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U. de Buenos Aires, Buenos Aires, Argentina

J. Toledo

Departament d’Anàlisi Matemàtica,
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Abstract. In this paper we deal with an optimal matching problem, that is,

we want to transport two commodities (modeled by two measures that encode
the spacial distribution of each commodity) to a given location, where they will
match, minimizing the total transport cost that in our case is given by the sum
of the two different Finsler distances that the two measures are transported.

We perform a method to approximate the matching measure and the pair of
Kantorovich potentials associated with this problem taking limit as p → ∞ in
a variational system of p−Laplacian type.

1. Introduction. In this paper we continue the study of the optimal matching
problem that we performed in [16]. An optimal matching problem (see [5], [6])
consists in transporting optimally two commodities to a prescribed location in such
a way that they match there. The optimality criteria consists in minimizing the
total cost of the operation measured in terms of the two Finsler distances that the
commodities are transported. We deal with two general Finsler distances that are
not necessarily symmetric, therefore the problem requires that we tackle some extra
difficulties that are not present when the cost is given by the sum of two Euclidean
distances.

By improving the tools developed in [16] and [17] we approach the problem by
taking limit as p→ ∞ in a system of PDEs of p−Laplacian type, which allows us to
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give an approximation method to get a matching measure (that encodes the location
where the matching takes place) and the Kantorovich potentials for the involved
transports. This procedure to approximate mass transport problems (taking limit
as p → ∞ in a p−Laplacian equation) was first introduced by Evans and Gangbo
in [11] and reveals quite fruitful, see [1], [3], [14], [15], [16], [17]. We have to remark
that this limit procedure requires some care since here the involved PDE system is
nontrivially coupled and therefore the estimates for one component are related to
the ones for the other.

Optimal matching problems for uniformly convex costs where analyzed in [4], [5],
[6] and have implications in economic theory (hedonic markets and equilibria), see
also [7], [8], [9] and references therein. For the case in which costs are given by the
Euclidean distance see [16] .

1.1. Optimal transport problems. Optimal matching problems are closely re-
lated to optimal mass transport problems. For notations, concepts and results from
the Monge-Kantorovich Mass Transport Theory we refer to [1], [10], [18] and [19].
Below, for the reader’s convenience, we just briefly introduce the usual terminology
of optimal mass transport theory that we will use in the rest of the paper.

Let us define πt(x, y) := (1 − t)x + ty. Given a Radon measure γ in Ω × Ω, its
marginals are defined by projx(γ) := π0#γ and projy(γ) := π1#γ.

The Monge-Kantorovich problem. Fix µ, ν ∈ M+(Ω) satisfying the mass
balance condition

µ(Ω) = ν(Ω). (1)

Given a cost function c : Ω × Ω → [0,∞), the Monge-Kantorovich problem is the
minimization problem

min

{∫
Ω×Ω

c(x, y) dγ(x, y) : γ ∈ Π(µ, ν)

}
,

where Π(µ, ν) := {Radon measures γ in Ω× Ω : π0#γ = µ, π1#γ = ν}. The ele-
ments γ ∈ Π(µ, ν) are called transport plans between µ and ν, and a minimizer γ∗

an optimal transport plan. Assuming c is lower semicontinuous,

∃ γ∗ = arg min
γ∈Π(µ,ν)

∫
Ω×Ω

c(x, y) dγ(x, y). (2)

The Monge-Kantorovich problem has a dual formulation that can be stated in
this case as follows (see for instance [18, Theorem 1.14]).

Kantorovich-Rubinstein’s Theorem. Let µ, ν ∈ M(Ω) be two measures satis-
fying the mass balance condition (1). Assume cost c is lower semicontinuous and
satisfies the triangular inequality. Then,

min

{∫
Ω×Ω

c(x, y) dγ(x, y) : γ ∈ Π(µ, ν)

}
= sup

{∫
Ω

u d(ν − µ) : u ∈ Kc(X)

}
,

where Kc(Ω) := {u : Ω 7→ R : u(y)− u(x) ≤ c(x, y)}. Moreover, there exists u ∈
Kc(Ω) such that ∫

Ω

u(ν − µ) = sup

{∫
Ω

v(ν − µ) : v ∈ Kc(Ω)

}
.

Such maximizers are called Kantorovich potentials.
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For two measures µ, ν ∈ M+(Ω) satisfying the mass balance condition (1), the
Kantorovich-Rubinstein distance between µ and ν is defined as

Wc(µ, ν) := inf

{∫
Ω×Ω

c(x, y) dγ(x, y) : γ ∈ Π(µ, ν)

}
.

1.2. Finsler distances as cost functions. Now, to state our problem in math-
ematical terms, we need to introduce the definition of a Finsler distance, for extra
details and some properties of such functions we refer to Section 2.

A Finsler function Φ in RN is a function that is non-negative, continuous, convex,
positively homogeneous of degree 1, that is,

Φ(tξ) = tΦ(ξ) for any t ≥ 0, ξ ∈ RN ,

and vanishes only at 0. The dual function (or polar function) of a Finsler function
Φ is defined as

Φ∗(ξ∗) := sup{⟨ξ∗; ξ⟩ : Φ(ξ) ≤ 1} for ξ∗ ∈ RN .

It is immediate to verify that Φ∗ is also a Finsler function.
A Finsler structure F on Ω is a measurable function F : Ω×RN → R+ such that

for any x ∈ Ω, F (x, ·) a Finsler function in RN . For a Finsler structure F on Ω, we
define the dual structure F ∗ : Ω× RN → R+ by

F ∗(x, ξ) := sup{⟨η; ξ⟩ : F (x, η) ≤ 1}.

Important examples of Finsler structures on Ω are those of the form Φ(B(x)ξ),
being Φ a Finsler function and B(x) a symmetric N ×N matrix, positive definite.
Such kind of Finsler structures are known as deformations of Minkowski norms.

Let us introduce the cost functions we will handle. Given a Finsler structure F
on Ω, we define the following cost function cF :

cF (x, y) := inf
σ∈ΓΩ

x,y

∫ 1

0

F ((σ(t)), σ′(t)) dt, (3)

where, for x, y ∈ Ω, the set ΓΩ
x,y is given by

ΓΩ
x,y := {σ ∈ C1([0, 1],Ω), σ(0) = x, σ(1) = y}.

We have that cF is a Finsler distance. We make emphasis on the fact that cF
is not necessary symmetric (i.e., cF (x, y) ̸= cF (y, x) may happen) because F is
merely positively homogeneous. This fact creates new difficulties in the optimal
mass transport problem compared with the case in which the cost is given by a
norm (that is symmetric).

1.3. The optimal matching problem. We fix two non-negative compactly sup-
ported functions f+, f− ∈ L∞, with supports X+, X−, respectively, satisfying the
mass balance condition

M0 :=

∫
X+

f+ =

∫
X−

f−.

We also consider a compact set D (the target set). Then we take a large bounded
domain Ω that contains all the relevant sets, the supports of f+ and f−, X+, X−
and the target set D. For simplicity we will assume that Ω is a convex C2 bounded
open set. We also assume that the resulting configuration verifies

X+ ∩ X− = ∅,
(
X+ ∪X−

)
∩D = ∅ and

(
X+ ∪X−

)
∪D ⊂⊂ Ω.
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Now, we are given two continuous Finsler structures F and G and, associated
to them, two Finsler distances, cF , cG, given by (3). Let us consider the set of
measures

ΠD(f+, f−) =

 (γ+, γ−) ∈ M+(Ω× Ω)2 : π0#γ± = f±,

π1#γ+ = π1#γ−, supp(π1#γ±) ⊂ D

 .

The optimal matching problem is the minimization problem

min
(γ+,γ−)∈ΠD(f+,f−)

{∫
Ω×Ω

cF (x, y)dγ+ +

∫
Ω×Ω

cG(x, y)dγ−

}
. (4)

If (γ+, γ−) ∈ ΠD(f+, f−) is a minimizer of the optimal matching problem (4), we
shall call the measure µ∗ = π1#γ+ = π1#γ− an optimal matching measure.

Let us denote by

M(D,M0) := {µ ∈ M+(Ω) : supp(µ) ⊂ D, µ(Ω) =M0}
the set of all possible matching measures. We have

WD
f± := inf

(γ+,γ−)∈ΠD(f+,f−)

{∫
Ω×Ω

cF (x, y)dγ+ +

∫
Ω×Ω

cG(x, y)dγ−

}
= inf

µ∈M(D,M0)
inf

(γ+,γ−)∈Π(f+,f−,µ)

{∫
Ω×Ω

cF (x, y)dγ+ +

∫
Ω×Ω

cG(x, y)dγ−

}
= inf

µ∈M(D,M0)

{
WcF (f+, µ) +WcG(f−, µ)

}
,

(5)
where

Π(f+, f−, µ) :=
{
(γ+, γ−) ∈ M+(Ω× Ω)2 : γ+ ∈ Π(f+, µ), γ− ∈ Π(f−, µ)

}
.

Note that on the right-hand side of (5) we are considering all possible measures
supported in D with total mass M0 and then we minimize the total transport cost.
This is probably the most natural way of looking at the optimal matching problem
and, as shown above, it is equivalent to our previous formulation.

The following result shows that there exist measures (γ∗+, γ
∗
−) ∈ ΠD(f+, f−) such

that

WD
f± =

∫
Ω×Ω

cF (x, y)dγ
∗
+ +

∫
Ω×Ω

cG(x, y)dγ
∗
− .

Consequently, we have existence of optimal matching measures.

Theorem 1.1. The optimal matching problem (4) has a solution, that is, there
exist measures (γ∗+, γ

∗
−) ∈ ΠD(f+, f−) such that

WD
f± =

∫
Ω×Ω

cF (x, y)dγ
∗
+ +

∫
Ω×Ω

cG(x, y)dγ
∗
−.

Proof. Take in (5) a minimizing sequence µn ∈ M(D,M0), then by the weak com-
pactness of M(D,M0) there exist a subsequence, denoted equal, that converges
weakly in the sense of measures to a µ∞ ∈ M(D,M0). Hence, by the weakly lower
semi-continuity of the functions ν 7→WcF (µ, ν) and ν 7→WcG(µ, ν), we have

WcF (f+, µ∞) +WcG(f−, µ∞) ≤ lim
n

(WcF (f+, µn) +WcG(f−, µn)) =WD
f± .

Therefore,

WcF (f+, µ∞) +WcG(f−, µ∞) =WD
f± ,
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and thanks to (2) we conclude.

As we have mentioned, our main goal here is to find a pair of Kantorovich poten-
tials and a matching measures taking the limit as p→ ∞ in a system of p−Laplacian
type equations. Let us briefly introduce this. Consider the variational problem

min
(v, w) ∈ W1,p(Ω) × W1,p(Ω)

v + w ≥ 0 in D

1

p

∫
Ω

(F ∗(x,Dv))p+
1

p

∫
Ω

(G∗(x,Dw)p−
∫
Ω

vf+−
∫
Ω

wf−,

(6)
where F ∗ and G∗ are the dual Finsler structures associated to F and G. Under
adequate differentiability conditions on F and G, given a minimizer (up, vp) of (6),
there exists a positive Radon measure hp supported in D such that

−div

(
[F ∗(x,Dvp(x))]

p−1 ∂F
∗

∂ξ
(x,Dvp(x))

)
= hp − f+ in Ω,

−div

(
[G∗(x,Dwp(x))]

p−1 ∂G
∗

∂ξ
(x,Dwp(x))

)
= hp − f− in Ω,

together with Neumann boundary conditions on ∂Ω. Then, our main result reads
as follows:

Theorem 1.2. Assume that F ∗(x, ·) and G∗(x, ·) are C1(RN \ {0}). Up to a
subsequence,

lim
p→∞

(vp, wp) = (v∞, w∞) uniformly

and

hp ⇀ h∞ as p→ ∞, weakly∗ as measures,

with h∞ a nonnegative Radon measure supported in {x ∈ D : v∞(x) = w∞(x)}.
These limit functions and the limit measure provide a solution to the optimal

matching problem in the sense that they satisfy:

h∞ is an optimal matching measure,

v∞ is a Kantorovich potential for the transport of f+ to h∞, and

w∞ is a Kantorovich potential for the transport of f− to h∞.

Remark 1.3. In the case that both costs are given by the Euclidean distance we
want to point out the following: First, the corresponding Monge transport problems
have a solution and moreover (see [16])

WD
f± = min

(T+,T−)∈AD(f+,f−)

∫
Ω

|x− T+(x)|f+(x)dx+

∫
Ω

|y − T−(y)|f−(y)dy,

where AD(f+, f−) is the set{
(T+, T−) : T± : Ω → Ω are Borel functions, T±(X±) ⊂ D, T+#f

+ = T−#f
−} .

In addition, in [16] we also showed that there exist optimal matching measures
supported on the boundary of the target set. In this general setting of costs given by
Finsler structures this is not always true, as the following simple example shows (for
simplicity we consider discontinuous Finsler structures, but the same example can
be adapted easily to provide a continuous example). Let Ω = (−1, 6), f+ = χ

[4,5],
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f− = χ
[0,1] and D = [2, 3]. For 0 < ϵ < 1, we consider continuous Finsler structures,

Fϵ and Gϵ, defined as

Fϵ(x, ξ) :=


|ξ| if x ∈ Ω \ (2− ϵ, 2 + ϵ),

1

ϵ2
|ξ| if x ∈ (2− ϵ, 2 + ϵ),

and

Gϵ(x, ξ) :=


|ξ| if x ∈ Ω \ (3− ϵ, 3 + ϵ),

1

ϵ2
|ξ| if x ∈ (3− ϵ, 3 + ϵ).

Hence, for x ∈ [4, 5], if y ∈ (2, 2 + ϵ) then

cFϵ(x, y) =

∫ 1

0

Fϵ(x+ t(y − x), y − x) dt = x− 2− ϵ+
1

ϵ2
(2 + ϵ− y),

and if y ∈ (2+ ϵ, 3), cFϵ
(x, y) = |x− y|. Similarly, for x ∈ [0, 1], if y ∈ (3− ϵ, 3) then

cGϵ(x, y) = 3− ϵ− x+
1

ϵ2
(y − 3− ϵ),

and if y ∈ (2, 3 − ϵ), cGϵ(x, y) = |x − y|. Then it is clear that, when ϵ is small
enough, any optimal matching measure will be supported in the set [2+ 1

2ϵ, 3−
1
2ϵ],

since otherwise we have to pay something of order 1/ϵ per unit of mass for one of
the two transports, and in the set (2 + ϵ, 3− ϵ) we have to pay at most 3 for every
unit of mass transported there.

Finally, let us remark that in the particular case in which cF and cG are geodesic
distances on a geodesically complete, connected Riemaniann manifold (see [17] for
several examples), by the results in [13], it is known that the corresponding Monge
transport problems has a solution, that is, there exists Borel functions T ∗

± : Ω → Ω
such that T+#f

+ = µ∞ = T−#f
−, such that∫

Ω×Ω

cF (x, y)dγ
∗
+ =

∫
Ω

cF (x, T
∗
+(x))f

+(x)dx

and ∫
Ω×Ω

cG(x, y)dγ
∗
− =

∫
Ω

cG(x, T
∗
−(x))f

−(x)dx.

Therefore,

WD
f± =

∫
Ω

cF (x, T
∗
+(x))f

+(x)dx+

∫
Ω

cG(x, T
∗
−(x))f

−(x)dx.

Moreover, we also have

WD
f± = min

(T+,T−)∈AD(f+,f−)

∫
Ω

cF (x, T+(x))f
+(x)dx+

∫
Ω

cG(y, T−(y))f
−(y)dy.

These are the contents of the paper: in Section 2 we collect some properties of
Finsler functions that will be used in the core of the paper; Section 3 contains our
main results, we deal with the p−Laplacian system and show that we can pass to
the limit as p → ∞ obtaining the optimal matching results, in addition we find
transport densities for the transport problems involved.
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2. Preliminaries on Finsler functions. In this section we collect some prop-
erties of Finsler functions in RN that will be used in the sequel. Recall from the
introduction that a Finsler function Φ is a non-negative continuous convex function,
positively homogeneous of degree 1,

Φ(tξ) = tΦ(ξ) for any t ≥ 0, ξ ∈ RN ,

that vanishes only at 0. Observe that Φ satisfies

α|ξ| ≤ Φ(ξ) ≤ β|ξ| for any ξ ∈ RN ,

for some positive constants α, β.
Note that Finsler functions are extensions of norms. In fact, any norm in RN

is a Finsler function, and any symmetric Finsler function is a norm. Moreover, for
any Finsler function, convexity is equivalent to the triangular inequality.

Let

BΦ := {ξ ∈ RN : Φ(ξ) ≤ 1}.
This set BΦ is a closed, bounded and convex set with 0 ∈ int(B). It is symmetric
around the origin if Φ is a norm. Conversely, for any closed bounded convex set
K with 0 ∈ int(K), ϕK(ξ) := inf{α > 0 : ξ ∈ αK} is a Finsler function with
BϕK = K; when K is centrally symmetric, we have a norm. In the literature the
Finsler functions are also denominated as Minkowski norms.

The dual function (or polar function) of a Finsler function Φ is defined as

Φ∗(ξ∗) := sup{⟨ξ∗; ξ⟩ : ξ ∈ BΦ} for ξ∗ ∈ RN .

It is immediate to verify that Φ∗ is also a Finsler function; and a norm when Φ is
a norm. We also have

Φ∗(ξ∗) = sup
ξ ̸=0

⟨ξ∗; ξ⟩
Φ(ξ)

.

Therefore, the following inequality of Cauchy-Schwarz type holds,

⟨ξ∗; ξ⟩ ≤ Φ(ξ)Φ∗(ξ∗). (1)

If Φ is a norm, we have

|⟨ξ∗; ξ⟩| ≤ Φ(ξ)Φ∗(ξ∗). (2)

Now, for general Finsler functions the inequality (2) is not true. An example of
a Finsler function that is not a norm in R is given by Φ(ξ) := aξ− + bξ+, with
0 < a < b.

It is not difficult to see that

Φ∗∗(ξ) = Φ(ξ), ∀ ξ ∈ RN .

Hence,

Φ(ξ) = sup
ξ∗ ̸=0

⟨ξ; ξ∗⟩
Φ∗(ξ∗)

.

If we assume that the Finsler function Φ is differentiable at ξ, then by Euler’s
Theorem,

Φ(ξ) = ⟨DΦ(ξ); ξ⟩. (3)

Moreover, if we assume Φ is differentiable in K ⊂ RN , since Φ is convex and satisfies
the triangle inequality, we have

⟨DΦ(ξ); η⟩ ≤ Φ(η) ∀ξ, η ∈ K. (4)
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If we assume Φ is differentiable in RN \ {0}, by Lagrange multipliers, from

Φ∗(ξ∗) = sup
Φ(ξ)=1

⟨ξ; ξ∗⟩,

we get that:

if Φ(ξ) = 1 and Φ∗(ξ∗) = ⟨ξ; ξ∗⟩
then there exists λ ∈ R such that ξ∗ = λDΦ(ξ).

(5)

From (3) and (4), we also have

Φ∗(DΦ(ξ)) = 1 ∀ ξ ̸= 0. (6)

3. The limit as p→ ∞ in a p−Laplacian system. In this section we show that
we can follow the ideas of Evans and Gangbo in [11] to get the matching measure
and the Kantorovich potentials at the same time.

From now on we will assume that F,G are continuous Finsler structures on Ω
satisfying

α1|ξ| ≤ F ∗(x, ξ) ≤ β1|ξ| for any ξ ∈ RN and x ∈ Ω, (7)

α2|ξ| ≤ G∗(x, ξ) ≤ β2|ξ| for any ξ ∈ RN and x ∈ Ω, (8)

being αi, βi positive constants. We can take w.l.g. αi = α and βi = β.
In [17] we proved the following result that will be used later on.

Lemma 3.1. u ∈W 1,∞(Ω) if and only if Lip(u, cF ) <∞, where

Lip(u, cF ) := sup

{
u(y)− u(x)

cF (x, y)
: x, y ∈ Ω, x ̸= y

}
;

and
esssupx∈ΩF

∗(x,Du(x)) = Lip(u, cF ).

As consequence of Lemma 3.1, we have that the set of functions

KcF (Ω) = {u : Ω 7→ R : u(y)− u(x) ≤ cF (x, y)} .
coincides with the set

K ∗
F (Ω) := {u : Ω 7→ R : esssupx∈ΩF

∗(x,Du(x)) ≤ 1}

3.1. The limit procedure. Take p > N from now on, and recall that, for simplic-
ity, we assumed that Ω is a convex C2 bounded open set. We will use the following
result whose proof follows standard Functional Analysis arguments.

Lemma 3.2 (A Poincaré’s type inequality). There exists a constant C > 0 such
that

∥(f, g)∥p ≤ C

(
∥(∇f,∇g)∥p +

∣∣∣∣∫
Ω

(f + g)

∣∣∣∣)
for all (f, g) ∈W 1,p(Ω)×W 1,p(Ω), f(x0) = g(x0) for some x0 ∈ D.

The constants that appear in the previous inequality may not be unform in p.
It is not our aim here to make this dependence precise, then we are not allowed to
use these results in the passage to the limit as p → ∞, they are used only to show
existence of a solution of the variational problem under consideration.

Let us consider the following variational problem

min
(v, w) ∈ W1,p(Ω) × W1,p(Ω)

v + w ≥ 0 in D

1

p

∫
Ω

(F ∗(x,Dv))p+
1

p

∫
Ω

(G∗(x,Dw)p−
∫
Ω

vf+−
∫
Ω

wf−.

(9)
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The next result deals with existence and uniqueness of solutions for the variational
problem (9).

Theorem 3.3. There exists a minimizer (vp, wp) of (9). Moreover, when F ∗ and
G∗ are strictly convex we have uniqueness of minimizers up to an additive constant,
that is, if (ṽp, w̃p) is another minimizer then there exists a constant c such that
(ṽp, w̃p) = (vp − c, wp + c).

Proof. Set

Ψp(v, w) :=
1

p

∫
Ω

(F ∗(x,Dv))p +
1

p

∫
Ω

(G∗(x,Dw))p −
∫
Ω

vf+ −
∫
Ω

wf− .

Let us begin by observing that, since the functions in W 1,p(Ω) (p > N) are contin-
uous, it is easy to see that

min
(v, w) ∈ W1,p(Ω) × W1,p(Ω)

v + w ≥ 0 in D

Ψp(v, w) = min
(v, w) ∈ W1,p(Ω) × W1,p(Ω)

v + w ≥ 0 in D
∃x0 ∈ D, v(x0) + w(x0) = 0

Ψp(v, w). (10)

Moreover, since Ψp(v, w) = Ψp(v − c, w + c) for any constant c, by taking

c =
1

2

(
1

|Ω|

∫
Ω

v − 1

|Ω|

∫
Ω

w

)
,

we can minimize Ψp(v, w) between functions (v, w) with
∫
Ω
v =

∫
Ω
w.

Now, by Lemma 3.2, and having in mind (7) and (8), Ψp(v, w) is a finite
lower semicontinuous and coercive convex functional for the closed convex subset
of W 1,p(Ω)×W 1,p(Ω), B, given by

(v, w) ∈ W 1,p(Ω)×W 1,p(Ω) : v + w ≥ 0 in D, v(x0) + w(x0) = 0

for some x0 ∈ D,

∫
Ω

v =

∫
Ω

w

 .

Then, by [2, Corollary 3.23], Ψp attains its infimum on B, which is equivalent to
say that

inf
(v, w) ∈ W1,p(Ω) × W1,p(Ω)

v + w ≥ 0 in D

Ψp(v, w)

is attained.
Uniqueness for strictly convex Finsler structures follows as in [16].

Now we prove that we can pass to the limit as p → ∞ in a subsequence of
minimizer functions.

Theorem 3.4. Let (vp, wp) be minimizer functions of (9). Then, there exists a
subsequence pi → +∞ such that

lim
i→∞

(vpi , wpi) = (v∞, w∞) uniformly,

where (v∞, w∞) is a solution of the variational problem

max
v, w ∈ W1,∞(Ω)

F∗(x,Dv(x)), G∗(x,Dw(x)) ≤ 1 a.e.
v + w ≥ 0 in D

∫
Ω

−vf+ − wf−. (11)
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Proof of Theorem 3.4. Let us take (vp, wp) ∈ B a minimizer of (9). For (v, w) ∈
W 1,∞(Ω) ×W 1,∞(Ω), with F ∗(x,Dv) ≤ 1 and G∗(x,Dw) ≤ 1 for a.e. x ∈ Ω, and
v + w ≥ 0 in D, we have that∫

Ω

vpf
+ +

∫
Ω

wpf
− ≤ 1

p

∫
Ω

(F ∗(x,Dvp))
p

+
1

p

∫
Ω

(G∗(x,Dwp))
p +

∫
Ω

vpf
+ +

∫
Ω

wpf
−

≤ 1

p

∫
Ω

(F ∗(x,Dv))p +
1

p

∫
Ω

(G∗(x,Dw))p

+

∫
Ω

vf+ +

∫
Ω

wf−

≤ 2
|Ω|
p

+

∫
Ω

vf+ +

∫
Ω

wf−.

(12)

Now, by (10), we can assume that there exists xp ∈ D such that vp(xp)+wp(xp) =
0. We can also assume that vp(z∞) = 0 for all p, for any z∞ ∈ Ω. Hence, as p > N ,
we have,

∥vp∥∞ ≤ C1∥Dvp∥p, (13)

and

∥wp∥∞ ≤ C1 (∥Dwp∥p + ∥Dvp∥p) , (14)

with C1 not depending on p. See [16] for the details.
From (12), (7), (8), (13) and (14) and using Hölder’s inequality, we get(∫

Ω

[F ∗(x,Dvp(x))]
p

)1/p

,

(∫
Ω

[G∗(x,Dwp(x))]
p

)1/p

≤ (C2p)
1

p−1 ∀p > N,

and

∥Dvp∥Lp(Ω), ∥Dwp∥Lp(Ω) ≤ C3 ∀p > N,

with Ci independent of p.
Therefore, by Morrey’s inequality and Arzela-Ascoli’s compactness criterion,

there exists a subsequence such that

vpi → v∞ uniformly in Ω and wpi → w∞ uniformly in Ω,

and, so, v∞ + w∞ ≥ 0 in D. Moreover, we get

∥Dv∞∥∞, ∥Dw∞∥∞ ≤ C and ∥F ∗(., Dv∞)∥∞, ∥G∗(., Dw∞)∥∞ ≤ 1.

Finally, passing to the limit in (12), we get∫
Ω

−v∞f+ − w∞f
− = sup

v, w ∈ W1,∞(Ω)
F∗(x,Dv(x)), G∗(x,Dw(x)) ≤ 1 a.e.

v + w ≥ 0 in D

∫
Ω

−vf+ − wf− .

This ends the proof.

Remark 3.5. Note that the convergence as p → ∞ is only along a subsequence.
The main content of our result is that there is enough compactness to pass to the
limit along subsequences and moreover that all possible limits are solutions to the
maximization limit problem (11).
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We now prove some properties of the minimizers that allow to show that (v∞, w∞)
are Kantorovich potentials. Moreover, we will see that this limit procedure gives
much more since it allows us to identify the optimal matching measure.

Lemma 3.6. Assume that F ∗(x, ·) and G∗(x, ·) are C1(RN \ {0}). Let (vp, wp) be
minimizer functions of problem (9). Then, there exists a positive Radon measure
hp of mass M0 such that

1.
−div

(
[F ∗(x,Dvp(x))]

p−1 ∂F
∗

∂ξ
(x,Dvp(x))

)
= hp − f+ in Ω,

[F ∗(x,Dvp(x))]
p−1 ⟨∂F

∗

∂ξ
(x,Dvp(x)); η⟩ = 0 on ∂Ω.

(15)


−div

(
[G∗(x,Dwp(x))]

p−1 ∂G
∗

∂ξ
(x,Dwp(x))

)
= hp − f− in Ω,

[G∗(x,Dwp(x))]
p−1 ⟨∂G

∗

∂ξ
(x,Dwp(x)); η⟩ = 0 on ∂Ω.

(16)

Here η is the exterior normal vector on ∂Ω, and ∂F∗

∂ξ is the gradient of F ∗(x, ξ)

with respect the second variable ξ, similarly for G∗.

2. The positive measure hp is supported on {x ∈ D : vp(x) + wp(x) = 0}.

Proof. In this proof, for shortness, we will avoid to write the x dependence of F ∗

and G∗, that is, we write F ∗(Dvp) and G
∗(Dwp). Recall that since p > N , we have

W 1,p(Ω) ⊂ C(Ω). For any φ,ψ ∈W 1,p(Ω) such that φ+ψ = 0 in D, since (vp, wp)
is a minimizer of Ψ in the set

{(v, w) ∈W 1,p(Ω)×W 1,p(Ω) : v + w ≥ 0 in D},

the function

I1(t) := Ψ(vp + tφ, wp + tψ)

has a minimum at t = 0. Therefore, I ′1(0) = 0, from where it follows that∫
Ω

[F ∗(Dvp)]
p−1 ∂F

∗

∂ξ
(Dvp)Dφ+

∫
Ω

[G∗(Dwp)]
p−1 ∂G

∗

∂ξ
(Dwp)Dψ

= −
∫
Ω

f+φ−
∫
Ω

f−ψ.

(17)

Observe that, taking ψ = −φ in (17), we get that

−div

(
[F ∗(Dvp)]

p−1 ∂F ∗

∂ξ
(Dvp)

)
+ div

(
[G∗(Dwp)]

p−1 ∂G∗

∂ξ
(Dwp)

)
= f− − f+ in Ω,

[F ∗(Dvp)]
p−1 ⟨∂F

∗

∂ξ
(Dvp); η⟩+ [G∗(Dwp)]

p−1 ⟨∂G
∗

∂ξ
(Dwp); η⟩ = 0 on ∂Ω.

(18)

Similarly, for any φ ∈W 1,p(Ω), φ ≥ 0, and any t > 0, we have

I2(t) := Ψ(vp + tφ,wp)−Ψ(vp, wp) ≥ 0

and

I3(t) := Ψ(vp, wp + tφ)−Ψ(vp, wp) ≥ 0.
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Then, by taking limits in Ii(t)
t i = 2, 3, as t→ 0, we get

−div

(
[F ∗(Dvp)]

p−1 ∂F
∗

∂ξ
(Dvp)

)
+ f+ ≥ 0 in Ω,

−div

(
[G∗(Dwp)]

p−1 ∂G
∗

∂ξ
(Dwp)

)
+ f− ≥ 0 in Ω.

Therefore, thanks to (18)

hp := −div

(
[F ∗(Dvp)]

p−1 ∂F
∗

∂ξ
(Dvp)

)
+ f+

= −div

(
[G∗(Dwp)]

p−1 ∂G
∗

∂ξ
(Dwp)

)
+ f−

defines a positive measure. Moreover, hp is supported on {x ∈ D : vp(x) +wp(x) =
0}. Indeed, for φ ∈ D(Ω) supported on Ω \ {x ∈ D : vp(x) + wp(x) = 0} and t ̸= 0
small enough,

I4(t) := Ψ(vp + tφ,wp)−Ψ(vp, wp) ≥ 0.

then, taking limits in I4(t)
t as t→ 0, we conclude.

Given now φ ∈ D(RN ), if we take ψ ∈ D(Ω) such that φ+ψ = 0 en D, (17) says
that ∫

Ω

[F ∗(Dvp)]
p−1 ∂F

∗

∂ξ
(Dvp)Dφ+

∫
Ω

[G∗(Dwp)]
p−1 ∂G

∗

∂ξ
(Dwp)Dψ

= −
∫
Ω

f+φ−
∫
Ω

f−ψ.

On the other hand, since ψ ∈ D(Ω) and supp(hp) ⊂ D, we have∫
Ω

[G∗(Dwp)]
p−1 ∂G

∗

∂ξ
(Dwp)Dψ =

∫
Ω

ψdhp −
∫
Ω

f−ψ = −
∫
Ω

φdhp −
∫
Ω

f−ψ.

Then, from the two above expressions, by density we obtain that∫
Ω

[F ∗(Dvp)]
p−1 ∂F

∗

∂ξ
(Dvp)Dφ =

∫
Ω

φdhp −
∫
Ω

f+φ, ∀φ ∈W 1,p(Ω), (19)

which shows the first statement in (1) for the first problem. Similarly, we obtain
the second one.

Finally, taking φ = 1 in (19), we get∫
Ω

dhp =M0,

and the proof is finished.

3.2. The optimal matching problem. Let us begin with the following proposi-
tion.

Proposition 3.7.

WD
f± := sup

v, w ∈ W1,∞(Ω)
F∗(x,Dv(x)), G∗(x,Dw(x)) ≤ 1 a.e.

v + w ≥ 0 in D

∫
Ω

−vf+ − wf− .
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Proof. For a fixed µ ∈ M(D,M0), by Kantorovich-Rubinstein’s Theorem and
Lemma 3.1, there exist Kantorovich potentials u±,µ ∈ W 1,∞(Ω), depending on
µ, with

esssupF ∗(x,Du+,µ) ≤ 1 and esssupG∗(x,Du−,µ) ≤ 1,

such that∫
Ω

u+,µ(µ− f+) = sup

{∫
Ω

v(µ− f+) : v ∈ KcF (Ω)

}
= min

γ∈Π(f+,µ)

∫
Ω×Ω

cF (x, y)dγ

and∫
Ω

u−,µ(µ− f−) = sup

{∫
Ω

v(µ− f−) : v ∈ KcG(Ω)

}
= min

γ∈Π(f−,µ)

∫
Ω×Ω

cG(x, y)dγ.

Therefore,

sup
v, w ∈ W1,∞(Ω)

F∗(x,Dv(x)), G∗(x,Dw(x)) ≤ 1 a.e.

∫
Ω

−vf+ − wf− + (v + w)µ =

= inf
(γ+,γ−)∈Π(f+,f−,µ)

∫
Ω×Ω

cF (x, y)dγ+ +

∫
Ω×Ω

cG(x, y)dγ− .

Since ∫
Ω

−vf+ − wf− + (v + w)µ

=

∫
Ω

−vf+ − (w −min
D

(w + v))f− + (w −min
D

(w + v) + v)µ

≤ sup
ṽ, w̃ ∈ W1,∞(Ω)

F∗(x,Dv(x)), G∗(x,Dw̃(x)) ≤ 1
ṽ + w̃ ≥ 0 in D

∫
Ω

−ṽf+ − w̃f− + (w̃ + ṽ)µ,

we have

sup
v, w ∈ W1,∞(Ω)

F∗(x,Dv(x)), G∗(x,Dw(x)) ≤ 1 a.e.
v + w ≥ 0 in D

∫
Ω

−vf+ − wf− + (v + w)µ =

= inf
(γ+,γ−)∈Π(f+,f−,µ)

∫
Ω×Ω

cF (x, y)dγ+ +

∫
Ω×Ω

cG(x, y)dγ− .

Hence, from (5), we get

inf
µ∈M(D,M0)

sup
v, w ∈ W1,∞(Ω)

F∗(x,Dv(x)), G∗(x,Dw(x)) ≤ 1 a.e.
v + w ≥ 0 in D

∫
Ω

−vf+ − wf− + (v + w)µ

= inf
(γ+,γ−)∈ΠD(f+,f−)

∫
Ω×Ω

cF (x, y)dγ+ +

∫
Ω×Ω

cG(x, y)dγ− .

Now, by Fan’s Minimax Theorem ([12]), we can interchange inf sup by sup inf in
the first part of the above expression and, since

sup
v, w ∈ W1,∞(Ω)

F∗(x,Dv(x)), G∗(x,Dw(x)) ≤ 1 a.e.
v + w ≥ 0 in D

min
µ∈M(D,M0)

∫
Ω

−vf+ − wf− + (w + v)µ

= sup
v, w ∈ W1,∞(Ω)

F∗(x,Dv(x)), G∗(x,Dw(x)) ≤ 1 a.e.
v + w ≥ 0 in D

∫
Ω

−vf+ − wf− ,
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we get the desired conclusion.

Theorem 3.8. Under the same assumptions of Lemma 3.6, up to a subsequence,

hp ⇀ h∞ as p→ ∞, weakly∗ as measures,

with h∞ a positive Radon measure of mass M0 supported on {x ∈ D : v∞(x) +
w∞(x) = 0}. And the limit (v∞, w∞) obtained in Theorem 3.4 satisfies:

v∞ is a Kantorovich potential for the transport of f+ to h∞,

w∞ is a Kantorovich potential for the transport of f− to h∞,

with respect to cF and cG respectively, begin these cost functions the Finsler distances
associated to F an G.

Proof. We will write again F ∗(Dvp) in the proof for shortness, and the same for
G∗. From the last equality in the proof of the previous lemma,∫

Ω

dhp =M0,

we can assume that there exists a positive Radon measure h∞ of mass M0 such
that, up to an increasing subsequence of the sequence given in Theorem 3.4,

hpi ⇀ h∞.

Let φ ∈ D(Ω) be supported on Ω \ {x ∈ D : v∞(x) + w∞(x) = 0}. Then, since
lim
i
(vpi , wpi) = (v∞, w∞) uniformly,

there exists p0 > N such that φ is supported on Ω \ {x ∈ D : vpi
(x) + wpi

(x) = 0}
for all pi ≥ p0. Therefore, ∫

Ω

φdh∞ = lim
i→∞

∫
Ω

φdhpi = 0.

Consequently, h∞ is supported on {x ∈ D : v∞(x) + w∞(x) = 0}.
Let us write p instead of pi from now on.
Since (F ∗(ξ))p−(F ∗(η))p ≤ p(F ∗(ξ))p−1 ∂F

∂ξ (ξ)(ξ−η) for any ξ, η ∈ RN , we have

1

p

∫
Ω

(F ∗(Dvp))
p −

∫
Ω

(dhp − f+)vp

+

∫
Ω

(F ∗(Dvp))
p−1 ∂F

∗

∂ξ
(Dvp) · (Dφ−Dvp)−

∫
Ω

(dhp − f+)(φ− vp)

≤ 1

p

∫
Ω

(F ∗(Dφ))p −
∫
Ω

(dhp − f+)φ

for every φ ∈W 1,p(Ω). Then, having in mind (19), we have

1

p

∫
Ω

(F ∗(Dvp))
p −

∫
Ω

(dhp − f+)vp ≤ 1

p

∫
Ω

(F ∗(Dφ))p −
∫
Ω

(dhp − f+)φ,

for every φ ∈W 1,p(Ω). Therefore, for any v ∈W 1,∞(Ω), F ∗(x,Dv(x)) ≤ 1 a.e.,

−
∫
Ω

(dhp − f+)vp ≤ 1

p
|Ω| −

∫
Ω

(f+ − dhp)v,

and, taking limits in the last inequality, we get∫
Ω

(dh∞ − f+)v ≤
∫
Ω

(dh∞ − f+)v∞,



OPTIMAL MATCHING PROBLEM FOR FINSLER DISTANCES 15

from where it follows that∫
Ω

(dh∞ − f+)v∞ = sup
v ∈ W1,∞(Ω)

F∗(x,Dv(x)) ≤ 1 a.e.

∫
Ω

v(dh∞ − f+),

and consequently, v∞ is a Kantorovich potential for the transport of f+ to h∞,
with respect to cF . The proof for w∞ is similar.

Theorem 3.9. The measure h∞ is a matching measure to the optimal matching
problem.

Proof. From Theorem 3.8 and Kantorovich-Rubinstein’s Theorem, we have∫
Ω

v∞(dh∞ − f+) = min
µ∈Π(f+,h∞)

∫
cF (x, y)dµ =

∫
cF (x, y)dµ0,

µ0 ∈ Π(f+, h∞) and∫
Ω

w∞(dh∞ − f−) = min
ν∈Π(f−,h∞)

∫
cG(x, y)dν =

∫
cG(x, y)dν0,

ν0 ∈ Π(f−, h∞). Then, by adding the above inequalities and since
∫
Ω
(w∞ +

v∞)h∞ = 0, by Proposition 3.7, we get∫
Ω

−v∞f+ − w∞f
− =

∫
cF (x, y)dµ0 +

∫
cG(x, y)dν0

≥ inf
(γ+,γ−)∈ΠD(f+,f−)

{∫
Ω×Ω

cF (x, y)dγ+ +

∫
Ω×Ω

cG(x, y)dγ−

}
= sup

v, w ∈ W1,∞(Ω)
F∗(x,Dv(x)), G∗(x,Dw(x)) ≤ 1 a.e.

v + w ≥ 0 in D

∫
Ω

−vf+ − wf− .

(20)

Now, by Theorem 3.4, all the inequalities in (20) are equalities. This ends the
proof.

Theorem 1.2 is now proved. Let us see that we can also describe the transport
densities of the transport problems involved. Remember we are assuming that F ∗

and G∗ are continuous and that F ∗(x, ·), G∗(x, ·) ∈ C1(RN \ {0}).

Theorem 3.10. Consider v∞, w∞ the Kantorovich potentials obtained in Theo-
rem 3.8 and h∞ the matching measure of Theorem 3.9 . Then, there exists two
nonnegative L1 functions a and b such that

1. for almost every x, a(x) > 0 implies F ∗(x,Dv∞(x)) = 1, and∫
Ω

a(x)

⟨
∂F ∗

∂ξ
(x,Dv∞(x));Dv(x)

⟩
dx =

∫
Ω

(h∞(x)− f+(x))v(x) dx

for all v ∈W 1,∞(Ω); hence

−div

(
a
∂F ∗

∂ξ
(·, Dv∞)

)
= (h∞ − f+) in the sense of distributions,

and, in addition,∫
Ω

a(x) dx =

∫
Ω

v∞(x)(h∞(x)− f+(x)) dx; (21)
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2. for almost every x, b(x) > 0 implies G∗(x,Dw∞(x)) = 1, and∫
Ω

b(x)

⟨
∂G∗

∂ξ
(x,Dw∞(x));Dv(x)

⟩
dx =

∫
Ω

(h∞(x)− f−(x))v(x) dx

for all v ∈W 1,∞(Ω); hence

−div

(
b
∂G∗

∂ξ
(·, Dw∞)

)
= (h∞ − f−) in the sense of distributions,

and, in addition,∫
Ω

b(x) dx =

∫
Ω

w∞(x)(h∞(x)− f−(x)) dx. (22)

3. ∫
Ω

a(x) dx+

∫
Ω

b(x) dx = −
∫
Ω

(v∞(x)f+(x) + w∞(x)f−(x)) dx

gives the total transport cost.

Proof. We will write F ∗(Dvp) in the proof for shortness, and the same for G∗. Since
vp is a weak solution of problem (15), if we define

Xp := [F ∗(Dvp(x))]
p−1 ∂F

∗

∂ξ
(Dvp(x)),

then ∫
Ω

⟨Xp;Dv⟩ =
∫
Ω

(hp − f+)v ∀ v ∈W 1,p(Ω). (23)

Let us see that

{Xp : p ≥ N} is weakly relatively compact in L1(Ω,RN ). (24)

In fact, first, taking vp as test function in (23) and having in mind (3),we have∫
Ω

[F ∗(Dvp(x))]
p
dx ≤ C1, ∀p > N. (25)

Then, by Hölder’s inequality, we have∫
Ω

[F ∗(Dvp(x))]
p−1

dx ≤ C2, ∀p > N. (26)

On the other hand, given φ ∈ L∞(Ω,RN ), from (4), (7) and (26), we have∣∣∣∣∫
Ω

⟨Xp;φ⟩
∣∣∣∣ ≤

∫
Ω

[F ∗(Dvp(x))]
p−1

∣∣∣∣⟨∂F ∗

∂ξ
(Dvp(x));φ(x)

⟩∣∣∣∣ dx
≤

∫
Ω

[F ∗(Dvp(x))]
p−1

F ∗(φ(x)) dx

≤ ∥F ∗(φ)∥∞
∫
Ω

[F ∗(Dvp(x))]
p−1

dx

≤ C2M∥φ∥∞,

from where it follows that {Xp : p ≥ N} is bounded in L1(Ω,RN ). Moreover, by
(4), ∣∣∣∣∂F ∗

∂ξ
(Dvp(x))

∣∣∣∣ ≤ sup
|η|≤1

F ∗(η) ≤ β uniformly in Ω.
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Hence, for any measurable subset E ⊂ Ω, applying Hölder’s inequality and having
in mind (25), we have∫

E

|Xp| ≤ β

∫
E

[F ∗(Dvp(x))]
p−1

dx ≤ β

(∫
Ω

[F ∗(Dvp(x))]
p dx

) p−1
p

|E|
1
p .

Therefore, {Xp : p ≥ N}, being bounded and equi-integrable in L1(Ω,RN ) is
weakly relatively compact in L1(Ω,RN ), and (24) holds. Consequently, we may
assume there exists a sequence vpi with pi → +∞, converging uniformly to u∞,
such that

Xpi → X∞ weakly in L1(Ω,RN ).

Thus, for any v ∈W 1,∞(Ω), having in mind (23), we get∫
Ω

(hp − f+)v = −
∫
Ω

div(Xpi)v =

∫
Ω

⟨Xpi ;Dv⟩ →
∫
Ω

⟨X∞;Dv⟩.

Hence, ∫
Ω

(hp − f+)v =

∫
Ω

⟨X∞;Dv⟩ ∀ v ∈W 1,∞(Ω). (27)

In addition by (23) and (27),

lim
i→∞

∫
Ω

⟨Xpi ;Dvpi⟩ = lim
i→∞

∫
Ω

(hp − f+)vpi

=

∫
Ω

(hp − f+)v∞

=

∫
Ω

⟨X∞;Du∞⟩.

(28)

Applying Hölder’s inequality, (6), (3) and (28), we get∫
Ω

F (X∞(x))dx ≤ lim inf
i→∞

∫
Ω

F (Xpi(x))dx

= lim inf
i→∞

∫
Ω

[F ∗(Dvpi(x))]
pi−1

F

(
∂F ∗

∂ξ
(Dvpi(x))

)
dx

≤ lim inf
i→∞

(∫
Ω

[F ∗(Dvpi(x))]
pi dx

) pi−1

pi

= lim inf
i→∞

(∫
Ω

[F ∗(Dvpi(x))]
pi−1

⟨
∂F ∗

∂ξ
(Dvpi(x));Dvpi(x)

⟩
dx

) pi−1

pi

= lim inf
i→∞

(∫
Ω

⟨Xpi ;Dvpi⟩
) pi−1

pi

=

∫
Ω

⟨X∞;Dv∞⟩.

Now, since u∞ ∈ K ∗
F (Ω),

∥F ∗(Dv∞)(x)∥L∞(Ω) ≤ 1.

Moreover, by (1),
⟨X∞;Dv∞⟩ ≤ F ∗(Dv∞(x))F (X∞(x)).

Then, we have
F (X∞(x)) = ⟨X∞(x);Dv∞(x)⟩ (29)

and
F ∗(Dv∞(x)) = 1 a.e. on {F (X∞(x)) > 0}. (30)
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Now, by (5), for a.e. x ∈ Ω there exists a(x) such that

X∞(x) = a(x)
∂F ∗

∂ξ
(Dv∞(x)). (31)

Moreover, from (29), (30), (31) and (3), we have

0 ≤ F (X∞(x)) = a(x)

⟨
∂F ∗

∂ξ
(Dv∞(x));Dv∞

⟩
= aF ∗(Dv∞(x)) = a a.e.,

hence a = F (X∞(x)) is a nonnegative L1 function, and by (30), we get that

for almost every x, a(x) > 0 implies F ∗(Dv∞(x)) = 1. (32)

Now, by (27) we have∫
Ω

a(x)

⟨
∂F ∗

∂ξ
(Dv∞(x));Dv(x)

⟩
dx =

∫
Ω

(h∞(x)− f+(x))v(x) dx (33)

for all v ∈W 1,∞(Ω), and in particular

−div

(
a
∂F ∗

∂ξ
(Dv∞)

)
= h∞ − f+

in the sense of distributions.
Finally, by (33) and (32) and using (3), we have∫

Ω

u∞(x)(h∞(x)− f+(x))dx =

∫
Ω

a(x)

⟨
∂F ∗

∂ξ
(Dv∞(x));Du∞(x)

⟩
dx

=

∫
Ω

a(x)F ∗(Dv∞(x))dx =

∫
Ω

a(x)dx.

We can do the same for w∞, and then we have shown that this procedure gives
also transport densities for the optimal transport problems involved between f−

and h∞. Finally, (21)+(22) gives (3).
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