{R} for almost all $x \in X$.

Theorem 3. Let $f: \Omega \times \mathbb{R} \to \mathbb{R}$, $g: \partial\Omega \times \mathbb{R} \to \mathbb{R}$ be Carathéodory functions satisfying $|f(x, u)| \leq M$ and $|g(x, u)| \leq M$ if $(x, u) \in \Omega \times (-R, R)$ and $(x, u) \in \partial\Omega \times (-R, R)$, respectively, for arbitrary R, where M = M(R). Suppose $\underline{u}, \overline{u} \in W^{1,p}(\Omega) \cap L^{\infty}(\Omega) \cap L^{\infty}(\partial\Omega)$ are a sub and a supersolution to (1.7) so that $\underline{u} \leq \overline{u}$ in Ω . Then (1.7) admits a solution $u \in W^{1,p}(\Omega)$ verifying

$$\underline{u} \le u \le \overline{u},$$

in Ω .

After these preliminary tools have been introduced, we can state a first group of results concerning problem (1.1).

Theorem 4. Assume $\Omega \subset \mathbb{R}^N$ is a class $C^{2,\alpha}$ bounded domain and r > p-1 > 0. Then the following properties hold: i) Problem (1.1) admits a positive solution if and only if

(1.8)
$$\lambda > \sigma_{1,p},$$

where the value $\sigma_{1,p} = -\infty$ is allowed. When (1.8) holds, the positive solution is unique, and it will be denoted by $u_{r,\lambda} \in W^{1,p}(\Omega)$.

ii) $u_{r,\lambda} \in C^{1,\beta}(\Omega) \cap C^{2,\alpha}(U_{\eta})$ for a certain $\beta \in (0,1)$ and $\eta > 0$ small enough, where $U_{\eta} = \{x \in \Omega : dist(x, \partial \Omega) < \eta\}.$

iii) The mapping $\lambda \to u_{r,\lambda}$ is increasing and continuous with values in $C^1(\overline{\Omega})$. Moreover,

(1.9)
$$\lim_{\lambda \to \sigma_{1,p}+} u_{r,\lambda} = 0$$

in $C^{1,\beta}(\overline{\Omega})$ provided $\sigma_{1,p} > -\infty$. If $\sigma_{1,p} = -\infty$ then

(1.10)
$$\lim_{\lambda \to \sigma_{1,p}+} u_{r,\lambda} = \begin{cases} 0 & \text{if } \lambda_{1,p}(a) = 0 \\ w & \text{if } \lambda_{1,p}(a) < 0, \end{cases}$$

where u = w(x) stands for the unique positive solution to

(1.11)
$$\begin{cases} -\Delta_p u(x) + a(x)|u|^{p-2}u(x) = -u^r(x), & x \in \Omega, \\ u(x) = 0, & x \in \partial\Omega. \end{cases}$$

when $\lambda_{1,p}(a) < 0$.

iv) Let u = U(x) be the minimal solution to the singular boundary value problem

(1.12)
$$\begin{cases} -\Delta_p u(x) + a(x)|u|^{p-2}u(x) = -u^r(x), & x \in \Omega, \\ u = \infty & x \in \partial\Omega \end{cases}$$

Then,

(1.13)
$$\lim_{\lambda \to \infty} u_{r,\lambda} = U$$

in $C^1(\Omega)$.

We turn now to study the asymptotic behavior of the positive solution $u_{r,\lambda}$ to (1.1) both as $r \to (p-1)+$ and when $r \to \infty$. Let us begin with the former case and to this purpose notice that Theorem 1-iv) implies the existence of a value

$$\sigma_{1,p} < \lambda^* < \infty$$

such that

$$\mu_{1,p}(\lambda^*) = -1.$$

In particular,

$$0 < -\mu_{1,p}(\lambda) < 1$$
 for $\sigma_{1,p} < \lambda < \lambda^*$,

while

$$-\mu_{1,p}(\lambda) > 1$$
 if $\lambda > \lambda^*$.

Then we have:

Theorem 5. For $\lambda > \sigma_{1,p}$, let $u = u_{r,\lambda}$ be the unique positive solution to problem (1.1) for r > p - 1. Then,

$$\sup_{\Omega} u_{r,\lambda} = (-\mu_{1,p}(\lambda) + o(1))^{\frac{1}{r-p+1}}$$

as $r \rightarrow p - 1 + while$

$$u_{r,\lambda} = (\sup_{\Omega} u_{r,\lambda}) \{ \phi_1(\lambda) + o(1) \}$$

in $C^1(\overline{\Omega})$ as $r \to p-1+$, where $\phi_1(\lambda)$ stands for the positive eigenfunction associated to $\mu_{1,p}(\lambda)$ normalized so as $\sup_{\Omega} \phi_1(\lambda) = 1$. In particular a) $u_{r,\lambda} \to 0$ uniformly in $\overline{\Omega}$ as $r \to (p-1)+$ if $\lambda < \lambda^*$;

b) $u_{r,\lambda} \to \infty$ uniformly in $\overline{\Omega}$ as $r \to (p-1)+$ when $\lambda > \lambda^*$.

Moreover, for $\lambda = \lambda^*$ and p = 2 in problem (1.1) then

$$u_{r,\lambda} \to A \phi_1(\lambda^*)$$

uniformly in Ω as $r \to p - 1 +$ where A is given by

(1.14)
$$A = \exp\left(-\frac{\int_{\Omega} \phi_1^2 \log \phi_1}{\int_{\Omega} \phi_1^2}\right).$$

Note that in the previous theorem the case $\lambda = \lambda^*$ with $p \neq 2$ is left open. As for the behavior of the solution $u_{r,\lambda}$ to (1.1) when $r \to \infty$ the first interesting conclusion is that for every $\lambda > \sigma_{1,p}$, $u_{r,\lambda}$ keeps uniformly bounded in Ω as $r \to \infty$. On the other hand, provided that coefficient a = 0 in (1.1) we achieve a better result. Namely, solutions become flat throughout the domain Ω as r increases.

Theorem 6. Assume that a = 0 in problem (1.1). Then, for any $\lambda > \sigma_{1,p}$ we have $u_{r,\lambda} \to 1$ uniformly in $\overline{\Omega}$ as $r \to \infty$.

It should be mentioned that a similar analysis for the logistic problem

(1.15)
$$\begin{cases} -\Delta u(x) = \lambda u(x) - b(x)u^r(x), & x \in \Omega, \\ u(x) = 0, & x \in \partial\Omega, \end{cases}$$

which is somehow related to (1.1), was performed in [3], [2]. However, the situation was substantially different there when $r \to \infty$, since the limit problem so obtained is of a free boundary type, mainly due to the Dirichlet condition. On the other hand, if $u = \tilde{u}_{r,\lambda}$ stands for the unique positive solution to (1.15) for $\lambda > \lambda_1^{\mathcal{D}}$ (the first Dirichlet eigenvalue of $-\Delta$ in Ω), an important feature in the analysis in [3] is the fact that

$$(\sup_{\Omega} \tilde{u}_{r,\lambda})^{r-1}$$

remains bounded as $r \to \infty$. This follows easily from the boundary condition when b > 0 in $\overline{\Omega}$. This fact is in strong contrast with the next result.

Theorem 7. Let $a \in L^{\infty}(\Omega)$. Then, for fixed $\lambda > \sigma_{1,p}$ $\phi_1(\lambda) \leq \lim_{r \to \infty} u_{r,\lambda} \leq \overline{\lim_{r \to \infty}} u_{r,\lambda} \leq 1$, where $\phi_1(\lambda)$ is the positive eigenfunction associated to $\mu_{1,p}(\lambda)$ normalized so that $\sup \phi_1(\lambda) = 1$. In particular,

$$\lim_{r \to \infty} \sup_{\Omega} u_{r,\lambda} = 1,$$

However, if either a = 0 or $a \in L^{\infty}(\Omega)$ is arbitrary but $\lambda > \sigma_1(|a|_{\infty})$ in (1.1) then

 $\lim_{r \to \infty} \sup_{\Omega} (u_{r,\lambda})^{r-p+1} = \infty.$

The rest of the paper is organized as follows: in Section 2 we analyze the eigenvalue problems (1.2) and (1.4). Section 3 is dedicated to develop the method of sub and supersolutions for problem (1.7), that will be used here for the proof of Theorem 4. Finally, in Section 4 the asymptotic behavior of the positive solution to (1.1) as $r \to p - 1$ and $r \to +\infty$ is considered.

2. EIGENVALUE PROBLEMS

In this section we perform the analysis of the eigenvalue problems (1.2) and (1.4). We begin with a fundamental result concerning the boundedness of eigenfunctions.

Lemma 8. Let $\phi \in W^{1,p}(\Omega)$ be an eigenfunction associated to an arbitrary eigenvalue λ of (1.2). Then $\phi \in L^{\infty}(\Omega)$.

Proof. Notice that we may assume $1 , since otherwise <math>W^{1,p}(\Omega) \subset L^{\infty}(\Omega)$. Also, for the sake of simplicity we will only consider p < N, the case p = N being handled in a similar way.

For k > 0 set $v = (\phi - k)^+$, $A_k = \{x \in \Omega : \phi(x) > k\}$. We show an estimate of the form

$$(2.1) |v|_1 \le Ck^{\delta} |A_k|^{1+\varepsilon}$$

for every $k \ge k_0$ and certain positive constants k_0 , C, δ , ε with $\delta \le 1 + \varepsilon$, where $|v|_1 = |v|_{L^1(\Omega)}$.

By using v as a test function in the equation for ϕ we obtain

(2.2)
$$\int_{\Omega} |\nabla v|^{p} + \varphi_{p}(\phi)v \leq \lambda \int_{\partial\Omega} \varphi_{p}(\phi)v + (\mu + |a|_{\infty} + 1) \int_{\Omega} \varphi_{p}(\phi)v \\ \leq C \left\{ \int_{\partial\Omega} \varphi_{p}(\phi)v + \int_{\Omega} \varphi_{p}(\phi)v \right\},$$

where $\varphi_p(\phi) = |\phi|^{p-2}\phi$ and C will stand in the sequel for a positive constant independent of ϕ and k, not necessarily the same everywhere.

Next notice that $0 < v < \phi$ in the support of v and $\phi \leq v + k$, hence $\varphi_p(\phi) \leq C(v^{p-1} + k^{p-1})$. Thus (2.2) implies

(2.3)
$$|v|_{1,p}^p \le C \left\{ \int_{\partial\Omega} v^p + k^{p-1} \int_{\partial\Omega} v + \int_{\Omega} v^p + k^{p-1} \int_{\Omega} v \right\},$$

for all k > 0, where $|v|_{1,p} = |v|_{W^{1,p}(\Omega)}$.

On the other hand, we notice that, thanks to Hölder's and Sobolev's inequalities:

$$\int_{\Omega} v^p \le |A_k|^{\frac{p}{N}} \left(\int_{\Omega} v^{p^*} \right)^{\frac{p}{p^*}} \le C|A_k|^{\frac{p}{N}} \left(\int_{\Omega} |\nabla v|^p + \int_{\Omega} v^p \right)$$

where $p^* = \frac{Np}{N-p}$, and, since $|A_k| \to 0$,

(2.4)
$$\int_{\Omega} v^{p} \leq C |A_{k}|^{\frac{p}{N}} \int_{\Omega} |\nabla v|^{p},$$
 for $k > k_{*}$ and cortain positive k_{*}

for $k \ge k_0$ and certain positive k_0 .

Furthermore, it is useful to recall that for every $\varepsilon>0$ there exists a constant $C(\varepsilon)>0$ such that

(2.5)
$$\int_{\partial\Omega} |u|^p \le \varepsilon \int_{\Omega} |\nabla u|^p + C(\varepsilon) \int_{\Omega} |u|^p,$$

for every $u \in W^{1,p}(\Omega)$ (see for instance Lemma 6 in [5] for a proof when p = 2). This inequality combined with (2.4) yields

(2.6)
$$\int_{\partial\Omega} v^p \le (\varepsilon + C(\varepsilon)) |A_k|^{\frac{p}{N}}) \int_{\Omega} |\nabla v|^p,$$

for $k \ge k_0$. Inequalities (2.3), (2.4) and (2.6) imply, taking ε sufficiently small,

(2.7)
$$|v|_{1,p}^{p} \leq Ck^{p-1}\{|v|_{1,\partial\Omega} + |v|_{1}\},\$$

for $k \ge k_0$, where $|v|_{1,\partial\Omega} = |v|_{L^1(\partial\Omega)}$.

Observe now that, thanks to the immersion $L^1(\partial\Omega) \subset W^{1,1}(\Omega)$ and Hölder's inequality

$$|v|_{1,\partial\Omega} \le C |v|_{W^{1,1}(\Omega)} \le C |A_k|^{1-\frac{1}{p}} |v|_{1,p},$$

while the Sobolev immersion gives

(2.8)
$$|v|_1 \le C|A_k|^{1-\frac{1}{p^*}}|v|_{1,p}.$$

Thus, from (2.7) we get

$$|v|_{1,p} \le Ck\{|A_k|^{\frac{1}{p}} + |A_k|^{\frac{1}{p-1}(1-\frac{1}{p^*})}\} \le Ck|A_k|^{\frac{1}{p}}$$

for all $k \ge k_0$, since $\frac{1}{p} < \frac{1}{p-1}(1-\frac{1}{p^*})$ and $|A_k| \to 0$. This inequality allows us to conclude, thanks to (2.8), that

(2.9)
$$|v|_1 \le Ck |A_k|^{1+\frac{1}{N}},$$

for large k, which is the desired inequality.

Finally, when (2.9) is combined with Lemma 5.1 in Chapter 2 in [9] we obtain $\phi^+ \in L^{\infty}(\Omega)$, and since $-\phi$ is also an eigenfunction, the preceding argument also says that $\phi \in L^{\infty}(\Omega)$.

Remark 2. Lemma 8 can be also shown by means of a Moser's iteration procedure following the ideas in [5] (see Lemma 5 there).

Proof of Theorem 1. To show the existence of a principal eigenvalue we borrow ideas from Lemma 7 in [5]. Thus, consider $\mathcal{M} := \{u \in W^{1,p}(\Omega) : \int_{\Omega} |u|^p = 1\}$, and the functional

$$J(u) = \int_{\Omega} \{ |\nabla u|^p + a(x)|u|^p \} - \lambda \int_{\partial \Omega} |u|^p.$$

Inequality (2.5) implies that

$$J(u) \ge (1 - \varepsilon |\lambda|) \int_{\Omega} |\nabla u|^p - (|a|_{\infty} + C(\varepsilon)|\lambda|) \int_{\Omega} |u|^p,$$

for all $u \in W^{1,p}(\Omega)$. This means that J is coercive in \mathcal{M} and the direct method in the calculus of variations ([14]) implies the finiteness of

$$\mu_{1,p} = \inf_{u \in W^{1,p}(\Omega)} \frac{\int_{\Omega} \{ |\nabla u|^p + a(x)|u|^p \} - \lambda \int_{\partial \Omega} |u|^p}{\int_{\Omega} |u|^p},$$

and the existence of $\phi \in W^{1,p}(\Omega)$ such that the infimum is achieved at $u = \phi$. Since the infimum is also attained at $|\phi|$, it is easily checked that $|\phi|$ defines an eigenfunction associated to $\mu_{1,p}$, hence $\mu_{1,p}$ is a principal eigenvalue.

Next, let $\phi \in W^{1,p}(\Omega)$ be a nonnegative eigenfunction associated to $\mu_{1,p}$. Lemma 8 and Lieberman's regularity results ([12]) imply that $\phi \in C^{1,\beta}(\overline{\Omega})$ for a certain $0 < \beta < 1$ while the Strong Maximum Principle in [15] implies that $\phi > 0$ throughout $\overline{\Omega}$ together with $|\nabla \phi| > 0$ in some strip $U_{\eta} = \{x \in \Omega : \operatorname{dist}(x, \partial \Omega) < \eta\}$. Then, the equation for ϕ becomes strictly elliptic in U_{η} and standard theory of quasilinear equations yields $\phi \in C^{2,\alpha}(U_{\eta})$ (cf. [9]).

As a consequence of the preceding assertions it follows that every eigenfunction ϕ associated to $\mu_{1,p}$ is either positive or negative in Ω . In fact, if $\phi^+ \neq 0$ then, since ϕ^+ is also an eigenfunction associated to $\mu_{1,p}$, we get $\phi^+ > 0$ in $\overline{\Omega}$. Thus, $\phi^- = 0$ and ϕ is positive.

We show now the simplicity of $\mu_{1,p}$. To this purpose, for two positive eigenfunctions ϕ , ψ associated to $\mu_{1,p}$ consider the integral

$$I := \int_{\Omega} \left\{ |\nabla \phi|^{p-2} \nabla \phi \nabla \left(\frac{\phi^p - \psi^p}{\phi^{p-1}} \right) - |\nabla \psi|^{p-2} \nabla \psi \nabla \left(\frac{\phi^p - \psi^p}{\psi^{p-1}} \right) \right\}.$$

Under the sole assumption that both $\phi, \psi \in W^{1,p}(\Omega)$ are positive and bounded in $\overline{\Omega}$ it follows (see [13]) that $I \geq 0$, and I = 0 only when $\psi = c\phi$ for a positive constant c. However, when ϕ, ψ are eigenfunctions associated to $\mu_{1,p}$ we easily see that I vanishes. Thus $u = c\psi$ and the simplicity of $\mu_{1,p}$ is proved.

The same argument implies that $\mu_{1,p}$ is the unique principal eigenvalue. In fact, suppose that ϕ is a positive eigenfunction associated to $\mu_{1,p}$ while $\mu \neq \mu_{1,p}$ is another eigenvalue which possesses a positive eigenfunction ψ . In this case we have

$$I = (\mu_{1,p} - \mu) \int_{\Omega} (\phi^p - \psi^p) \ge 0.$$

However $\mu > \mu_{1,p}$ and ϕ can be chosen greater than ψ in Ω . Since this contradicts the inequality, such an eigenvalue μ cannot exist.

To show the isolation of $\mu_{1,p}$ we follow the spirit of the corresponding statement in [1] (see also [10] for the case of the principal eigenvalue of (1.4) and a = 1), which we simplify in view of Lemma 8. Thus, assume on the contrary that there exists a sequence of eigenvalues $\mu_n \neq \mu_{1,p}$ with associated eigenfunction ϕ_n normalized by $\int_{\Omega} |\phi_n|^p = 1$ for all n, verifying $\mu_n \to \mu_{1,p}$. Notice that $\phi_n^{\pm} \neq 0$ for all n. Then, from the weak formulation of (1.2), we obtain

$$\int_{\Omega} |\nabla \phi_n|^p + a |\phi_n|^p - \lambda \int_{\partial \Omega} |\phi_n|^p = \mu_n.$$

By means of (2.5) we see that $|\phi_n|_{1,p}$ is bounded and so, passing to a subsequence, $\phi_n \rightarrow \phi_1$ weakly in $W^{1,p}(\Omega)$. It follows that ϕ_1 is a principal eigenfunction which can be assumed to be positive.

On the other hand, from the weak formulation of the equation satisfied by ϕ_n and by using ϕ_n^- as a test function, arguments similar as the ones employed in Lemma 8 show that

$$|\phi_n^-|_{1,p}^p \le C \int_{\Omega} |\phi_n^-|^p,$$

for a positive constant C, not depending on n. Hence

$$(2.10) |\{\phi_n < 0\}| \ge k > 0$$

for some k > 0 and all n. However, since modulus a subsequence, $\phi_n \to \phi_1$ in $L^p(\Omega)$ and ϕ_1 is positive, Egorov's theorem implies that the uniform estimate (2.10) is not possible. Therefore, $\mu_{1,p}$ is isolated.

Finally, the features and asymptotic behavior of $\mu_{1,p}(\lambda)$ contained in statement iv) can be shown by following the corresponding proof of Lemma 8 in [5].

Proof of Theorem 2. By using the terminology of Theorem 1, the key point is that σ is a principal eigenvalue of (1.4) if and only if

$$\mu_{1,p}(\sigma) = 0.$$

In view of property iv) in Theorem 1 it is clear that (1.5) characterizes the existence of a zero of $\mu_{1,p}$ and so it characterizes the existence of a unique principal eigenvalue $\sigma := \sigma_{1,p}$ of (1.4) as well.

In addition

$$\int_{\Omega} |\nabla \psi|^p + a|\psi|^p - \sigma \int_{\partial \Omega} |\psi|^p = 0,$$

if σ is a principal eigenvalue. Since $\lambda_{1,p}(a) > 0$ it follows that $\psi \neq 0$ on $\partial \Omega$ and so

(2.11)
$$\sigma_{1,p} = \frac{\int_{\Omega} |\nabla \psi|^p + a|\psi|^p}{\int_{\partial \Omega} |\psi|^p} \le \frac{\int_{\Omega} |\nabla u|^p + a|u|^p}{\int_{\partial \Omega} |u|^p}$$

for all $u \in W^{1,p}(\Omega)$, $u \neq 0$ on $\partial\Omega$. Thus, $\sigma = \sigma_{1,p}$ also defines the first eigenvalue to (1.4). Relation (1.6) follows from the decreasing character of $\mu_{1,p}$ and the fact that $\lambda_{1,p}^* = \mu_{1,p}(0)$.

The remaining assertions in Theorem 2 are consequences of Theorem 1. $\hfill \Box$

Remark 3. Inequality (2.11) states

(2.12)
$$\sigma_{1,p} = \inf_{u \in W^{1,p}(\Omega)} \frac{\int_{\Omega} |\nabla u|^p + a|u|^p}{\int_{\partial \Omega} |u|^p}.$$

As already seen, such infimum is finite when $\lambda_{1,p}(a) > 0$. However, it can be checked that the infimum is $-\infty$ when $\lambda_{1,p}(a) \leq 0$ (details are omitted for brevity). This suggests setting $\sigma_{1,p} = -\infty$ in that case.

3. EXISTENCE AND UNIQUENESS

Our first objective is to prove the variational version of the method of sub and supersolutions. For p > 1 we recall the notation $\varphi_p(t) = |t|^{p-2}t$.

Proof of Theorem 3. Following the ideas in [14] we introduce the functional

$$J(u) = \int_{\Omega} \left\{ \frac{1}{p} |\nabla u|^p + a(x)|u|^p - F(x,u) \right\} - \int_{\partial \Omega} G(x,u),$$

(F, G being primitives of f and g) which we consider in the convex set

$$\mathcal{M} = \{ u \in W^{1,p}(\Omega) : \underline{u} \le u \le \overline{u} \}.$$

Then J is sequentially lower semicontinuous and since \underline{u} , \overline{u} are bounded it is coercive in \mathcal{M} . Thus J achieves its infimum at some $u \in \mathcal{M}$.

Now, for $\varepsilon > 0$ and arbitrary $\varphi \in C^1(\overline{\Omega})$ we set

$$\varphi_{\varepsilon,+} = (u + \varepsilon \varphi - \overline{u})^+ \qquad \varphi_{\varepsilon,-} = (\underline{u} - u - \varepsilon \varphi)^+,$$

and observe that

$$u_{\varepsilon} := u + \varepsilon \varphi - \varphi_{\varepsilon,+} + \varphi_{\varepsilon,-} \in \mathcal{M},$$

for all $0 < \varepsilon < \varepsilon_0$. By taking the derivative of J at u in the direction of $u_{\varepsilon} - u$ we get

$$DJ(u)[u_{\varepsilon}-u] \ge 0.$$

This implies that,

(3.1)
$$\varepsilon DJ(u)[\varphi] \ge DJ(u)[\varphi_{\varepsilon,+}] - DJ(u)[\varphi_{\varepsilon,-}],$$

and we are showing next that

$$DJ(u)[\varphi_{\varepsilon,+}] \ge \rho(\varepsilon),$$

where $\rho(\varepsilon) = o(\varepsilon)$ as $\varepsilon \to 0+$. In fact, since $DJ(\overline{u})[\varphi_{\varepsilon,+}] \ge 0,$
 $DJ(u)[\varphi_{\varepsilon,+}] \ge (DJ(u) - DJ(\overline{u}))[\varphi_{\varepsilon,+}],$

and,

$$(3.2) \quad (DJ(u) - DJ(\overline{u}))[\varphi_{\varepsilon,+}] = \int_{\Omega} (|\nabla u|^{p-2} \nabla u - |\nabla \overline{u}|^{p-2} \nabla \overline{u}) \nabla \varphi_{\varepsilon,+} + \int_{\Omega} (\varphi_p(u) - \varphi_p(\overline{u})) \varphi_{\varepsilon,+} - \int_{\Omega} (f(x,u) - f(x,\overline{u})) \varphi_{\varepsilon,+} - \int_{\partial\Omega} (g(x,u) - g(x,\overline{u})) \varphi_{\varepsilon,+}$$

By using the monotonicity of the *p*-Laplacian,

$$(3.3) \quad \int_{\Omega} (|\nabla u|^{p-2} \nabla u - |\nabla \overline{u}|^{p-2} \nabla \overline{u}) \nabla \varphi_{\varepsilon,+}$$

$$\geq \varepsilon \int_{\{\varphi_{\varepsilon,+}>0\}} (|\nabla u|^{p-2} \nabla u - |\nabla \overline{u}|^{p-2} \nabla \overline{u}) \nabla \varphi$$

$$\geq \varepsilon \int_{\{\varphi_{\varepsilon,+}>0\} \cap \{\overline{u}>u\}} (|\nabla u|^{p-2} \nabla u - |\nabla \overline{u}|^{p-2} \nabla \overline{u}) \nabla \varphi,$$

since $\nabla u = \nabla \overline{u}$ almost everywhere in $\{u = \overline{u}\}$ ([8]). Observe now that $|\{\varphi_{\varepsilon,+} > 0\} \cap \{\overline{u} > u\}| \to 0$ as $\varepsilon \to 0+$ and so the latter integral in (3.3) is $o(\varepsilon)$ as $\varepsilon \to 0+$.

On the other hand, $|\varphi_{\varepsilon,+}| < \varepsilon |\varphi|$ in $\{\varphi_{\varepsilon,+} > 0\} \cap \{\overline{u} > u\}$. Hence,

(3.4)
$$\left| \int_{\Omega} (f(x,u) - f(x,\overline{u}))\varphi_{\varepsilon,+} \right| \\ \leq \varepsilon \int_{\{\varphi_{\varepsilon,+}>0\} \cap \{\overline{u}>u\}} |f(x,u) - f(x,\overline{u})||\varphi| = o(\varepsilon),$$

as $\varepsilon \to 0+$. The remaining terms in (3.2) can be treated in the same way and so we achieve that,

$$DJ(u)[\varphi_{\varepsilon,+}] \ge o(\varepsilon) \qquad \varepsilon \to 0+.$$

A complementary argument shows that $DJ(u)[\varphi_{\varepsilon,-}] \leq o(\varepsilon)$ as $\varepsilon \to 0+$. Therefore, (3.1) implies that

$$DJ(u)[\varphi] \ge 0,$$

for arbitrary $\varphi \in C^1(\overline{\Omega})$. This means that u is a solution to (1.7).

Remark 4. Theorem 3 can be extended to cover slightly more general settings. Namely, suppose that $\Omega \subset \mathbb{R}^N$ is smooth and $\partial \Omega = \Gamma_1 \cup \Gamma_2$ with Γ_1, Γ_2 disjoint (N-1)-dimensional closed manifolds. Consider the mixed problem

(3.5)
$$\begin{cases} -\Delta_p u(x) + a(x)|u|^{p-2}u(x) = f(x,u), & x \in \Omega, \\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu}(x) = g(x,u), & x \in \Gamma_1, \\ u(x) = h(x) & x \in \Gamma_2, \end{cases}$$

with $h \in L^{\infty}(\Gamma_2)$. Then, under the extra condition

$$\underline{u} \le h \le \overline{u} \qquad \text{on } \partial\Omega$$

and the hypotheses of Theorem 3 we achieve again a solution $u \in W^{1,p}(\Omega)$ to (3.5) lying between \underline{u} and \overline{u} . The proof runs by the same lines of Theorem 3. As minor modifications, we have to take care of the condition u = h on Γ_1 that must be incorporated to the definition of \mathcal{M} and testing must be performed with functions $\varphi \in W^{1,p}(\Omega)$ vanishing on Γ_2 .

As an immediate application of Theorem 3 we undertake the proof of Theorem 4.

Proof of Theorem 4. To prove the necessity of (1.8) we only consider, obviously, the case $\sigma_{1,p} > -\infty$. If a positive solution u to (1.1) exists then $u \neq 0$ on $\partial\Omega$. Otherwise,

$$-\Delta_p u + a\varphi_p(u) \le 0$$

implies $u \leq 0$ in Ω if $u_{\partial\Omega} = 0$ (notice that $\sigma_{1,p}$ is finite if and only if $\lambda_{1,p}(a) > 0$). Thus, since $u \neq 0$ on $\partial\Omega$ we conclude that

$$\sigma_{1,p} \leq \frac{\int_{\Omega} |\nabla u|^p + a|u|^p}{\int_{\partial \Omega} |u|^p} < \lambda.$$

Assume now that $\lambda > \sigma_{1,p} \ge -\infty$. It can checked that $\underline{u} = A\phi_1(\lambda)$, $\overline{u} = B\phi_1(\lambda)$, $\phi_1(\lambda)$ the principal positive eigenfunction satisfying $\sup \phi_1(\lambda) = 1$, define a sub and a supersolution to (1.1) provided that

$$0 < A \le (-\mu_{1,p})^{\frac{1}{r-p+1}} \qquad B \ge \frac{(-\mu_{1,p})^{\frac{1}{r-p+1}}}{\inf \phi_1(\lambda)}$$

Notice that a choice of A and B for all values of λ is possible when $\sigma_{1,p} = -\infty$. Thus, for suitable values of A and B we obtain, via Theorem 3, a positive solution to (1.1).

As for the uniqueness of a positive solution to (1.1) we first assert that all positive solutions $u \in W^{1,p}(\Omega)$ lie in $L^{\infty}(\Omega)$. In fact, observe that by setting $v = (u - k)^+$, k > 0, and employing v as a test function in the equation for u we arrive at

$$\int_{\Omega} |\nabla v|^p + a(x)\varphi_p(u)v \le |\lambda| \int_{\partial\Omega} \varphi_p(u)v.$$

By adding to both sides of the inequality a term $M \int_{\Omega} \varphi_p(u) v$ with large enough M we get

$$|v|_{1,p}^p \le C \Big\{ \int_{\Omega} \varphi_p(u)v + \int_{\partial\Omega} \varphi_p(u)v \Big\}.$$

But such an estimate (see (2.2), (2.3)) is just the starting point that leads to the boundedness of u if one proceeds as in Lemma 8. Thus $u \in L^{\infty}(\Omega)$. Notice in passing that the same argument works for the mixed problem (3.5) with $f = -u^r$, $g = \lambda \varphi_p(u)$ since the test function $v = (u - k)^+$ vanishes on Γ_2 provided that $k \ge |h|_{\infty}$.

Since a positive solution $u \in W^{1,p}(\Omega)$ is bounded, then $u \in C^{1,\beta}(\overline{\Omega}) \cap C^{2,\alpha}(U_{\eta})$ by the same reasons as those providing the smoothness of the eigenfunction ϕ_1 in Theorem 1. Hence, for two positive solutions u_1, u_2 to (1.1) we can consider the test functions $\varphi_1 = (u_1^p - u_2^p)/u_1^{p-1}, \varphi_2 = (u_1^p - u_2^p)/u_2^{p-1}$. With them we obtain the inequality (see [13])

$$I = \int_{\Omega} |\nabla u_1|^{p-2} \nabla u_1 \nabla \varphi_1 - |\nabla u_2|^{p-2} \nabla u_2 \nabla \varphi_2 \ge 0.$$

However, since

$$I = -\int_{\Omega} (u_1^{r-p+1} - u_2^{r-p+1})(u_1^{p-1} - u_2^{p-1}),$$

then $u_1 = u_2$ is the unique option permitted by the former inequality. Thus, (1.1) admits a unique positive solution.

Regarding iii), that $u_{r,\lambda}$ increases with λ is implied by the fact that $u_{r,\lambda}$ is subsolution to (1.1) with λ replaced by $\lambda' \geq \lambda$. The uniqueness of positive solutions together with the existence, via [12], of uniform $C^{1,\beta}$ bounds of $u_{r,\lambda}$ when λ varies in bounded intervals, yield the continuous dependence of $u_{r,\lambda}$ with values in, say, $C^1(\overline{\Omega})$. Moreover, such continuity and the nonexistence of positive solutions for $\lambda = \sigma_{1,p}$ entail (1.9) when $\sigma_{1,p} > -\infty$.

To show (1.10), assume $\sigma_{1,p} = -\infty$, take $\lambda_n \to -\infty$ and set $u_n = u_{r,\lambda_n}$. From the equality

$$\int_{\Omega} |\nabla u_n|^p + au_n^p + (-\lambda_n) \int_{\partial \Omega} u_n^p + \int_{\Omega} u_n^{r+1} = 0,$$

together with the fact $0 < u_n \leq u_{n_0} \in L^{\infty}(\Omega)$ for $n \geq n_0$ we conclude, passing to a subsequence, that $u_n \rightharpoonup u$ weakly in $W^{1,p}(\Omega)$, with $u \geq 0$. Since

$$(-\lambda_n)\int_{\partial\Omega} u_n^p = O(1)$$

we have u = 0 on $\partial\Omega$. By using test functions in $W_0^{1,p}(\Omega)$ in the weak formulation of the equation for u_n and passing to the limit, we see that u defines a solution to

$$-\Delta_p u + a\varphi_p(u) = -u^r$$

in Ω . When $\lambda_{1,p}(a) = 0$, this yields u = 0, so that $u_{r,\lambda} \to 0$ in $W^{1,p}(\Omega)$ as $\lambda \to \infty$.

On the other hand, when $\lambda_{1,p}(a) < 0$ we obtain that u > 0 in Ω . In fact, let ϕ_n be the positive eigenfunction associated to $\mu_{1,p}(\lambda_n)$, normalized by $\sup_{\Omega} \phi_n = 1$. Then we have

(3.6)
$$\{-\mu_{1,p}(\lambda_n)\}^{\frac{1}{r-p+1}}\phi_n \le u_n \quad \text{in } \Omega.$$

Next take α_n such that $\hat{\phi}_n = \alpha_n \phi_n$ verifies $|\hat{\phi}_n|_p = 1$ and observe that $\alpha_n \ge |\Omega|^{-1}$. We find that $\hat{\phi}_n \rightharpoonup \hat{\phi}$ weakly in $W^{1,p}(\Omega)$, where $\hat{\phi} > 0$ (indeed $|\hat{\phi}|_p = 1$). On the other hand, a careful analysis of the proof of Lemma 8 reveals that

$$\sup \alpha_n < \infty.$$

Hence we achieve, by passing to a subsequence if necessary,

$$\phi_n \rightharpoonup \frac{1}{\theta} \hat{\phi},$$

weakly in $W^{1,p}(\Omega)$, where $\theta := \overline{\lim} \alpha_n > 0$. Passing to the limit in (3.6), we finally obtain

$$\theta^{-1}(-\lambda_{1,p}(a))^{\frac{1}{r-p+1}}\hat{\phi} \le u$$

in Ω . Thus, u > 0, and it defines the unique positive solution to (1.11) when $\lambda_{1,p}(a) < 0$. By uniqueness, we obtain $u_n \to u$ weakly in $W^{1,p}(\Omega)$. This concludes the proof of iii).

The proof of part iv) will be included in the next section.

4. Limit profiles

To prove Theorem 5 our first ingredient is a property on the maximum of solutions to (1.1) with varying r. The proof is based on a simple comparison argument.

Lemma 9. For r > p - 1 let $M_{r,\lambda} := \sup_{\Omega} u_{r,\lambda}$. Then $M_{r,\lambda}^{r-p+1}$ is an increasing function of r.

Proof. Assume r > q > p - 1 > 0. Then we clearly have

$$-\Delta_p u_{r,\lambda} + a\varphi_p(u_{r,\lambda}) = -u_{r,\lambda}{}^r \ge -M_{r,\lambda}{}^{r-q} u_{r,\lambda}{}^q \quad \text{in } \Omega,$$

while the boundary condition rests unchanged. It follows that the function

$$\overline{u} = M_{r,\lambda}^{\frac{r-q}{q-p+1}} u_{r,\lambda}$$

is a supersolution to problem (1.1) with r replaced by q. Since $\underline{u} = \varepsilon u_{q,r}$ is a small enough subsolution (for small ε) we obtain by uniqueness $\overline{u} \ge u_{q,r}$. Thus $M_{r,\lambda}^{\frac{r-p+1}{q-p+1}} \ge M_{q,\lambda}$, which is the desired inequality. \Box

We can now proceed to prove Theorem 5.

Proof of Theorem 5. Let $v_r = u_{r,\lambda}/M_{r,\lambda}$. This function verifies

(4.1)
$$\begin{cases} -\Delta_p v(x) + a v^{p-1}(x) = -M_{r,\lambda}^{r-p+1} v^r(x), & x \in \Omega, \\ |\nabla v|^{p-2} \frac{\partial v}{\partial \nu}(x) = \lambda v^{p-1}(x), & x \in \partial\Omega, \end{cases}$$

and $|v_r|_{\infty} = 1$. Thanks to Lemma 9 we have $0 < M_{r,\lambda}^{r-p+1} \leq M_{p,\lambda}$, when p-1 < r < p, so that by the estimates in [12] we obtain that v_r is bounded in $C^{1,\beta}(\overline{\Omega})$ for certain $\beta \in (0,1)$. Thus for every sequence $r_n \to p-1+$ we may extract a subsequence, which will be relabeled as v_n , such that

$$v_n \to v$$

in $C^1(\overline{\Omega})$. We may also assume that

$$M_{r_n,\lambda}^{r_n-p+1} \to \theta$$

for some real number θ . Passing to the limit in the weak formulation of (4.1) we arrive at

$$\begin{cases} -\Delta_p v(x) + a v^{p-1}(x) = -\theta v^{p-1}(x), & x \in \Omega, \\ |\nabla v|^{p-2} \frac{\partial v}{\partial \nu}(x) = \lambda v^{p-1}(x), & x \in \partial\Omega, \end{cases}$$

with $v \ge 0$, $|v|_{\infty} = 1$ and thus v > 0 in $\overline{\Omega}$. Hence, thanks to the uniqueness assertion in Theorem 1 we have that

$$\theta = -\mu_{1,p}(\lambda),$$

while

$$v = \phi_1(\lambda)$$

where $\phi_1(\lambda)$ stands for the positive eigenfunction associated to $\mu_{1,p}$ with $\sup_{\Omega} \phi_1(\lambda) = 1$. It follows that $v_n \to \phi_1(\lambda)$ in $C^1(\overline{\Omega})$.

By writing

$$u_n = M_{r_n,\lambda} v_n = (-\mu_{1,p}(\lambda) + o(1))^{\frac{1}{r_n - p + 1}} (\phi_1(\lambda) + o(1)),$$

it is clear that assertions a) and b) follow immediately from the fact that $0 < -\mu_{1,p}(\lambda) < 1$ if $\lambda < \lambda^*$ while $-\mu_{1,p}(\lambda) > 1$ in case $\lambda > \lambda^*$.

When $\lambda = \lambda^*$, we have $\mu_{1,p} = -1$, so that $M_{r,\lambda}^{r-p+1} \to 1$ as $r \to p-1+$. However, no further information on $M_{r,\lambda}$ is available from this convergence and a more subtle analysis is required.

Now, for technical reasons we restrict ourselves to the case of linear diffusion, that is, we consider p = 2. Multiplying (4.1) by ϕ_1 and integrating in Ω leads to

$$\int_{\Omega} \phi_1(M_{r,\lambda}^{r-1}v_r^r - v_r) = 0.$$

We may rewrite this equality as

(4.2)
$$\frac{M_{r,\lambda}^{r-1} - 1}{r-1} \int_{\Omega} \phi_1 v_r^r = \int_{\Omega} \phi_1 v_r \frac{1 - v_r^{r-1}}{r-1}.$$

Taking into account that $v_r \to \phi_1$ uniformly in $\overline{\Omega}$, and since $\phi_1 > 0$ in $\overline{\Omega}$, we obtain

$$v_r \frac{1 - v_r^{r-1}}{r-1} \to -\phi_1 \log \phi_1$$

uniformly in $\overline{\Omega}$ and hence, from (4.2),

(4.3)
$$\lim_{r \to 1+} \frac{M_{r,\lambda}^{r-1} - 1}{r-1} = -\frac{\int_{\Omega} \phi_1^2 \log \phi_1}{\int_{\Omega} \phi_1^2} = \log A,$$

where A is given by (1.14). Now, since from (4.3) we have

$$M_{r,\lambda} = \exp\left\{\frac{1}{r-1}\log\left(1 + (\log A)(r-1) + o(r-1)\right)\right\}$$

then we obtain

$$\lim_{r \to 1+} M_{r,\lambda} = A,$$

as was to be shown. The proof is finished.

Now we deal with the limit as $r \to \infty$.

Proof of Theorem 6. Since a = 0 we consider the problem

(4.4)
$$\begin{cases} \Delta_p u(x) = u^r(x), & x \in \Omega, \\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu}(x) = \lambda u^{p-1}(x), & x \in \partial \Omega \end{cases}$$

To obtain the asymptotic behavior of $u_{r,\lambda}$ as $r \to \infty$ we construct suitable sub and supersolutions. To get a subsolution we pick $\psi \in W^{1,p}(\Omega) \cap C^{1,\beta}(\overline{\Omega})$ the solution to

(4.5)
$$\begin{cases} -\Delta_p u(x) = 1, & x \in \Omega, \\ u(x) = 0, & x \in \partial\Omega. \end{cases}$$

The strong maximum principle ([15]) yields $\psi > 0$ in Ω while

$$c_1 \leq -|\nabla \psi|^{p-2} \frac{\partial \psi}{\partial \nu} \leq c_2 \quad \text{on } \partial \Omega,$$

for some positive constants c_1 , c_2 .

We look for a subsolution \underline{u} under the form

(4.6)
$$\underline{u} = A(\psi + \gamma)^{-\alpha} \qquad \alpha = \frac{p}{r - p + 1},$$

where positive constants A, γ must be found. The condition

$$|\nabla \underline{u}|^{p-2} \frac{\partial \underline{u}}{\partial \nu} \le \lambda \underline{u}^{p-1}$$

on $\partial \Omega$ is furnished by the choice $\gamma = \gamma_{-}$ with

$$\gamma_{-} = \left(\frac{c_2}{\lambda}\right)^{\frac{1}{p-1}} \alpha.$$

On the other hand, in order that \underline{u} be a subsolution it is required that

$$\alpha^{p-1}\{(p-1)(\alpha+1)|\nabla\psi|^p + (\psi+\gamma)\} \ge A^{r-p+1}$$

in Ω . Setting

$$\Phi = (p-1)|\nabla\psi|^p + \psi,$$

such inequality is satisfied if $A = A_{-}$ with

$$A_{-} = \alpha^{\frac{p-1}{r-p+1}} (\inf_{\Omega} \Phi)^{\frac{1}{r-p+1}}.$$

A supersolution of the form

$$\overline{u} = A_+ (\psi + \gamma_+)^{-\alpha},$$

satisfying

$$\underline{u} \leq \overline{u}$$

in Ω is found by choosing the values:

$$\gamma_{+} = \left(\frac{c_1}{\lambda}\right)^{\frac{1}{p-1}} \alpha \qquad A_{+} = \alpha^{\frac{p-1}{r-p+1}} (2\sup_{\Omega} \Phi)^{\frac{1}{r-p+1}},$$

provided that r is conveniently large (notice that $\gamma_+ \to 0$ as $r \to \infty$). Finally, since

(4.7)
$$A_{-}(\psi(x) + \gamma_{-})^{-\alpha} \le u_{r,\lambda}(x) \le A_{+}(\psi(x) + \gamma_{+})^{-\alpha}$$

in Ω for large r we conclude that $u_{r,\lambda} \to 1$ uniformly in Ω as $r \to \infty$.

Now we use the previous construction to conclude the proof of Theorem 4. *Proof of Theorem 4-iv*). We first briefly discuss the existence of solutions to (1.12). Observe that the problem

$$\begin{cases} -\Delta_p u + a u^{p-1} = -u^r & \in \Omega\\ u = M & x \in \partial \Omega, \end{cases}$$

has a unique positive solution $u = u_M \in C^{1,\beta}(\Omega)$ for every M > 0. In fact $\underline{u} = 0$, $\overline{u} = B\phi_1(\lambda_0)$ with B > 0 large can be used as a sub and a supersolution provided $\mu_{1,p}(\lambda_0) < 0$. Uniqueness, which is achieved by the same ideas as in Theorem 1, implies that u_M is increasing with M. On the other hand, local uniform $C^{1,\beta}$ bounds for u_M follow from the

estimate

$$\iota_M \le v_B \qquad x \in B$$

for every ball $B \subset \overline{B} \subset \Omega$, where $v = v_B$ is the minimal solution to

$$\begin{cases} -\Delta_p v(x) = |a|_{\infty} v^{p-1}(x) - v^r(x), & x \in B, \\ v = \infty & x \in \partial B. \end{cases}$$

The existence of v_B is well documented (see for instance [11] and Theorem 3 in [7]). In conclusion,

$$u_M \to U$$

in $C^1(\Omega)$ where U defines a weak solution to (1.12) in the sense that $U \to \infty$ as dist $(x, \partial \Omega) \to 0$.

We now claim that, for fixed r > p - 1,

$$u_{r,\lambda} \to \infty$$

uniformly on $\partial\Omega$ as $\lambda \to \infty$. Since $u_M \leq u_{r,\lambda} \leq U$ in Ω for λ large we immediately achieve (1.13).

To show the claim we construct a suitable subsolution \underline{u}_{λ} to the auxiliary problem

(4.8)
$$\begin{cases} -\Delta_p u(x) + a u^{p-1}(x) = -u^r(x), & x \in U_\eta, \\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu}(x) = \lambda u^{p-1}(x), & x \in \partial\Omega, \\ u(x) = u_{r,\lambda}(x), & \operatorname{dist}(x, \partial\Omega) = \eta, \end{cases}$$

where $U_{\eta} = \{x \in \Omega : \operatorname{dist}(x, \partial \Omega) < \eta\}$ and $\eta > 0$ is small. Notice that $u = u_{r,\lambda}$ is its unique solution (check once more the uniqueness proof in Theorem 1).

Following the preceding proof, a subsolution of the form

$$\underline{u}_{\lambda} = A(\psi + \gamma)^{-\alpha},$$

with ψ and α as before, can be found in U_{η} by choosing

$$\gamma = \alpha \left\{ \sup_{\partial \Omega} |\nabla \psi|^{p-2} (-\frac{\partial \psi}{\partial \nu}) \right\} \lambda^{-(p-1)},$$

and taking $\lambda \geq \lambda_0$, $\eta \leq \eta_0$ and $0 < A \leq A_0$. Remark that

$$u_{r,\lambda} \ge u_{r,\lambda_0} \ge A\psi^{-\alpha} \ge \underline{u}$$

on dist $(x, \partial \Omega) = \eta$ for all $\lambda \ge \lambda_0$ provided $A < A_1$.

Now, by using $\overline{u}_{\lambda} = Bu_{r,\lambda}$, B large enough, as a supersolution, Theorem 3 (see Remark 4) implies in particular that

 $u_{r,\lambda} \geq \underline{u}_{\lambda}$

for large λ . This shows the claim.

Prof of Theorem 7. As observed in Theorem 4, sub and supersolutions to (1.1) of the form $\underline{u} = A\phi_1(\lambda)$, $\overline{u} = B\phi_1(\lambda)$ can be found. Thus one arrives at

$$(-\mu_{1,p}(\lambda))^{\frac{1}{r-p+1}}\phi_1(\lambda)(x) \le u_{r,\lambda}(x) \le (-\mu_{1,p}(\lambda))^{\frac{1}{r-p+1}}\frac{\phi_1(\lambda)(x)}{\inf_{\Omega}\phi_1(\lambda)}$$

for all r > p - 1. This implies that

$$\underbrace{\lim_{r \to \infty} u_{r,\lambda}(x) \ge \phi_1(\lambda)(x), \qquad x \in \Omega.$$

On the other hand, as in the proof of Theorem 6, a supersolution to (1.1) can be obtained in the form

$$\overline{u} = A(\psi(x) + \gamma)^{-\alpha},$$

with α , $\gamma = \gamma_+$ and ψ as in that proof, while A is chosen such that

$$A^{r-p+1} = 1 + |a|_{\infty} (\sup_{\Omega} \psi + 1)^p$$

for sufficiently large r. From the inequality $u_{r,\lambda} \leq \overline{u}$ one easily gets,

$$\overline{\lim_{r \to \infty}} u_{r,\lambda}(x) \le 1.$$

A combination of these inequalities also gives

$$\lim_{r \to \infty} \sup_{\Omega} u_{r,\lambda} = 1$$

To study the behavior of $\sup u_{r,\lambda}^{r-p+1}$ we first consider a = 0 in (1.1) but p > 1 arbitrary. In this case, inequality (4.7) directly leads to

$$u_{r,\lambda}{}^{r-p+1}(x) \ge A_{-}^{r-p+1}\gamma_{-}^{-p}$$

on $\partial\Omega$. Since $\gamma_{-} \sim C\alpha$ as $r \to \infty$ such inequality says that

(4.9)
$$\lim_{r \to \infty} (\sup u_{r,\lambda})^{r-p+1} = \infty$$

To conclude with the case $a \in L^{\infty}(\Omega)$ arbitrary with λ large, we use an argument inspired in [3]. Let us begin assuming a > 0 in Ω and assume, arguing by contradiction, that $\sup u_{r,\lambda}^{r-p+1}$ is bounded. Choose $r_n \to \infty$ and set $u_n = u_{r,\lambda}$, $t_n = \sup u_n$, $u_n = t_n v_n$. Then v_n solves

$$\begin{cases} -\Delta_p v_n(x) + a v_n^{p-1}(x) = -u_n^{r_n - p+1} v_n^{p-1}(x), & x \in \Omega, \\ |\nabla v_n|^{p-2} \frac{\partial v}{\partial \nu}(x) = \lambda v_n^{p-1}(x), & x \in \partial \Omega. \end{cases}$$

Now, passing to a subsequence, $v_n^{r_n-p+1} \rightarrow h$ in $L^q(\Omega)$ for a nonnegative $h \in L^{\infty}(\Omega)$ and a conveniently large chosen q > 1. On the other hand, the estimates in [12] permit us showing that $v_n \rightarrow v$ in $C^{1,\gamma}(\overline{\Omega})$ where v is positive, $|v|_{\infty} = 1$ and solves

$$\begin{cases} -\Delta_p v(x) + av^{p-1}(x) = -hv^{p-1}(x), & x \in \Omega, \\ |\nabla v|^{p-2} \frac{\partial v}{\partial \nu}(x) = \lambda v^{p-1}(x), & x \in \partial \Omega. \end{cases}$$

Sice $0 < v(x) \le 1$ in Ω and v is p-subharmonic it follows that v(x) < 1 for all $x \in \Omega$. Otherwise, v = 1 and from the equation a + h = 0 in Ω what is impossible. However, v < 1 implies h = 0 in Ω . Hence, v solves

$$\begin{cases} -\Delta_p v(x) + a v^{p-1}(x) = 0, & x \in \Omega, \\ |\nabla v|^{p-2} \frac{\partial v}{\partial \nu}(x) = \lambda v^{p-1}(x), & x \in \partial \Omega. \end{cases}$$

But this implies $\mu_1(\lambda) = 0$ which contradicts the existence of a positive solution to (1.1) (Theorem 1).

For an arbitrary $a \in L^{\infty}(\Omega)$, not necessarily positive let $u = \tilde{u}_{r,\lambda}$ be the solution to (1.1) with a replaced by $|a|_{\infty} > 0$ and notice that

$$u_{r,\lambda} \geq \tilde{u}_{r,\lambda}.$$

The conclusion follows from the fact that $\tilde{u}_{r,\lambda}$ satisfies (4.9).

Acknowledgements. Supported by Spanish Ministerio de Ciencia e Innovacion under grant MTM2008-05824. J. D. Rossi is partially supported by UBA X066 and by CONICET, Argentina.

References

- A. ANANE, Simplicite et isolation de la premiere valeur propre du p-laplacien avec poids, C. R. Acad. Sci. Paris, **305** (I), (1987), 725-728.
- [2] E. N. DANCER, Y. DU, On a free boundary problem arising from population biology, Indiana Univ. Math. J. 52 (2003), 51–67.
- [3] E. N. DANCER, Y. DU, L. MA, Asymptotic behavior of positive solutions of some elliptic problems, Pacific J. Math. 210 (2003), 215–228.

- [4] J. GARCÍA-MELIÁN, J. D. ROSSI, J. SABINA, A bifurcation problem governed by the boundary condition I. Non. Diff. Eq. Appl., NoDEA 14 (5/6) (2007), 499–525.
- [5] J. GARCÍA-MELIÁN, J. ROSSI, J. SABINA DE LIS, Existence and uniqueness of positive solutions to elliptic problems with sublinear mixed boundary conditions. Comm. Contemp. Math. 11 (2009), 585–613.
- [6] J. GARCÍA-MELIÁN, J. ROSSI, J. SABINA DE LIS, Layer profiles of solutions to elliptic problems under parameter-dependent boundary conditions. To appear in Zeitschrift Anal. Anwend (ZAA).
- [7] J. GARCÍA-MELIÁN, J. ROSSI, J. SABINA DE LIS, Large solutions to an anisotropic quasilinear elliptic problem. To appear in Ann. Mat. Pure Appl.
- [8] D. GILBARG, N. S. TRUDINGER, *Elliptic partial differential equations of second order*, Springer-Verlag, Berlin, 1983.
- [9] O. A. LADYZHENSKAYA, N. N. URAL'TSEVA, Linear and quasilinear elliptic equations. Academic Press, New York, 1968.
- [10] S. MARTÍNEZ, J. D. ROSSI, Isolation and simplicity for the first eigenvalue of the p-Laplacian with a nonlinear boundary condition, Abstr. Appl. Anal. 7 (2002), 287– 293.
- [11] J. MATERO, Quasilinear elliptic equations with boundary blow-up, J. d'Analyse Math., 69 (1996), 229–247.
- [12] G. LIEBERMAN, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203–1219.
- [13] P. LINDQVIST, On the equation div $(|\nabla u|^{p-2}\nabla u) + \lambda |u|^{p-2}u = 0$, Proceedings of the Anerican Mathematical Society **109** (1990), 157–164.
- [14] M. STRUWE, Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems. Springer-Verlag, Berlin, 2008.
- [15] J. L. VÁZQUEZ, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), no. 3, 191–202.

J. GARCÍA-MELIÁN AND J. C. SABINA DE LIS

Departamento de Análisis Matemático, Universidad de La Laguna. C/. Astrofísico Francisco Sánchez s/n, 38271 – La Laguna, SPAIN and

Instituto Universitario de Estudios Avanzados (IUDEA) en Física Atomica, Molecular y Fotonica, Facultad de Física, Universidad de La Laguna C/. Astrofísico Francisco Sánchez s/n, 38203 – La Laguna , SPAIN E-mail address: jjgarmel@ull.es

J. D. Rossi

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, UNIVERSIDAD DE ALICANTE, AP. CORREOS 99, 03080 ALICANTE, SPAIN. On leave from DEPARTAMENTO DE MATEMÁTICA, FCEYN UBA, CIUDAD UNIVERSITARIA, PAB 1, (1428), BUENOS AIRES, ARGENTINA. *E-mail address*: jrossi@dm.uba.ar