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Abstract. In this paper we study numerical approximations of the nonlocal p−Laplacian
type diffusion equation,

ut(t, x) =
∫

Ω

J(x− y)|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x)) dy.

First, we find that a semidiscretization in space of this problem gives rise to an ODE
system whose solutions converge uniformly to the continuous one as the mesh size goes to
zero. Moreover, the semidiscrete approximation shares some properties of the continuos
problem: it preserves the total mass and the solution converges to the mean value of the
initial condition as t goes to infinity.

Next, we discretize also the time variable and present a totally discrete method which
also enjoys the above mentioned properties.

In addition, we investigate the limit as p goes to infinity in these approximations and
obtain a discrete model for the evolution of a sandpile.

Finally, we present some numerical experiments that illustrate our results.

1. Introduction

Our main goal in this paper is to approximate numerically a nonlocal nonlinear diffu-
sion problem, involving the nonlocal p-Laplacian operator (with homogeneous Neumann
boundary conditions). More precisely, we deal with the problem

(1.1)





ut(t, x) =

∫

Ω

J(x− y)|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x)) dy,

u(x, 0) = u0(x),

being J : Rd → R a nonnegative continuous radial function with compact support verifying
J(0) > 0. We also assume that

∫
Rd J(x) dx = 1 to simplify our arguments (although this

condition is not necessary to prove our results). We take 1 ≤ p < +∞ and Ω ⊂ Rd a
bounded domain. Existence and uniqueness of a strong solution to (1.1) can be found
in [3].
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Nonlocal evolution equations of the form

(1.2) ut(x, t) = J ∗ u− u(x, t) =

∫

Rd

J(x− y) (u(y, t)− u(x, t)) dy,

have many applications in modelizing diffusion processes, see [1], [4], [5], [9], [10], [11], [12],
[13], [14], [19], [20], [23], [24], [25], and even in the treatment of images, see [8, 21].

As stated in [19], if u(x, t) represents the density of a single population at the point
x at time t, and J(x − y) is considered as the probability distribution of jumping from
location y to location x, then the convolution (J ∗ u)(x, t) =

∫
Rd J(y − x)u(y, t) dy is the

rate at which individuals are arriving to position x from any other place, while −u(x, t) =
− ∫

Rd J(y − x)u(x, t) dy is the rate at which they are leaving location x to travel to any
other site. Under these considerations and in the absence of external or internal sources,
the density u satisfies equation (1.2). Equation (1.2) is known as a nonlocal diffusion
equation since the diffusion of the density u at a point x and time t depends on all the
values of u in a neighborhood of x, through the convolution term J ∗ u.

The nonlocal diffusion equations share many properties with the corresponding local
problems. In [3] the authors find that problem (1.1) is the nonlocal analogous problem
to the well known local p−Laplacian evolution equation ut = div(|∇u|p−2∇u), for p > 1,
(while the extreme case, p = 1 corresponds to the total variation flow) with homogeneous
Neumann boundary conditions. Indeed, if one rescales the kernel J properly, solutions to
(1.1) converge to solutions of the local problem.

Note that, since we are integrating in Ω, we are imposing that diffusion takes place only
in Ω. There is no flux of individuals across the boundary. Hence, we are dealing here with
the nonlocal analogous to Neumann boundary conditions.

Finally, concerning the large time behaviour, solutions to (1.1) converge to the mean
value of the initial condition, as it happens for the local problem. Moreover, in [2] the limit
as p → ∞ is considered. It is given by a nonlocal model for the formation and growth of
a sandpile, analogous to the local model described in [16, 17, 18].

However, up to our knowledge, there is none rigorous study of numerical approximations
for these kind of problems.

Now, let us describe our results. We look in detail to the one-dimensional case, that
is Ω = [0, L], since the extension to several space dimensions is straightforward. Assume
that the support of J is the interval [−S, S]. Let us consider a partition (not necessarily
uniform) x1, · · · , xN+1 of the interval [0, L] of size h = max(xi−xi−1). Then, the numerical
approximation to problem (1.1) solves the following system of O.D.Es, for each node xj,

(1.3)





u′j(t) =
∑
i∈A

J(xi − xj)hi|ui(t)− uj(t)|p−2(ui(t)− uj(t)), t > 0,

uj(0) = u0(xj),

for every j = 1, · · · , N + 1, being A = {i such that |xi − xj| ≤ S}.
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Next, we discretize the time variable using the explicit Euler method and we obtain

(1.4)





uk+1
j − uk

j

τk

=
∑
i∈A

J(xi − xj)hi|uk
i − uk

j |p−2(uk
i − uk

j ), k > 0,

u0
j = u0(xj).

Note that for these nonlocal models the explicit Euler scheme is well suited, since it does
not need a restrictive stability constraint for the time step, as it happens for local problems.
This is related to the lack of regularizing effect in nonlocal problems. See Remark 2.9.

Our results concerning the semidiscrete and totally discrete approximations read as
follows (see Sections 2.1 and 2.2 for precise statements).

Solutions to the numerical scheme converge uniformly to the continuous solution as the
mesh size h (and the time step τ) goes to zero. Moreover, the numerical approximations
share some properties of the continuous problem: there is a comparison principle, they
preserve the symmetry and the total mass of the initial data and they converge to the mean
value of the initial condition as t goes to infinity.

We remark that our results also hold when we deal with approximations in a multidi-
mensional domain. The proofs are similar to the one-dimensional case and are left to the
reader. See the short paragraph at the end of Section 2.

We also study the limit as p →∞ and we prove that solutions to the semidiscrete scheme
(1.3) converge to a nonlocal evolution problem, that can be regarded as a semidiscrete
approximation of a model for the evolution of a sandpile, see [2]. In the local sandpile
models it is assumed that the maximum slope of a sandpile is one (otherwise the sand
configuration becomes unstable), see [16, 17, 18]. In the nonlocal sandpile model described
in [2] the same restriction on the slope is assumed but with some freedom at short distances
(distances shorter than the size of the support of J), that can measure irregularities of the
sand grains.

The rest of the paper is organized as follows: in Section 2 we study the semidiscrete and
the totally discrete approximations in one space dimension, in Section 3 we take the limit
as p →∞ and finally in Section 4 we show some numerical experiments that illustrate our
results.

2. Semidiscrete and totally discrete numerical methods

In this section we develop a fully discrete numerical method to approximate problem
(1.1), restricting ourselves to one space dimension, that is, Ω = [0, L], and supp(J) =
[−S, S]. We begin by describing our space discretization.

2.1. Semidiscrete scheme. We perform a discretization of the space variable and show
the convergence of the semidiscrete scheme and some asymptotic properties of the approx-
imations.
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To this end we introduce some preliminary notation. Let us consider a partition (not
necessarily uniform) x1, · · · , xN+1 of the interval [0, L] of size h (h = max(xi − xi−1)) and
the corresponding standard piecewise linear finite element space Vh. Let us denote by
{φj}1≤j≤N the usual Lagrange basis of Vh.

We define the semidiscrete approximation,

(2.5) uh(x, t) =
N+1∑
j=1

uj(t)φj(x).

Where ui(t) is the solution to the following system of O.D.Es

(2.6)





u′j(t) =
∑
i∈A

J(xi − xj)hi|ui(t)− uj(t)|p−2(ui(t)− uj(t)), t > 0,

uj(0) = u0(xj),

for every j = 1, · · · , N + 1, being A = {i such that |xi − xj| ≤ S}. Note that local
existence and uniqueness of solutions to this system is straightforward from the fact that
the right hand side of the equation is locally Lipschitz.

We first show that the semidiscrete solutions converge to the continuous solution. To
this end we prove that our solutions satisfy a comparison principle.

Definition 2.1. We say that U is a supersolution of problem (2.6) if each of its components
satisfies 




u′j(t) ≥
∑

i

J(xi − xj)hi|ui(t)− uj(t)|p−2(ui(t)− uj(t)), t > 0,

u0
j ≥ u0(xj),

for every xi such that |xi− xj| ≤ S and j = 1, · · · , N + 1. Analogously, U is a subsolution
of problem (2.6) if it verifies the previous problem with the reverse inequalities.

Lemma 2.2. Let U and U be a supersolution and a subsolution of problem (2.13), respec-
tively. Then

U(t) ≥ U(t) ≥ U(t).

Proof. By an approximation procedure we restrict ourselves to consider strict inequalities
for the supersolution. Indeed, we can take ui(t) + δt + δ (δ > 0) for every i = 1, · · · , N + 1
as a strict supersolution, and take limit as δ → 0 at the end. We show that U(t) > U(t)
by contradiction. Let us assume that there exists a first time t0 and a node j0 such that
uj0(t0) = uj0(t0) = a; then we have

0 ≥ u′j0(t0)− u′j0(t0) >∑
i∈A

hiJ(xi − xj0)
(|ui(t0)− a|p−2 (ui(t0)− a)− |ui(t0)− a|p−2 (ui(t0)− a)

) ≥ 0,

a contradiction. The inequality U(t) ≥ U(t) can be handled in a similar way. ¤
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Now we are ready to prove the convergence result.

Theorem 2.3. Let u ∈ C([0, T ]; L1(Ω)) ∩ W 1,1((0, T ); L1(Ω)), be a positive solution to
(1.1) and uh the numerical approximation defined by (2.5). Then there exists a constant
K, such that for every h small enough it holds

max
0≤t≤T

{
max

x∈[0,L]
|u(x, t)− uh(x, t)|

}
≤ Kh.

Proof. Let us denote by εj(t) = uj(t)− vj(t) the error vector, where vj(t) = u(xj, t). It is
easy to check that this vector verifies

ε′j =
∑
i∈A

J(xi − xj)hi

(
|ui − uj|p−2(ui − uj)− |vi − vj|p−2(vi − vj)

)

+
∑
i∈A

J(xi − xj)hi|vi − vj|p−2(vi − vj)

−
∫

Ω

J(y − x)|u(y)− u(x)|p−2(u(y)− u(x)) dy

≤
∑
i∈A

J(xi − xj)hi(p− 1)|η|p−2|εi − εj|+ O(h),

being η an intermediate value between ui−uj and vi−vj, resulting from applying the Mean
Value Theorem to the first term. The second term is O(h), since each of the approximations
to the integrals are O(h2) and we add them taking into account the nodes laying on the
supp(J).

Therefore, the error vector solves the following problem,

(2.7)





ε′j(t) =
∑
i∈A

J(xi − xj)hi(p− 1)|η|p−2|εi − εj|+ Ch, t > 0,

εj(0) = 0,

Thus, if we consider ωj(t) = ω(t) = Cht, for every j = 1, · · · , N +1, ω is a supersolution of
problem (2.7). It can be shown in a similar way to Lemma 2.2, that this problem satisfies
a comparison principle. Consequently, εj(t) ≤ ω(t) ≤ Kh, for every t ≤ T and every
j = 1, · · · , N + 1. Here K = CT .

Repeating this argument for the vector −εj(t) we conclude that

|εj(t)| ≤ Kh, for everyj = 1, · · · , N + 1,

which finishes the proof. ¤

Let us prove now that, as it happens for the continuous problem, if the initial datum is
symmetric, the numerical scheme preserves this property.

Lemma 2.4. Let u0(x) be a symmetric initial datum in [−L,L], that is u0(x) = u0(−x),
and consider a symmetric partition xi, −N−1 ≤ i ≤ N+1, of this interval, i.e. xi = −x−i.
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Then, the solution to problem (2.6) is symmetric, that is, it verifies

ui(t) = u−i(t).

Proof. Let us define ωj(t) = u−j(t). Then, ωj satisfies





ω′j(t) =
∑

i∈A

J(xi − x−j)hi|ui(t)− ωj(t)|p−2(ui(t)− ωj(t)), t > 0,

ωj(0) = u0(x−j) = u0(xj),

for every j = −1−N, · · · , N + 1, being A = {i such that |xi − x−j| ≤ S}. But note that
A = −A where A = {i such that |xi − xj| ≤ S} since the partition is symmetric. Taking
into account that J is symmetric, we have that the previous equation can be written as
follows

ω′j(t) =
∑
i∈A

J(x−i − x−j)hi|ωi(t)− ωj(t)|p−2(ωi(t)− ωj(t))

=
∑
i∈A

J(xi − xj)hi|ωi(t)− ωj(t)|p−2(ωi(t)− ωj(t)).

We conclude the proof by uniqueness of the solutions to the ODE system. ¤

We show that the solutions of the discrete nonlocal problem converge to the mean value
of the initial condition. To carry out this task, we prove the following Poincaré’s type
inequality.

Lemma 2.5. Let p ≥ 1. Then,

(2.8) Ip = I(J, d, p) = inf
{v∈RN+1:

PN+1
i=1 hivi(t)=0}

1
2

∑N
i,j=1 hi hj J(xi − xj)|vi − vj|p∑N+1

j=1 hj |vj|p

is strictly positive. In consequence,

(2.9) Ip

N+1∑
j=1

hj

∣∣∣∣∣vj − 1

L

N+1∑
i=1

hivi

∣∣∣∣∣

p

≤ 1

2

N+1∑
i,j=1

hi hj J(xi − xj) |vi − vj|p ,

for every v ∈ RN+1.

Proof. To show (2.8) it suffices to see that for each v ∈ RN+1 there exists a constant c > 0
such that

(2.10)
N+1∑
j=1

hj|vj|p ≤ c

(
N+1∑
i,j=1

hi hj J(xi − xj)|vi − vj|p +

∣∣∣∣∣
N+1∑
i=1

hivi

∣∣∣∣∣

)
.
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Arguing by contradiction, if (2.10) does not hold, then for every n ∈ N there exists vn ∈
RN+1 with

∑N+1
i=1 hi |(vn)i|p = 1, satisfying

1 > n

(
N+1∑
i,j=1

hi hj J(xi − xj)|(vn)i − (vn)j|p +

∣∣∣∣∣
N+1∑
i=1

hi(vn)i

∣∣∣∣∣

)
.

In particular, this implies that limn→∞
∑N+1

i=1 hi (vn)i = 0, which contradicts the fact
that

∑
i hi |(vn)i|p = 1. Note that (2.9) follows immediately from (2.8), for vj = ωj −

1
L

∑N+1
i=1 hi ωi, for any ω ∈ RN+1. ¤

We are now ready to study the asymptotic behaviour of the discrete solutions.

Theorem 2.6. Let p ≥ 1 and uh ∈ Vh the solution to problem (2.6) corresponding to an
initial datum, u0. Then, there exists a positive constant C, independent of t, such that

(2.11)
N+1∑
j=1

hj |uj(t)− u0|p ≤ C

∑N+1
j=1 hj |uj(0)|2

t
→ 0, as t →∞,

where u0 = 1
L

∑
i hi ui(0) < ∞.

Proof. We define ωj(t) = uj(t)− u0. From (2.6) it is easy to see that ω verifies

d

dt

N∑
j=1

hj|ωj|p = p

N+1∑
j=1

hj|ωj|p−2ωj

∑
i∈A

hi J(xi − xj)|ωi − ωj|p−2(ωi − ωj)

= −p

N+1∑
j=1

∑
i∈A

hjhi J(xi − xj)
(|ωi|p−2ωi − |ωj|p−2ωj

) |ωi − ωj|p−2(ωi − ωj)

+p

N+1∑
j=1

∑
i∈A

hjhi J(xi − xj)|ωi|p−2ωi|ωi − ωj|p−2(ωi − ωj)

= −p

2

N+1∑
j=1

∑
i∈A

hjhi J(xi − xj)
(|ωi|p−2ωi − |ωj|p−2ωj

) |ωi − ωj|p−2(ωi − ωj).

Therefore,
∑N+1

j=1 hj|ωj|p is non increasing.

On the other hand, note that adding the equation in (2.6)1 in all of the nodes, we obtain

N+1∑
j=1

hj u′j(t) =
N+1∑
j=1

∑
i∈A

hj J(xi − xj)hi|ui(t)− uj(t)|p−2(ui(t)− uj(t))

=
1

2

N+1∑
j=1

∑
i∈A

hj J(xi − xj)hi|ui(t)− uj(t)|p−2(ui(t)− uj(t))

+
1

2

N+1∑
i=1

∑
j∈A

hj J(xi − xj)hi|ui(t)− uj(t)|p−2(ui(t)− uj(t)) = 0.
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That is, the mass is preserved, 1
L

∑N+1
j=1 hj uj(t) = u0, for every t ≥ 0 and, consequently,

1
L

∑N+1
j=1 hj ωj(t) = 0, for every t ≥ 0. Thus we can apply to this function the Poincare’s

inequality (2.9) and we obtain

Ip

N+1∑
j=1

hj |ωj|p ≤ 1

2

N+1∑
i,j=1

hi hj J(xi − xj) |ωi − ωj|p ,

from which it easily follows,

(2.12)

t

N+1∑
j=1

hj |ωj(t)|p ≤
∫ t

0

N+1∑
j=1

hj |ωj(s)|p ds

≤ C

∫ t

0

N+1∑
i,j=1

hi hj J(xi − xj) |ωi(s)− ωj(s)|p ds

= C

∫ t

0

N+1∑
i,j=1

hi hj J(xi − xj) |ui(s)− uj(s)|p ds.

Now, we multiply the equation (2.6)1 by uj and we add in all the nodes, it is easy to
check that

1

2

d

dt

(
N+1∑
j=1

hj|uj(t)|2
)

=
N+1∑
i,j=1

J(xi − xj)hihj|ui(t)− uj(t)|p−2(ui(t)− uj(t))uj(t)

= −
N+1∑
i,j=1

J(xi − xj)hihj|ui(t)− uj(t)|p

+
N+1∑
i,j=1

J(xi − xj)hihj|ui(t)− uj(t)|p−2(ui(t)− uj(t))ui(t)

= −1

2

N+1∑
i,j=1

J(xi − xj)hihj|ui(t)− uj(t)|p.

Integrating in time, we deduce that

N+1∑
j=1

hj|uj(t)|2 −
N+1∑
j=1

hj|uj(0)|2 = −
∫ t

0

N+1∑
i,j=1

hi hj J(xi − xj) |ui(s)− uj(s)|p ds.

Thus,
∫ t

0

N+1∑
i,j=1

hi hj J(xi − xj) |ui(s)− uj(s)|p ds ≤
N+1∑
j=1

hj|uj(0)|2,

which plugged into (2.12) gives the desired conclusion, (2.11). ¤
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2.2. A fully discrete scheme. Now we perform the discretization in time, using the
explicit Euler method, that is

(2.13)





uk+1
j − uk

j

τk

=
∑
i∈A

J(xi − xj)hi|uk
i − uk

j |p−2(uk
i − uk

j ), k > 0,

u0
j = u0(xj),

being A = {i : |xi − xj| ≤ S}, for every j = 1, · · · , N + 1. We denote by Uk =
(uk

1, · · · , uk
N+1) the vector whose components solve the previous system (2.13).

The symmetry property given in Lemma 2.4 follows similarly from reflection and unique-
ness for the totally discrete method. However, the comparison principle for problem (2.13)
requires a condition on the time step τk, which is not restrictive. In order to show this
comparison principle we give the following definitions.

Definition 2.7. We say that U
k

is a supersolution of problem (2.13) if each of its compo-
nents satisfies

(2.14)





uk+1
j − uk

j

τk

≥
∑
i∈A

J(xi − xj)hi|zk
i − zk

j |p−2(uk
i − uk

j ), k > 0,

u0
j ≥ u0(xj),

being A = {i : |xi−xj| ≤ S}, for every j = 1, · · · , N +1. Analogously, Uk is a subsolution
of problem (2.13) if it verifies (2.14) with the reverse inequalities.

Proposition 2.8. Let U
k

and Uk a super and a subsolution of problem (2.13), respectively,

such that U
0 ≤ U0. If the time step verifies

(2.15) τk <
1

2(p− 1) maxj |uk
j |p−2

,

then U
k ≤ Uk, for every k > 0.

Proof. We define Zk = U
k − Uk. Note that, as before, by an approximation argument, we

can assume in (2.14) strict inequalities. Therefore, Zk verifies for each j = 1, · · · , N + 1
and every k > 0 the following system





zk+1
j − zk

j

τk

>
∑
i∈A

J(xi − xj)hi

(
|uk

i − uk
j |p−2(uk

i − uk
j )− |uk

i − uk
j |p−2(uk

i − uk
j )

)
,

z0
j > 0.

Let us argue by contradiction and suppose that there exists a first time tk+1 and a node
xj such that zk+1

j ≤ 0 while zk
j > 0. From the corresponding equation for that node we

obtain
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zk+1
j > zk

j + τj

∑
i

J(xi − xj)hi

(
|uk

i − uk
j |p−2(uk

i − uk
j )− |uk

i − uk
j |p−2(uk

i − uk
j )

)

= zk
j + (p− 1)τj

∑
i

J(xi − xj)hi|θk
i,j|p−2(zk

i − zk
j ),

being θk
i,j a value between uk

i −uk
j and uk

i −uk
j . Let ηk

j = max
i
{θk

i,j}. Neglecting the positive

terms in the previous inequality and taking (2.15) into account we get

zk+1
j > zk

j

(
1− (p− 1)τj|ηk

j |p−2
∑

i

J(xi − xj)hi

)

= zk
j

(
1− (p− 1)τj|ηk

j |p−2(1 + O(h))
)
≥ 0,

which is a contradiction. ¤

Remark 2.9. Note that the condition (2.15) does not depend on h. This has to be con-
trasted with the analogous condition for the local problem. Indeed, the condition ensuring
the comparison principle for an analogous numerical scheme (based on a discretization in
space using piecewise finite element with mass lumping and the Euler explicit method in
the time variable) for the corresponding local problem is

τk ≤ hp/
(
2(p− 1) max

j
|uk

j |p−2
)
,

for a uniform mesh of size h.

We prove now the convergence result for this numerical scheme.

Theorem 2.10. Let u ∈ C([0, T ]; L1(Ω)) ∩ W 1,1((0, T ); L1(Ω)), be a positive solution to
(1.1) and uk

h the numerical approximation solving problem (2.13). Then there exists a
constant K, such that for every h small enough it holds

max
0≤tk≤T

{
max

x∈[0,L]
|u(x, tk)− uk

h|
}
≤ K(h + τ),

being h = maxi hi and τ = maxk τk.
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Proof. We define the error vector at time tk+1 as εk+1
j = uk+1

j − vk+1
j , being vk+1

j =
u(xj, tk+1). It verifies the following problem∣∣∣∣∣

εk+1
j − εk

j

τk

∣∣∣∣∣ =

∣∣∣∣∣
∑
i∈A

J(xi − xj)hi

(
|uk

i − uk
j |p−2(uk

i − uk
j )− |vk

i − vk
j |p−2(vk

i − vk
j )

)

+
∑
i∈A

J(xi − xj)hi|vk
i − vk

j |p−2(vk
i − vk

j )

− 1

τk

∫ tk+1

tk

∫

Ω

J(x− y)|u(y, s)− u(x, s)|p−2(u(y, s)− u(x, s)) dy ds

∣∣∣∣
≤

∑
i∈A

J(xi − xj)hi(p− 1)|η|p−2|εk
i − εk

j |+ O(h + τ),

where, as before, η comes from the Mean Value Theorem. Therefore,∣∣∣∣∣
εk+1

j − εk
j

τk

∣∣∣∣∣ ≤
∑
i∈A

J(xi − xj)hi(p− 1)|η|p−2|εk
i − εk

j |+ C(h + τ).

Analogously as before, if we consider ωk
j = ωk = Ckτk(h + τ), for every j, k, then ωk

j is a
supersolution of the previous problem. Notice that there exists k0 such that tk0 ≥ T , thus
take K = Ctk0 . The end of the proof follows again by comparison and applying the same
reasoning to −εk

j . ¤

We conclude the study of the totally discrete method by showing that these solutions
also preserve the total mass and tend to the mean value of the initial datum, as it happened
for the semidiscrete case. Nevertheless, we cannot prove now the rate of such convergence
in terms of t.

Theorem 2.11. Let uk
j be the solution to problem (2.13) and u0 = 1

L

∑
i hi ui(0), the mean

value of the initial condition. Then, the total mass is preserved,

1

L

∑
j

hju
k
j = u0 ∀k.

Moreover,
max

j
uk

j − u0 −→ 0 , as k increases.

Proof. To show the conservation of the mass we sum the equation (2.13)1 in all of the
nodes,

N+1∑
j=1

uk+1
j − uk

j

τk

=
N+1∑
j=1

∑
i∈A

J(xi − xj)hi|uk
i − uk

j |p−2(uk
i − uk

j ) = 0,

which vanishes by the same reasoning as in the semidiscrete case. Therefore,
N+1∑
j=1

uk+1
j =

N+1∑
j=1

uk
j , for all k ≥ 0.
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To prove the second statement we begin with the study of the symmetric case. Let us
consider a symmetric initial condition with a unique maximum at the central node. Since
the scheme preserves this property, the discrete solution will attain this maximum at the
central node for every k. Denote by xj0 such a node and define ωk

j = uk
j − u0. Then,

ωk
j0

= maxj ωk
j and it verifies the same equations than uk

j . Recalling the equation for the
node xj0 ,

ωk+1
j0

= ωk
j0

+ τk

(∑
i

J(xi − xj0)hi|ωk
i − ωk

j0
|p−2(ωk

i − ωk
j0

)

)
,

We show that ωk
j0

has to decrease strictly as k increases. Arguing by contradiction, let us

suppose that the value for this node remains the same from some time tk. Consider the
step k + 1. Note that, since ωk

j0
is the node at which ωk

j attains its maximum at time tk,

the term of the sum is non positive. Thus, if ωk+1
j0

= ωk
j0

this term is zero. Consequently,

ωk
l = ωk

j0
for every xl ∈ [xj0 − S, xj0 + S].

If ωk+2
j0

= ωk+1
j0

we deduce as before that ωk+1
l = ωk+1

j0
for every xl ∈ [xj0 − S, xj0 + S].

But those values where maxima at step k, that remain being the same in the following
step. Therefore, applying the same reasoning in these nodes, we get that ωk+1

l = ωk+1
j0

for
every xl ∈ [xj0 − 2S, xj0 + 2S]. In a number of steps [L/S] + 1 we get a contradiction.

For the general case, the node at which the discrete solution attains its maximum could
vary with k. Denote by xk+1

j1
the node at which ωk+1

j1
= maxj ωk+1

j . But we can take the
time steps τk small enough, so as to assure that the distance between these two nodes,
|xj0 − xj1| ≤ S, concluding the proof similarly to the symmetric case. ¤

To deal with the same problem in several space dimensions, let Ω be a bounded domain
in Rd and let x1, ...., xN+1 be a set of points in Ω that are uniformly distributed (by this
we mean that in every ball of radius S in Ω there are at least r ∼ |Ω|/SN points). Then
we can discretize as before imposing that the values of U at the nodes xi verify the ODE
system (2.5) (or the totally discrete system (2.13)). The extension of our results to this
setting is easy. Indeed, comparison arguments are shown in the same way as for the 1-d
case and the convergence result follows by the same arguments as before, once one notices
that it holds that ∫

Ω

J(xj − y)u(y) dy ∼ |B(0, S)|1
r

∑
i∈A

J(xi − xj)u(xj),

as the number of points goes to infinity (N →∞).

3. The limit as p →∞
To identify the limit as p →∞ of the solutions up,h of the semidiscrete problem (1.3) we

will use the methods of convex analysis, and so we first recall some terminology (see [15]
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and [6]). If H is a real Hilbert space with inner product ( , ) and Ψ : H → (−∞, +∞] is
convex, then the subdifferential of Ψ is defined as the multivalued operator ∂Ψ given by

v ∈ ∂Ψ(u) ⇐⇒ Ψ(w)−Ψ(u) ≥ (v, w − u) ∀w ∈ H.

The epigraph of Ψ is defined by Epi(Ψ) = {(u, λ) ∈ H × R : λ ≥ Ψ(u)}.
Given K a closed convex subset of H, the indicator function of K is defined by

IK(u) =

{
0 if u ∈ K,
+∞ if u 6∈ K.

Then it is easy to see that the subdifferential is characterized as follows,

(3.16) v ∈ ∂IK(u) ⇐⇒ u ∈ K and (v, w − u) ≤ 0 ∀w ∈ K.

In case the convex functional Ψ : H → (−∞, +∞] is proper, lower-semicontinuous and
min Ψ = 0 , it is well known (see [6]) that the abstract Cauchy problem

{
u′(t) + ∂Ψ(u(t)) 3 f(t), a.e t ∈ (0, T ),

u(0) = u0,

has a unique strong solution for any f ∈ L2(0, T ; H) and u0 ∈ D(∂Ψ).

The following convergence was studied by Mosco in [22]. Suppose X is a metric space
and An ⊂ X. We define

lim inf
n→∞

An = {x ∈ X : ∃xn ∈ An, xn → x}

and

lim sup
n→∞

An = {x ∈ X : ∃xnk
∈ Ank

, xnk
→ x}.

In the case X is a normed space, we note by s− lim and w− lim the above limits associated
respectively to the strong and to the weak topology of X.

Given a sequence Ψn, Ψ : H → (−∞, +∞] of convex lower-semicontinuous functionals,
we say that Ψn converges to Ψ in the sense of Mosco if

(3.17) w − lim sup
n→∞

Epi(Ψn) ⊂ Epi(Ψ) ⊂ s− lim inf
n→∞

Epi(Ψn).

As consequence of the results in [7] we can write the following result.

Theorem 3.1. Let Ψn, Ψ : H → (−∞, +∞] convex lower-semicontinuous functionals.
Then the following statements are equivalent:

(i) Ψn converges to Ψ in the sense of Mosco.

(ii) (I + λ∂Ψn)−1u → (I + λ∂Ψ)−1u, ∀λ > 0, u ∈ H.

Moreover, any of these two conditions (i) or (ii) imply that
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(iii) for every u0 ∈ D(∂Ψ) and u0,n ∈ D(∂Ψn) such that u0,n → u0, and every fn, f ∈
L2(0, T ; H) with fn → f , if un(t), u(t) are the strong solutions of the abstract
Cauchy problems

{
u′n(t) + ∂Ψn(un(t)) 3 fn, a.e. t ∈ (0, T ),

un(0) = u0,n,

and {
u′(t) + ∂Ψ(u(t)) 3 f, a.e. t ∈ (0, T ),

u(0) = u0,

respectively, then

un → u in C([0, T ] : H).

3.1. Limit as p → ∞. Let us consider the numerical semidiscrete approximations of
the nonlocal p-Laplacian evolution problem with a source given by f = (f1, ...., fN+1),
fi = f(xi),

(3.18)





u′j(t) =
∑
i∈A

J(xi − xj)hi|ui(t)− uj(t)|p−2(ui(t)− uj(t)) + fj(t), t > 0,

uj(0) = u0(xj),

for every j = 1, · · · , N + 1, being A = {i such that |xi − xj| ≤ S}.
This problem is associated to the energy functional

Gp(v) =
1

2p

∑
i

∑
j

J(xi − xj)hihj|vi − vj|p

in the Hilbert space H = RN+1. Note that Gp is differentiable, hence the subdifferential is
the usual derivative.

With a formal calculation, taking limit as p → ∞, we arrive to the functional (recall
that J is supported in B(0, S))

G∞(v) =

{
0 if |vi − vj| ≤ 1, for |xi − xj| < S,

+∞ in other case.

Hence, if we define

K∞ :=
{
v ∈ RN+1 : |vi − vj| ≤ 1, for |xi − xj| < S

}
,

we have that the functional G∞ is determined by the indicator function of the set K∞.
Then, the nonlocal semidiscrete limit problem can be written as

(3.19)

{
f(t)− U ′(t) ∈ ∂IK∞(U(t)), a.e. t ∈ (0, T ),

uj(0) = u0(xj).
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Theorem 3.2. Let T > 0, and an initial condition u0 such that |u0(x) − u0(y)| ≤ 1, for
|x − y| < S, and up,h the unique solution to (3.18). Then, if U is the unique solution to
(3.19), we have

lim
p→∞

sup
t∈[0,T ]

|up,h(t)− U(t)| = 0.

Proof of Theorem 3.2. Let T > 0. By Theorem 3.1, to prove the result it is enough to
show that the functionals

Gp(v) =
1

2p

∑
i

∑
j

J(xi − xj)hihj|vi − vj|p

converge to

G∞(v) =

{
0 if |vi − vj| ≤ 1, for |xi − xj| < S,

+∞ in other case,

as p → ∞, in the sense of Mosco. Note that in (3.17) weak and strong convergences are
the same since we have H = RN+1.

First, let us check that

(3.20) Epi(G∞) ⊂ lim inf
p→∞

Epi(Gp).

To this end let us consider (U, λ) ∈ Epi(G∞). We can assume that U ∈ K∞ and λ ≥ 0
(since G∞(U) = 0). Now take for each p

Vp = U and λp = Gp(U) + λ.

Then, since λ ≥ 0 we have (Vp, λp) ∈ Epi(Gp). It is obvious that Vp = U → U in RN+1,
and moreover, since U ∈ K∞ then |ui − uj| ≤ 1, for |xi − xj| < S and we get

Gp(U) =
1

2p

∑
i

∑
j

J(xi − xj)hihj|ui − uj|p ≤ 1

2p

∑
i

∑
j

J(xi − xj)hihj → 0

as p →∞. Therefore, λp → λ as p →∞ and we get (3.20).

Finally, let us prove that

lim sup
p→∞

Epi(Gp) ⊂ Epi(G∞).

To this end, let us consider a sequence (Upj
, λpj

) ∈ Epi(Gpj
), that is, Gpj

(Upj
) ≤ λpj

, with
Upj

→ U , and λpj
→ λ. Therefore, we have that λ ≥ 0, since 0 ≤ Gpj

(Upj
) ≤ λpj

→ λ. On
the other hand,

λ + 1 ≥ Gpk
(Upk

) =
1

2pk

∑
i

∑
j

J(xi − xj)hihj|(upk
)i − (upk

)j|pk .

Since any term in the above sum is nonnegative, we conclude that

λ + 1 ≥ 1

2pk

hihjJ(xi − xj)|(upk
)i − (upk

)j|pk
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for some i, j such that |xi − xj| ≤ S. Hence, since (upk
)i → ui and (upk

)j → uj we obtain

|ui − uj| ≤ 1 for |xi − xj| < S.

Thus, we conclude that U ∈ K∞. This ends the proof. ¤

3.2. An explicit solution. Now our goal is to show an explicit example that illustrate
the behavior of the solutions when p = +∞. We want to find a solution to

(3.21)

{
f(t)− U ′(t) ∈ ∂G∞(U(t)), a.e. t ∈ (0, T ),

U(0) = u0(xj), in Ω,

where

G∞(v) =

{
0 if |vi − vj| ≤ 1, for |xi − xj| < S,

+∞ in other case.

In order to verify that a function U : [0, T ] 7→ RN+1 is a solution to (3.21) we need to
check that

(3.22) G∞(v) ≥ G∞(U) + 〈f − Ut, v − U〉, for all v ∈ RN+1.

To this end we can assume that v ∈ K∞ (otherwise G∞(v) = +∞ and then (3.22) becomes
trivial). By (3.16), we need to check that U(t) ∈ K∞ and

∑
j

(fj(t)− u′j(t))(vj − uj(t)) ≤ 0,

for every v ∈ K∞.

Now, to simplify, assume that the support of J is (−1, 1), that is, S = 1. Let us consider
a recipient Ω = (0, L) with L an integer greater than 1, a uniform mesh, xj = (j − 1)L/N ,
j = 1, ..., N + 1, as initial datum take u0 = 0 and a source given by f(x, t) = χ[0,1](x).
Then the solution is given by

uj(t) =

{
t, xj ≤ 1,

0, xj > 1,

for times t ∈ [0, 1]. Let us check that this is indeed the solution for t ∈ [0, 1]. It is clear
that U(t) ∈ K∞ since |uj(t) − ui(t)| ≤ 1 for every i, j. Moreover, since f and Ut coincide
in [0, L], we have that (3.22) is immediate.

For t ∈ [1, 3] we get

uj(t) =





1 +
t− 1

2
xj ∈ [0, 1),

t− 1

2
xj ∈ [1, 2),

0 xj /∈ [0, 2).
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Let us check that this is the solution. We have that U(t) ∈ K∞. Hence we have to verify
(3.22). Since Ut and f vanish outside [0, 2) we have to see that

∑

xj∈[0,1)

(1− u′j(t))(vj − uj(t)) +
∑

xi∈[1,2)

(−u′i(t))(vi − ui(t)) ≤ 0.

Using the explicit form of uj we get
∑

xj∈[0,1)

1

2
(vj − (1 +

t− 1

2
))−

∑

xi∈[1,2)

1

2
(vi − t− 1

2
) ≤ 0.

That is equivalent to (note that all the terms that involve t cancel),
∑

xj∈[0,1)

vj −
∑

xi∈[1,2)

vi ≤
∑

xj∈[0,1)

1,

which holds as a consequence of the fact that |vj − vi| ≤ 1 for xj ∈ [0, 1) and xi ∈ [1, 2)
(we are using here that v ∈ K∞).

In general we have, until the recipient is full, for any k = 1, ..., L and for t ∈ [tk−1, tk)

uj(t) =





k − 1 +
t− tk−1

k
xj ∈ [0, 1),

k − 2 +
t− tk−1

k
xj ∈ [1, 2),

· · ·
t− tk−1

k
xj ∈ [k − 1, k),

0 xj /∈ [0, k).

Here tk = tk−1+k is the first time at which the solution reaches level k, that is uh(tk, 0) = k.

For times even greater, t ≥ tL = L(L + 1)/2 (the recipient is full of sand), the solution
turns out to be

uj(t) =





L +
t− tL

L
xj ∈ [0, 1),

L− 1 +
t− tL

L
xj ∈ [1, 2),

· · ·
1 +

t− tL
L

xj ∈ [L− 1, L).

Hence, when the recipient is full the solution grows with speed 1/L uniformly in (0, L).

4. Numerical experiments

In this section we perform, using Matlab (ode15s subroutine), some numerical experi-
ments just to illustrate our general results.

First, we show the evolution in time of a numerical solution, taking p = 5, N = 101
and as initial datum u0 = 6| sin(π

3
x)| + 0.15(3 − |x|)2 in the interval [−3, 3]. We can
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appreciate that, since the initial datum is symmetric, the solution remains symmetric for
every positive time.

−4
−2

0
2

4 0

10

20

30

0

5

10

time
space

p=5

Figure 1. Evolution in time, symmetric datum.

Next, we show the value of the first node (corresponding to x = −3 ) of the numerical
approximation for different values of N . We can appreciate the convergence towards the
mean value of the numerical initial datum as t increases for different values of N . More-
over, we can appreciate that the discrete mean value increases with N to 6, which is the
continuous mean value of u0 = 9− x2.

0 1000 2000 3000
4

4.5

5

5.5

6

N=21
N=41
N=61
mean value

Figure 2. Convergence to the mean value of the initial datum as t increases.

Now we include a picture comparing the semidiscrete solution with the totally discrete
one. Here we take p = 4, u0(x) = (9− x2), Ω = (−3, 3), N = 50, τk = 0.1 and k = 8000.
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6.1

totally discrete solution
semidiscrete solution

Figure 3. Semidiscrete and totally discrete solutions for tk = τkk.

In the next picture we show the evolution in time of a numerical model of sandpiles with
p = 50, corresponding to the initial data u0 = 0 in Ω = (0, 4) with a source f = χ[0,1].
Note that the slope of uj(t) decreases as time evolves, as we illustrate in Figure 5. This is
a consequence of the fact that the sand that is added by the source has to be distributed
in a larger set.
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timespace

Figure 4. Evolution in time of the numerical model for sandpiles.
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Figure 5. Different slopes of the value of the solution at some nodes of the numerical
model for sandpiles.

Finally we show solutions for different values of p and compare them with the explicit
formula of the previous section. In this example we take u0 = 0 in Ω = (0, 3) with a source
f = χ[0,1].

0 1 2 3
1

2

3

4

5

6

p=8
p=30
p=50

0 1 2 3
1

2

3

4

5

6

explicit
solution

Figure 6. Convergence as p increases to the explicit solution.
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