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Abstract. We prove existence and uniqueness of viscosity solutions for the

following problem:

max {−∆p1u(x), −∆p2u(x)} = f(x)

in a bounded smooth domain Ω ⊂ RN with u = g on ∂Ω. Here −∆pu =
(N + p)−1|Du|2−pdiv(|Du|p−2Du) is the 1-homogeneous p−Laplacian and

we assume that 2 ≤ p1, p2 ≤ ∞. This equation appears naturally when

one considers a tug-of-war game in which one of the players (the one who
seeks to maximize the payoff) can choose at every step which are the pa-

rameters of the game that regulate the probability of playing a usual Tug-

of-War game (without noise) or to play at random. Moreover, the opera-
tor max {−∆p1u(x), −∆p2u(x)} provides a natural analogous with respect to

p−Laplacians to the Pucci maximal operator for uniformly elliptic operators.

We provide two different proofs of existence and uniqueness for this prob-
lem. The first one is based in pure PDE methods (in the framework of viscosity

solutions) while the second one is more connected to probability and uses game

theory.

1. Introduction

In this paper our goal is to show existence and uniqueness of viscosity solutions
to the Dirichlet problem for the maximal operator associated with the family of
p−Laplacian operators, −∆pu = −div(|∇u|p−2∇u) with 2 ≤ p ≤ ∞.

When one considers the family of uniformly elliptic second order operators of
the form −tr(AD2u) and look for maximal operators one finds the so-called Pucci
maximal operator, P+

λ,Λ(D2u) = maxA∈A−tr(AD2u), where A is the set of uni-
formly elliptic matrices with ellipticity constant between λ and Λ. This maximal
operator plays a crucial role in the regularity theory for uniformly elliptic second
order operators and has the following properties, see [7]:

(1) (Monotonicity) If λ1 ≤ λ2 ≤ Λ2 ≤ Λ1 then P+
λ2,Λ2

(D2u) ≤ P+
λ1,Λ1

(D2u).

(2) (Positively homogeneous) If α ≥ 0, then P+
λ,Λ(αD2u) = αP+

λ,Λ(D2u).

(3) (Subsolutions) If u verifies P+
λ,Λ(D2u) ≤ 0 in the viscosity sense, then

−tr(AD2u) ≤ 0 for every matrix A with ellipticity constants λ and Λ
(that is, a subsolution to the maximal operator is a subsolution for every
elliptic operator in the class). Therefore, from the comparison principle
we get that a solution to P+

λ,Λ(D2u) ≤ 0 provides a lower bound for every
solution of any elliptic operator in the class with the same boundary values.
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If we try to reproduce these properties for the family of p−Laplacians we are
lead to consider the operator maxp1≤p≤p2 −∆pu(x). As we will show in this paper,
this operator has similar properties to the ones that hold for the Pucci maximal
operator, but with respect to the p−Laplacian family.

Hence, it is natural to consider the Dirichlet problem for the partial differential
equation

max
p1≤p≤p2

−∆pu(x) = f(x)(1.1)

in a bounded smooth domain Ω ⊂ RN for 2 ≤ p1, p2 ≤ ∞. Here we have normalized
the p−Laplacian and considered the operator

∆pu =
div
(
|∇u|p−2∇u

)
(N + p)|∇u|p−2

,

that is called the 1-homogeneus p-laplacian. We will assume that f ≡ 0 or that f
is strictly positive or negative in Ω. We will call solutions (along the whole paper
we consider solutions in the viscosity sense, see [9]) to this problem with f ≡ 0, u,
as p1-p2-harmonic functions.

Note that, formally, the 1-homogeneus p-laplacian can be written as

∆pu =
p− 2

N + p
∆∞u+

1

N + p
∆u

where ∆u is the usual Laplacian and ∆∞u is the normalized ∞−Laplacian, that
is,

∆u =

N∑
i=1

uxixi and ∆∞u =
1

|∇u|2
N∑

i,j=1

uxiuxixiuxj .

Therefore, we can think about the 1-homogeneus p-laplacian as a convex combina-
tion of the laplacian divided by N + 2 and the ∞-laplacian, in fact,

∆pu =
p− 2

N + p
∆∞u+

N + 2

N + p

∆u

N + 2
= α∆∞u+ θ∆u

with α = p−2
N+p and θ = 1

N+p (we reserve β for a different constant) for 2 ≤ p <∞,

and α = 1 and θ = 0 for p =∞.

Since we are dealing with convex combinations, equation (1.1) becomes

(1.2) max
p1≤p≤p2

−∆pu(x) = max {−∆p1u(x), −∆p2u(x)} = f(x)

with 2 ≤ p1, p2 ≤ ∞.

Our main result reads as follows:

Theorem 1.1. Assume that infΩ f > 0, supΩ f < 0 or f ≡ 0. Then, given g a
continuous function defined on ∂Ω, there exists a unique viscosity solution u ∈ C(Ω̄)
of (1.2) with u = g in ∂Ω.

Moreover, a comparison principle holds, if u, v ∈ C(Ω̄) are such that

max {−∆p1u,−∆p2u} ≤ f max {−∆p1v,−∆p2v} ≥ f

in Ω and v ≥ u on ∂Ω, then v ≥ u in Ω.
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In addition, we have a Hopf’s lemma: let u be a supersolution to (1.2) and
x0 ∈ ∂Ω be such that u(x0) > u(x) for all x ∈ Ω, then we have

lim sup
t→0+

u(x0 − tν)− u(x0)

t
< 0.

where ν is exterior normal to ∂Ω.

Remark 1.2. An analogous result holds for the equation minp1≤p≤p2 −∆pu(x) = f.

Remark 1.3. For the homogeneous case, f ≡ 0, we have that viscosity sub and su-
persolutions to the 1-homogeneus p-Laplacian, − p−2

N+p∆∞u− 1
N+p∆u = 0, coincide

with viscosity sub and supersolutions to the usual (p−1 homogeneous) p−Laplacian
−div

(
|∇u|p−2∇u

)
= 0, see [30].

Therefore, for f ≡ 0 we are providing existence and uniqueness of viscosity so-
lutions to maxp1≤p≤p2 −∆pu(x) = 0, being ∆pu the usual p−Laplacian that comes
from calculus of variations.

Remark 1.4. This maximal operator for the p−Laplacian family has the following
properties that are analogous to the ones described above for Pucci’s operator:

(1) (Monotonicity) If p1,1 ≤ p2,1 ≤ p2,2 ≤ p1,2 then

max
p2,1≤p≤p2,2

−∆pu ≤ max
p1,1≤p≤p1,2

−∆pu.

(2) (Positively homogeneous) If α ≥ 0, then

max
p1≤p≤p2

−∆p(αu) = α max
p1≤p≤p2

−∆pu.

(3) (Subsolutions) A viscosity solution u to maxp1≤p≤p2 −∆pu(x) ≤ 0, is a
viscosity solution to −∆pu(x) ≤ 0 for every p1 ≤ p ≤ p2. Hence, from the
comparison principle we get that a solution to maxp1≤p≤p2 −∆pu(x) ≤ 0,
provides a lower bound for every solution of any elliptic operator in the
class with the same boundary values.

We have two different approaches for this problem. The first one is based in
PDE tools in the framework of viscosity solutions. The second one is related to
probability theory (game theory) using the game that we describe below.

Let us introduce a game that we call unbalanced Tug-of-War game with noise.
It is a two-player (Players I and II) zero-sum stochastic game. The game is played
in a bounded open set Ω ⊂ RN . Fix an ε > 0. At the initial time, the players place
a token at a point x0 ∈ Ω and Player I chooses a coin between two possible ones.
They toss the chosen coin which is biased with probabilities αi and βi, αi + βi = 1
and 1 ≥ αi, βi ≥ 0, i = 1, 2. Now, they play the Tug-of-War with noise game
described in [30] with probabilities αi, βi. If they get heads (probability αi), they
toss a fair coin (with equal probability of heads and tails) and the winner of the
toss moves the game position to any x1 ∈ Bε(x0) of his choice. On the other hand,
if they get tails (probability βi) the game state moves according to the uniform
probability density to a random point x1 ∈ Bε(x0). Once the game position leaves
Ω, let say at the τ -th step, the game ends. The payoff is given by a running payoff
function f : Ω→ R and a final payoff function g : RN \ Ω→ R (note that we only
use the values of g in a strip of width ε around ∂Ω). At the end Player II pays to

Player I the amount given by the formula g(xτ ) + ε2
∑τ−1
n=0 f(xn). Note that the

positions of the game depend on the strategies adopted by Players I and II. From
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this procedure we get two extreme functions, uI(x0) (the value of the game for
Player I) and uII(x0) (the value of the game for Player II), that are in a sense the
best expected outcomes that each player may expect choosing a strategy when the
game starts at x0. When uI(x0) and uII(x0) coincide at every x0 ∈ Ω this function
uε := uI = uII is called the value of the game.

Theorem 1.5. Assume that f is a Lipschitz function with supΩ f < 0 or infΩ f > 0
or f ≡ 0. The unbalanced Tug-of-War game with noise with α1 > 0 or α2 > 0 when
f ≡ 0 has a value and that value satisfies the Dynamic Programming Principle,
given by:

uε(x) = ε2f(x) + max
i∈{1,2}

(
αi
2

{
sup

y∈Bε(x)

uε(y) + inf
y∈Bε(x)

uε(y)

}
+ βi

∫
Bε(x)

uε(y)dy

)
for x ∈ Ω, with uε(x) = g(x) for x 6∈ Ω.

Moreover, if g is Lipschitz, then there exists a uniformly continuous function u
such that

uε → u uniformly in Ω.

This limit u is a viscosity solution to{
max {−∆p1u,−∆p2u} = f̄ on Ω,

u = g on ∂Ω,

where f̄ = 2f and p1, p2 are given by

αi =
pi − 2

pi +N
, βi =

2 +N

pi +N
, i = 1, 2.

Remark 1.6. When f is strictly positive or negative we have that the game ends
almost surely. The same is true (regardless the strategies adopted by the players)
when they play with some noise at every turn, that is, when the two βi are positive.
This fact simplifies the arguments used in the proofs.

When one of the αi is one (and therefore the corresponding βi is zero) the
argument is more delicate, see Section 4.

Remark 1.7. Note that in the limit problem one only considers the values of g on
∂Ω while in the game one needs g to be defined in a bigger set. Given a Lipschitz
function defined on ∂Ω we can just extend it to this larger set without affecting
the Lipschitz constant. For simplicity but making an abuse of notation we also call
such extension as g.

Remark 1.8. We also prove uniqueness of solutions to the DPP, see Section 4.
That is, there exists a unique function verifying

v(x) = ε2f(x) + max
i∈{1,2}

(
αi
2

{
sup

y∈Bε(x)

v(y) + inf
y∈Bε(x)

v(y)

}
+ βi

∫
Bε(x)

v(y)dy

)
for x ∈ Ω, with v(x) = g(x) for x 6∈ Ω.

Remark 1.9. When Player II (recall that this player wants to minimize the ex-
pected outcome) has the choice of the probabilities α and β we end up with a
solution to {

min {−∆p1u,−∆p2u} = f on Ω,

u = g on ∂Ω,
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Let us end the introduction with some brief comments on related work. First, let
us recall that Pucci operators are crucial in regularity theory for uniformly elliptic
operators, due to their natural comparison with a non-divergence linear operator
with measurable coefficients. We refer to [6], [7], [10], [35] and references therein.

On the other hand, concerning probabilistic ideas for PDEs, the fundamental
works of Doob, Hunt, Kakutani, Kolmogorov and many others have shown the pro-
found and powerful connection between the classical linear potential theory and the
corresponding probability theory. The idea behind the classical interplay is that
harmonic functions and martingales share a common origin in mean value proper-
ties. This approach turns out to be useful in the nonlinear theory as well, since
p−harmonic functions verify an asymptotic mean value property, see, for example,
[28], [13], [16], [21] and [22]. Concerning Tug-of-War games and PDEs the story
begins with [33] and [34] and was extended in [3], [4], [5], [31], etc. Remark that for
the p−Laplacian it was proved in [14], [15] the equivalence between viscosity and
weak solutions. This probability approach was used to obtain regularity properties
of solutions, we refer to [2], [24], [25] and [36]. We will study regularity for solutions
to our maximal operators in a forthcoming paper.

The paper is organized as follows: In Section 2 we prove the comparison principle
and then existence and uniqueness for our problem using Perron’s method; in Sec-
tion 3 we introduce a precise description of the game; in Section 4 we show that the
game has a value and that this value is the solution to the Dynamic Programming
Principle; finally, in Section 5 we collect some properties of the value function of
the game and show that these values converge to the unique viscosity solution of
our problem.

2. Existence and uniqueness

First, let us state the definition of a viscosity solution. We have to handle some
technical difficulties as the 1−homogeneous ∞-laplacian is not well defined when
the gradient vanish. Observing that

∆u = tr(D2u) and ∆∞u =
∇u
|∇u|

D2u
∇u
|∇u|

,

we can write (1.2) as F (∇u,D2u) = f where

F (v,X) = max
i∈{1,2}

{
−αi

v

|v|
X

v

|v|
− θitr(X)

}
Note that F is degenerate elliptic, that is,

F (v,X) ≤ F (v, Y ) for v ∈ RN \ {0} and X,Y ∈ SN provided X ≥ Y,

as it is generally requested to work in the context of viscosity solutions.

This function F : RN × SN 7→ R is not well defined at v = 0 (here SN denotes
the set of real symmetric N × N matrices). Therefore, we need to consider the
lower semicontinous F∗ and upper semicontinous F ∗ envelopes of F . This functions
coincide with F for v 6= 0 and for v = 0 are given by

F ∗(0, X) = max
i∈{1,2}

{−αiλmin(X)− θitr(X)}
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and

F∗(0, X) = max
i∈{1,2}

{−αiλmax(X)− θitr(X)}

where λmin(X) = min{λ : λ is an eigenvalue of X} and λmax(X) = max{λ :
λ is an eigenvalue of X}.

Now we are ready to give the definition for a viscosity solution to our equation.

Definition 2.1. For 2 ≤ p1, p2 ≤ ∞ consider the equation

max {−∆p1u,−∆p2u} = f

in Ω.

(1) A lower semi-continuous function u is a viscosity supersolution if for every
φ ∈ C2 such that φ touches u at x ∈ Ω strictly from below, we have

F ∗(∇φ(x), D2φ(x)) ≥ f(x).

(2) An upper semi-continuous function u is a subsolution if for every ψ ∈ C2

such that ψ touches u at x ∈ Ω strictly from above, we have

F∗(∇ψ(x), D2ψ(x)) ≤ f(x).

(3) Finally, u is a viscosity solution if it is both a sub- and supersolution.

In the case f ≡ 0 comparison holds for our equation as a consequence of the
main result of [17]. Remark that in [17] a different notion of viscosity solution is
considered. We remark that when a function is a viscosity sub or super-solution in
the sense of Definition 2.1 it is also that in the sense considered in [17]. Therefore
we can use the comparison result established there once we check their hypotheses.

Proposition 2.2. Let u ∈ USC(Ω) and v ∈ LSC(Ω) be, respectively, a viscosity
subsolution and a viscosity supersolution of (1.2) with f ≡ 0. If u ≤ v on ∂Ω, then
u ≤ v in Ω.

Proof. We just apply the main result in [17]. To this end we need to check some
conditions (we refer to [17] for notations and details). First, let us show that F is
elliptic, in fact we have

F (v,X − µv ⊗ v) = max
i∈{1,2}

{
−αi

v

|v|
(X − µv ⊗ v)

v

|v|
− θitr(X − µv ⊗ v)

}
= max
i∈{1,2}

{
−αi

v

|v|
X

v

|v|
+ αiµ|v|2 − θitr(X) + θiµ|v|2

}
= max
i∈{1,2}

{
−αi

v

|v|
X

v

|v|
− θitr(X) + θi

}
+ µ|v|2

= F (v,X) + µ|v|2.

Moreover, F is invariant by rescaling in v and 1-homogeneous in X.

So, we can take σ0(v) = |v|2, σ1(t) = t and ρ ≡ 0 (using the notation from [17])
that satisfy the conditions imposed in [17] to obtain the comparison result. �

Now we deal with the case where f is assumed to be nontrivial and does not
change sign. In fact, we assume that inf f > 0 or sup f < 0. We follow a similar
ideas to the ones in [23].
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Lemma 2.3. If we have u, v ∈ C(Ω̄) such that

max {−∆p1u,−∆p2u} ≤ f max {−∆p1v,−∆p2v} ≥ g

where g > f and v ≥ u in ∂Ω, then we have v ≥ u in Ω.

Proof. By adding a constant if necessary we can assume that u, v > 0. Arguing by
contradiction we assume that

max
Ω

(u− v) > 0 ≥ max
∂Ω

(u− v).

Now we double the variables and consider

sup
x,y∈Ω

{
u(x)− v(y)− j

2
|x− y|2

}
.

For large j the supremum is attained at interior points xj , yj such that xj → x̂,
yj → x̂, where x̂ is an interior point (that x̂ cannot be on the boundary can be
obtained as in [18]).

Now, we observe that there exists a constant C such that j|xj − yj | ≤ C. The
theorem of sums implies that there are symmetric matrices Xj , Yj , with Xj ≤ Yj
such that (j|xj − yj |,Xj) ∈ J2,+(u)(xj) and (j|xj − yj |,Yj) ∈ J2,−(v)(yj), where

J2,+(u)(xj) and J2,−(v)(yj) are the closures of the super and subjets of u and v
respectively. Using the equations, assuming that xj 6= yj , we have

max
i∈{1,2}

{
−αi

〈
Xj

(xj − yj)
|xj − yj |

,
(xj − yj)
|xj − yj |

〉
− θitr(Xj)

}
≤ f(yj)

and

max
i∈{1,2}

{
−αi

〈
Yj

(xj − yj)
|xj − yj |

,
(xj − yj)
|xj − yj |

〉
− θitr(Yj)

}
≥ g(yj)

Now we observe that, since Xj ≤ Yj we get

−tr(Xj) ≥ −tr(Yj)

and

−
〈
Xj

(xj − yj)
|xj − yj |

,
(xj − yj)
|xj − yj |

〉
≥ −

〈
Yj

(xj − yj)
|xj − yj |

,
(xj − yj)
|xj − yj |

〉
.

Hence

f(yj) ≥ max
i∈{1,2}

{
−αi

〈
Xj

(xj − yj)
|xj − yj |

,
(xj − yj)
|xj − yj |

〉
− θitr(Xj)

}
≥ max
i∈{1,2}

{
−αi

〈
Yj

(xj − yj)
|xj − yj |

,
(xj − yj)
|xj − yj |

〉
− θitr(Yj)

}
≥ g(xj).

This gives a contradiction passing to the limit as j →∞.

When xj = yj we obtain

max
i∈{1,2}

{−αiλmax(Yj)− θitr(Yj)} ≤ f(yj)

and

max
i∈{1,2}

{−αiλmin(Xj)− θitr(Xj)} ≥ g(xj)

that also leads to a contradiction since λmax(Yj) ≥ λmax(Xj) ≥ λmin(Xj).
Hence we have obtained that u ≤ v, as we wanted to prove. �
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Lemma 2.4. If u, v ∈ C(Ω̄) are such that

max {−∆p1u,−∆p2u} ≤ f max {−∆p1v,−∆p2v} ≥ f

in Ω with infΩ f > 0 and v ≥ u on ∂Ω, then we have v ≥ u in Ω .

Proof. By adding a constant if necessary we can assume that u, v > 0. Lets consider
vδ = (1 + δ)v

max {−∆p1u,−∆p2u} ≤ f < (1 + δ)f ≤ max {−∆p1vδ,−∆p2vδ}

and vδ ≥ v ≥ u in ∂Ω. Then by the preceding lemma we conclude that and vδ ≥ u
in Ω for all δ > 0. Making δ → 0, we get v ≥ u in Ω as we wanted to show. �

Remark 2.5. The above lemma is also true when supΩ f < 0. So, we have com-
parison for the cases infΩ f > 0, supΩ f < 0 and f ≡ 0. From this comparison
result we get uniqueness of solutions.

Now we deal with the existence of solutions. In the proof of this result we are
only using that the exterior ball condition holds for Ω when p1, p2 ≤ N .

Theorem 2.6. Assume that inf f > 0, sup f < 0 or f ≡ 0. Then, given g a
continuous function defined on ∂Ω, there exists u ∈ C(Ω̄) a viscosity solution of
(1.2) such that u = g in ∂Ω.

Proof. We consider the set

A =
{
v ∈ C(Ω̄) : max {−∆p1v,−∆p2v} ≥ f in Ω and v ≥ g on ∂Ω

}
,

where the inequality for the equation inside Ω is verified in the viscosity sense and
the inequality on ∂Ω in the pointwise sense. The set A is not empty, since the
function K2 −K1|x|2 ∈ A for suitable K1,K2. We define

u(x) = inf
v∈A

v(x), x ∈ Ω̄.

This infimum is finite since, as comparison holds, we have u(x) ≥ −L2 +L1|x|2 for
all u ∈ A for large L1, L2. The function u, being the infimum of supersolutions, is a
supersolution. We already know that u is upper semi-continuous, as it the infimum
of continuous functions. Let us see it is indeed a solution. Suppose not, then there
exist φ ∈ C2 such that φ touches u at x0 ∈ Ω strictly from above but

max {−∆p1φ(x0),−∆p2φ(x0)} > f(x0).

Lets write

φ(x) = φ(x0) +∇φ(x0) · (x− x0) +
1

2
〈D2φ(x0)(x− x0), x− x0〉+ o(|x− x0|2)

We define φ̂(x) = φ(x)− δ for a small positive number δ. Then φ̂ < u in a small
neighborhood of x0, contained in the set {x : max {−∆p1φ(x),−∆p2φ(x)} > f(x)},
but φ̂ ≥ u outside this neighborhood, if we take δ small enough.

Now we can consider v = min{φ̂, u}. Since u is a viscosity supersolution in Ω

and φ̂ also is a viscosity supersolution in the small neighborhood of x0, it follows
that v is a viscosity supersolution. Moreover, on ∂Ω, v = u ≥ g. This implies

v ∈ A, but v = φ̂ < u near x0 , which is a contradiction with the definition of u as
the infimum in A.
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Finally we want to prove that u = g in ∂Ω and that boundary values are achieved
with continuity. To this end, it is enough to construct a barrier for our operator.
Let us consider φ a radial function, φ(x) = ψ(r) with ψ′(r) > 0. Then

∆∞φ = ψ′′ and ∆φ = ψ′′ +
N − 1

r
ψ′

and we get

max
i∈{1,2}

{−∆piφ} = max
i∈{1,2}

{−αi∆∞φ− θi∆φ}

= max
i∈{1,2}

{
−αiψ′′ − θi

(
ψ′′ +

N − 1

r
ψ′
)}

= max
i∈{1,2}

{
− pi − 2

N + pi
ψ′′ − 1

N + pi

(
ψ′′ +

N − 1

r
ψ′
)}

= max
i∈{1,2}

{
− pi − 1

N + pi
ψ′′ − 1

N + pi

N − 1

r
ψ′
}
.

We want this last expression to be greater than a positive constant. To have a
function of the form ψ(r) = rγ , γ > 0, that fulfills this we need

max
i∈{1,2}

{
− pi − 1

N + pi
γ(γ − 1)− N − 1

N + pi
γ

}
rγ−2 ≥ c > 0.

Hence we choose γ according to

0 < γ < 1− N − 1

pi − 1
.

We have that such γ exists if N < p1 or N < p2.

If this is not the case, we can find (with similar computations) a barrier of the
form ψ(r) = −rγ with γ < 0. In this case, when N ≥ p1, p2, we have a barrier if
the exterior ball condition holds. �

Now, we prove a version of the Hopf lemma for our equation. Note that since
we deal with viscosity solutions the normal derivative may not exists in a classical
sense.

Lemma 2.7. Let Ω ⊂ RN be a domain with the interior ball condition and u
subsolution to (1.2) whith f ≡ 0. Given x0 ∈ ∂Ω such that u(x0) > u(x) for all
x ∈ Ω, we have

lim sup
t→0+

u(x0 − tν)− u(x0)

t
< 0.

where ν is exterior normal to ∂Ω.

Proof. As the interior ball condition holds, we can assume there exist a ball centered
at 0, contained in Ω that has x0 in its boundary, that is, we have Br(0) ⊂ Ω and x0 ∈
∂Br(0). Let us consider φ(x) = 1

|x|N−2 − 1
rN−2 if N > 2 and φ(x) = −ln|x|+ ln(r)

for N = 2. It easy to check that

∆φ = 0, ∆∞φ ≥ 0, in Br(0) \ {0}.
So we have

max {−∆p1φ,−∆p2φ} ≤ 0 in Br(0) \ {0}
φ ≡ 0 on ∂Br(0)
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As u(x0) > u(x) for all x ∈ Ω, in particular on ∂B r
2
(0), then there exists ε > 0

such that u(x0) − εφ ≥ u on ∂B r
2
(0). Therefore, by the comparison principle, we

get u(x0)− εφ ≥ u in Br(0) \B r
2
(0) and the result follows. �

3. Unbalanced Tug-of-War games with noise

In this section we introduce the game that we call Unbalanced Tug-of-War game
with noise. It is a two-player zero-sum stochastic game. The game is played over
a bounded open set Ω ⊂ RN . An ε > 0 is given. Players I and II play as follows.
At an initial time, they place a token at a point x0 ∈ Ω and Player I choose a coin
between two possible ones (with different probabilities of getting heads for each
coin), we think she chooses i ∈ {1, 2}. Now they play the Tug-of-War with noise
introduced in [30] starting with the chosen coin. They toss the chosen coin which
is biased with probabilities αi and βi, αi + βi = 1 and 1 ≥ αi, βi ≥ 0. If they get
heads (probability αi), they toss a fair coin (with the same probability for heads
and tails) and the winner of the toss moves the game position to any x1 ∈ Bε(x0)
of his choice. On the other hand, if they get tails (probability βi) the game state
moves according to the uniform probability density to a random point x1 ∈ Bε(x0).
Then they continue playing from x1. At each turn Player I may change the choice
of the coin.

This procedure yields a sequence of game states x0, x1, . . .. Once the game
position leaves Ω, let say at the τ -th step, the game ends. At that time the token
will be on the compact boundary strip around Ω of width ε that we denote

Γε = {x ∈ Rn \ Ω : dist(x, ∂Ω) ≤ ε}

The payoff is given by a running payoff function f : Ω → R and a final payoff
function g : Γε → R. At the end Player II pays Player I the amount given by a
g(xτ ) + ε2

∑τ−1
n=0 f(xn), that is, Player I have earned g(xτ ) + ε2

∑τ−1
n=0 f(xn) while

Player II have earned −g(xτ )− ε2
∑τ−1
n=0 f(xn). We can think that when the token

leaves xi Player II pays Player I ε2f(xi) and g(xτ ) when the game ends.

A strategy SI for Player I is a pair of collections of measurable mappings SI =(
{γk}∞k=0, {SkI }∞k=0

)
, such that, given a partial history (x0, x1, . . . , xk), Player I

choose coin 1 with probability

γk(x0, x1, . . . , xk) = γ ∈ [0, 1]

and the next game position is

SkI (x0, x1, . . . , xk) = xk+1 ∈ Bε(xk)

if Player I wins the toss. Similarly Player II plays according to a strategy SII =
{SkII}∞k=0. Then, the next game position xk+1 ∈ Bε(xk), given a partial history
(x0, x1, . . . , xk), is distributed according to the probability

πSI,SII(x0, x1, . . . , xk, A)

=
β |A ∩Bε(xk)|
|Bε(xk)|

+
α

2
δSkI (x0,x1...,xk)(A) +

α

2
δSkII(x0,x1,...,xk)(A),

where γ = γk(x0, x1 . . . , xk), α = α1γ + α2(1 − γ), β = β1γ + β2(1 − γ) and A is
any measurable set (note that α and β depend on SI and (x0, x1, . . . , xk), we do
not make this explicit to avoid overloading the notation). From now on, we shall
omit k and simply denote the strategies by γ, SI and SII.
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Let Ωε = Ω∪Γε ⊂ Rn be equipped with the natural topology, and the σ-algebra
B of the Lebesgue measurable sets. The space of all game sequences

H∞ = {x0} × Ωε × Ωε × . . . ,

is a product space endowed with the product topology.

Let {Fk}∞k=0 denote the filtration of σ-algebras, F0 ⊂ F1 ⊂ . . . defined as follows:
Fk is the product σ-algebra generated by cylinder sets of the form {x0} × A1 ×
. . .×Ak × Ωε × Ωε . . . with Ai ∈ B. For

ω = (x0, ω1, . . .) ∈ H∞,

we define the coordinate processes

Xk(ω) = ωk, Xk : H∞ → Rn, k = 0, 1, . . .

so that Xk is an Fk-measurable random variable. Moreover, F∞ = σ(
⋃
Fk) is the

smallest σ-algebra so that all Xk are F∞-measurable. To denote the time when the
game state reaches Γε, we define a random variable

τ(ω) = inf{k : Xk(ω) ∈ Γε, k = 0, 1, . . .},

which is a stopping time relative to the filtration {Fk}∞k=0.

A starting point x0 and the strategies SI and SII define (by Kolmogorov’s exten-
sion theorem) a unique probability measure Px0

SI ,SII
in H∞ relative to the σ-algebra

F∞. We denote by Ex0

SI,SII
the corresponding expectation.

Then, if SI and SII denote the strategies adopted by Player I and II respectively,
we define the expected payoff for Player I as

Vx0,I(SI, SII) =

{
Ex0

SI,SII
[g(Xτ ) + ε2

∑τ−1
n=1 f(xn)] if the game ends a.s.

−∞ otherwise,

and the the expected payoff for Player II as

Vx0,II(SI, SII) =

{
Ex0

SI,SII
[g(Xτ ) + ε2

∑τ−1
n=1 f(xn)] if the game ends a.s.

+∞ otherwise.

Note that we penalize both players when the games doesn’t end a.s.

The value of the game for Player I is given by

uI(x0) = sup
SI

inf
SII

Vx0,I(SI, SII)

while the value of the game for Player II is given by

uII(x0) = inf
SII

sup
SI

Vx0,II(SI, SII).

When uI = uII we say the game has a value u := uI = uII. The values uI(x0) and
uII(x0) are in a sense the best outcomes each player can expect when the game
starts at x0. For the measurability of the value functions we refer to [26] and [27].
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A comment. It seems natural to consider a more general protocol to determine α
in a prescribed closed set. It is clear that there are only two possible scenarios: At
each turn Player I wants to maximize the value of α and Player II wants to minimize
it, or the converse. An expected value for α is obtained in each case assuming each
player plays optimal. Depending on the value of α in each case, we are considering
a game equivalent to the one that we described previously or another one where
Player II gets the choice of the first coin, for certain values of αi.

4. The game value function and the Dynamic Programming Principle

In this section, we prove that the game has a value, that is, uI = uII and that
this value function satisfies the Dynamic Programming Principle (DPP) given by:

u(x) =ε2f(x) + max
i∈{1,2}

(
αi
2

{
sup
Bε(x)

u+ inf
Bε(x)

u

}
+ βi

∫
Bε(x)

u(y) dy

)
, x ∈ Ω,

u(x) =g(x), x ∈ Γε.

Let see intuitively why this holds. At each step we have that Player I chooses
i ∈ {1, 2} and then we have three possibilities:

• With probability αi
2 , Player I moves the token, she will try to maximize the

expected outcome.
• With probability αi

2 , Player II moves the token, he will try minimize the
expected outcome.
• With probability βi, the token moves at random.

Since Player I chooses i trying to maximize the expected outcome we obtain a
maxi∈{1,2} in the DPP. Finally, the expected payoff at x is given by ε2f(x) plus
the expected payoff for the rest of the game.

Similar results are proved in [1], [20], [25], [29], [33] and [36]. Note that when
α1 = α2 (and hence β1 = β2) player I has no choice to make and we recover known
results for Tug-of-War games (with or without noise), see [33] and [30]. We follow
[36] where the idea is to prove the existence of a function satisfying the DPP and
then that this function gives the game value. For the existence of a solution to the
DPP we borrow some ideas from [1], and for the uniqueness of such a solution and
the existence of the value of the game we use martingales as in [29]. Although we
will have two different cases. One where the noise assures us that the game end
almost surely independently of the strategies adopted by the players or where the
strictly positivity (or negativity) of f helps us in this sense. And another one where
we have to handle the problem of getting strategies for the players to play almost
optimal and to make sure that the game ends almost surely.

In what follows Ω ⊂ RN is a bounded open set, ε > 0, g : Γε → R and f : Ω→ R
bounded Borel functions such that f ≡ 0, infΩ f > 0 or supΩ f < 0.

Definition 4.1. A function u is sub-p1-p2-harmonious if

u(x) ≤ ε2f(x) + max
i∈{1,2}

(
αi
2

{
sup
Bε(x)

u+ inf
Bε(x)

u

}
+ βi

∫
Bε(x)

u(y) dy

)
, x ∈ Ω,

u(x) ≤ g(x), x ∈ Γε
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Analogously, a function u is super-p1-p2-harmonious if

u(x) ≥ ε2f(x) + max
i∈{1,2}

(
αi
2

{
sup
Bε(x)

u+ inf
Bε(x)

u

}
+ βi

∫
Bε(x)

u(y) dy

)
, x ∈ Ω,

u(x) ≤ g(x), x ∈ Γε

Finally, u is p1-p2-harmonious if it is both sub- and super-p1-p2-harmonious (i.e.
the equality holds).

Here αi and βi are given by

αi =
pi − 2

pi +N
and βi =

N + 2

pi +N
i = 1, 2.

Our next task is to prove uniform bounds for these functions.

Lemma 4.2. Sub-p1-p2-harmonious functions are uniformly bounded from above.

Proof. Given u a sub-p1-p2-subharmonious function, we have that

u(x) ≤ ε2f(x) + max
i∈{1,2}

(
αi
2

{
sup
Bε(x)

u+ inf
Bε(x)

u

}
+ βi

∫
Bε(x)

u(y) dy

)
Given x ∈ Ω and t ∈ R such that xn < t ε2 + ε

2 we have

{y ∈ Bε(x) : yn < xn −
ε

2
} ⊂ {z ∈ Rn : zn < t

ε

2
}.

We define

D =
|{y ∈ Bε : yn < − ε2}|

|Bε|
=
|{y ∈ B1 : yn < − 1

2}|
|B1|

and C = 1−D.

Considering this partition we have

u(x) ≤ ε2 sup
Ω
f + max

i∈{1,2}

(
αi
2

{
sup
Ωε

u+ sup
Ωε∩{zn<t ε2}

u

}

+βi

{
C sup

Ωε

u+D sup
Ωε∩{zn<t ε2}

u

})

= ε2 sup
Ω
f + max

i∈{1,2}

({αi
2

+ βiC
}

sup
Ωε

u+
{αi

2
+ βiD

}
sup

Ωε∩{zn<t ε2}
u

)
= ε2 sup

Ω
f + max

i∈{1,2}

{αi
2

+ βiC
}

sup
Ωε

u+ min
i∈{1,2}

{αi
2

+ βiD
}

sup
Ωε∩{zn<t ε2}

u

= ε2 sup
Ω
f +K sup

Ωε

u+ (1−K) sup
Ωε∩{zn<t ε2}

u,

where K = maxi∈{1,2}
{
αi
2 + βiC

}
. We conclude that

sup
Ωε∩{zn<(t+1) ε2}

uk ≤ ε2 sup
Ω
f +K sup

Ωε

uk + (1−K) sup
Ωε∩{zn<t ε2}

uk.

Then, inductively, we get

sup
Ωε∩{zn<(t+n) ε2}

u ≤
(
ε2 sup

Ω
f +K sup

Ωε

u

) n−1∑
i=0

(1−K)i + (1−K)n sup
Ωε∩{zn<t ε2}

u.
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Now we apply the formula for t = 0 and n such that nε
2 > R, we get

sup
Ωε

u ≤
(
ε2 sup

Ω
f +K sup

Ωε

u

) n−1∑
i=0

(1−K)i + (1−K)n sup
Γε

g

=

(
ε2 sup

Ω
f +K sup

Ωε

u

)
1− (1−K)n

1− (1−K)
+ (1−K)n sup

Γε

g

=
1− (1−K)n

K
ε2 sup

Ω
f + (1− (1−K)n) sup

Ωε

u+ (1−K)n sup
Γε

F.

Hence, we obtain

(1−K)n sup
Ωε

u ≤ 1− (1−K)n

K
ε2 sup

Ω
f + (1−K)n sup

Γε

g,

that gives the desired upper bound,

sup
Ωε

u ≤ 1− (1−K)n

K(1−K)n
ε2 sup

Ω
f + sup

Γε

g.

�

Analogously, there holds that super-p1-p2-harmonious functions are uniformly
bounded from below.

Now with this results we can show that there exists a p1-p2-harmonious function
as in [19] applying Perron’s Method. Remark that when f and g are bounded we can
easily obtain the existence of sub-p1-p2-harmonious and super-p1-p2-harmonious
functions.

We prefer a constructive argument (since we will use again this construction in
what follows). Let uk : Ωε → R be a sequence of functions such that uk = g on Γε
for all k ∈ N, u0 is sub-p1-p2-harmonious and

uk+1(x) = ε2f(x) + max
i∈{1,2}

(
αi
2

{
sup
Bε(x)

uk + inf
Bε(x)

uk

}
+ βi

∫
Bε(x)

uk(y) dy

)
for x ∈ Ω.

Now, our main task is to show that this sequence converges uniformly. To this
end, let us prove an auxiliary lemma where we borrow some ideas from [1].

Lemma 4.3. Let x ∈ Ω, n ∈ N and fix λi for i = 1, . . . , 4 such that

un+1(x)− un(x) ≥ λ1,

‖un − un−1‖∞ ≤ λ2,∫
Bε(x)

un − un−1 ≤ λ3,

λ3 < λ1 and λ4 > 0. Then, for α := max{α1, α2} > 0, there exists y ∈ Bε(x) such
that

un(x), un(y) ≥ un−1(y) +
2λ1

α
− λ2 −

2(1− α)λ3

α
− λ4.
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Proof. Given un+1(x)− un(x) ≥ λ1, by the recursive definition, we have

ε2f(x) + max
i∈{1,2}

(
αi
2

{
sup
Bε(x)

un + inf
Bε(x)

un

}
+ βi

∫
Bε(x)

un(y) dy

)

−ε2f(x)− max
i∈{1,2}

(
αi
2

{
sup
Bε(x)

un−1 + inf
Bε(x)

un−1

}
+ βi

∫
Bε(x)

un−1(y) dy

)
≥ λ1.

Since max{a, b} −max{c, d} ≤ max{a− c, b− d}, we get

max
i∈{1,2}

(
αi
2

{
sup
Bε(x)

un + inf
Bε(x)

un − sup
Bε(x)

un−1 − inf
Bε(x)

un−1

}
+

+βi

∫
Bε(x)

un(y)− un−1(y) dy

)
≥ λ1.

Using that
∫
Bε(x)

un − un−1 ≤ λ3 we get

max
i∈{1,2}

(
αi
2

{
sup
Bε(x)

un + inf
Bε(x)

un − sup
Bε(x)

un−1 − inf
Bε(x)

un−1

}
+ βiλ3

)
≥ λ1.

Now λ3 < λ1 implies

α

2

{
sup
Bε(x)

un + inf
Bε(x)

un − sup
Bε(x)

un−1 − inf
Bε(x)

un−1

}
+ (1− α)λ3 ≥ λ1.

We bound the difference between the suprema using ‖un − un−1‖∞ ≤ λ2 and we
obtain

α

2

{
inf
Bε(x)

un − inf
Bε(x)

un−1

}
+
αλ2

2
+ (1− α)λ3 ≥ λ1,

that is,

inf
Bε(x)

un ≥ inf
Bε(x)

un−1 +
2λ1

α
− λ2 −

2(1− α)λ3

α
.

Finally we can choose y ∈ Bε(x) such that

un−1(y) ≤ inf
Bε(x)

un−1 + λ4

which gives the desired inequality. �

Now we are ready to prove the uniform convergence and, therefore, the existence
of a p1-p2-harmonious function.

Lemma 4.4. The sequence uk converges uniformly and the limit is a solution to
the DPP.

Proof. Since u0 is sub-p1-p2-harmonious we have u1 ≥ u0. In addition, if uk ≥ uk−1,
by the recursive definition, we have uk+1 ≥ uk. Then, by induction, we obtain that
the sequence of functions is an increasing sequence. Replacing uk ≤ uk+1 in the
recursive definition we can see that uk is a sub-p1-p2-harmonious function for all
k. This gives us a uniform bound for uk (independent of k). Hence, uk converge
pointwise to a bounded Borel function u.

In the case α1 = α2 = 0 we can pass to the limit on the recursion because of
Fatou’s Lemma. Hence we assume α := max{α1, α2} > 0.
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Now we show that the convergence is uniform. Suppose not. Observe that if
‖un+1 − un‖∞ → 0 we can extract a uniformly Cauchy subsequence, thus this
subsequence converges uniformly to a limit u. This implies that uk converge uni-
formly to u, because of the monotonicity. By the recursive definition we have
‖un+1 − un‖∞ ≥ ‖un − un−1‖∞ ≥ 0. Then, as we are assuming the convergence is
not uniform, we have

‖un+1 − un‖∞ →M

for some M > 0.

Let us observe that by Fatou’s Lemma it follows that

lim
n→∞

∫
Ω

u(y)− un(y) dy = 0

so we can bound
∫
Bε(x)

un+1 − un uniformly on x.

Given δ > 0, let n0 ∈ N such that

‖un+1 − un‖∞ ≤M + δ and

∫
Bε(x)

un+1 − un < δ

for all x ∈ Ω. We fix k ≥ 0. Let x0 ∈ Ω such that un0+k(x0)−un0+k−1(x0) ≥M−δ.
Now we apply Lemma 4.3 for λ1 = M − δ, λ2 = M + δ, λ3 = δ and λ4 = δ and we
get

un0+k−1(x0), un0+k−1(x1) ≥ un0+k−2(x1) +
2(M − δ)

α
− (M + δ)− 2(1− α)

α
− δ

= M(
2

α
− 1)− δ 4

α
≥M − δ 2

α
.

If we repeat the argument for x1, but now with λ1 = M − δ 2
α , we obtain

un0+k−2(x1), un0+k−2(x2) ≥ un0+k−3(x2) +M − δ

((
2

α

)2

+
2

α

)
.

Inductively, we obtain a sequence xl, 1 ≤ l ≤ k − 1 such that

un0+k−l(xl−1), un0+k−l(xl) ≥ un0+k−l−1(xl) +M − δ
l∑
t=1

(
2

α

)t
.

In Lemma 4.3 we require λ3 < λ1, so we need k(δ) to satisfy

M − δ
l∑
t=1

(
2

α

)t
> δ,

that is,

M > δ

l∑
t=0

(
2

α

)t
for 1 ≤ l ≤ k− 1, as the right hand side term grows with l, it is enough to check it
for l = k − 1. Since

l∑
t=1

(
2

α

)t
=

2

α

(
2
α

)l − 1
2
α − 1

≤
(

2

α

)l+1

− 1 ≤
(

2

α

)l+1

,

we obtain

un0+k−l(xl−1) ≥ un0+k−l−1(xl) +M − δ
(

2

α

)l+1

.
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Adding this inequalities for 1 ≤ l ≤ k − 1, and un0+k(x0)− un0+k−1(x0) ≥ M − δ
we get

un0+k(x0) ≥ un0
(xk−1) + kM − δ

k−1∑
l=0

(
2

α

)l+1

.

From the last inequality and the condition for k(δ), since

k−1∑
l=0

(
2

α

)l+1

=

k∑
l=1

(
2

α

)l
≤
(

2

α

)k+1

,

we have

un0+k(x0) ≥ un0
(xk−1) + kM − δ

(
2

α

)k+1

for all k such that M > δ
(

2
α

)k+1
. For k + 1 =

⌊
log M

δ

log 2
α

⌋
this gives

un0+k(x0) ≥ un0
(xk−1) +

(
log M

δ

log 2
α

− 3

)
M

which is a contradiction since

lim
δ→0+

log M
δ

log 2
α

=∞

and the sequence un is bounded. We have that un → u uniformly, therefore the
result follows by passing to the limit in the recursive definition of un. In fact, that
the uniform limit of the sequence un is a solution to the DPP is immediate since
from the uniform convergence we can pass to the limit as n → ∞ in all the terms
of the DPP formula. �

Now we want to prove that this solution to the DPP, u, is unique and that it
gives the value of the game. To this end we have to take special care of the fact
that the game ends (or not) almost surely. First, we deal with the case β1, β2 > 0,
supΩ f < 0 or infΩ f > 0. We apply a martingales argument to handle this cases.
In other cases we also use the construction of the sequence uk.

Lemma 4.5. Assume that β1, β2 > 0, sup f < 0 or inf f > 0. Then, if v is a
p1-p2-harmonious function for gv and fv such that gv ≤ guI and fv ≤ fuI , then
v ≤ uI.

Proof. By choosing a strategy according to the points where the maximal values
of v are attained, we show that Player I can obtain that a certain process is a
submartingale. The optional stopping theorem then implies that the expectation
of the process under this strategy is bounded by v. Moreover, this process provides
an lower bound for uI.
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Player II follows any strategy and Player I follows a strategy S0
I such that at

xk−1 ∈ Ω he chooses Γ as follows:

γ = 1 if
α1

2

{
sup

y∈Bε(x)

u(y) + inf
y∈Bε(x)

u(y)

}
+ β1

∫
Bε(x)

u(y) dy

>
α2

2

{
sup

y∈Bε(x)

u(y) + inf
y∈Bε(x)

u(y)

}
+ β2

∫
Bε(x)

u(y) dy

and γ = 0 othewise,

and to step to a point that almost maximize v, that is, to a point xk ∈ Bε(xk−1)
such that

v(xk) ≥ sup
Bε(xk−1)

v − η2−k

for some fixed η > 0. We start from the point x0. It follows that

Ex0

SI,S0
II

[v(xk)− η2−k |x0, . . . , xk−1]

≥ max
i∈{1,2}

(
αi
2

{
inf

Bε(xk−1)
v − η2−k + sup

Bε(xk−1)

v

}
+ βi

∫
Bε(xk−1)

v dy

)
− η2−k

≥ v(xk−1)− ε2f(xk−1)− η2−(k−1),

where we have estimated the strategy of Player II inf and used the fact that v is
p1-p2-harmonious. Thus

Mk = v(xk) + ε2
k∑

n=0

f(xn)− η2−k

is a submartingale.

Now we observe the following: if β1, β2 > 0 then the game ends almost surely
and we can continue (see below). If sup f < 0 we have that the fact that Mk is a
submartingale implies that the game ends in a finite number of moves (that can be
estimated). In the case inf f > 0 if the game does not end in a finite number of
moves then we have to play until the accumulated payoff (recall that f gives the
running payoff) is greater than v and then choose a strategy that ends the game
almost surely (for example pointing to some prescribed point x0 outside Ω).

Since gv ≤ guI and fv ≤ fuI , we deduce

uI(x0) = sup
SI

inf
SII

Ex0

SI,SII
[guεI (xτ ) + ε2

τ∑
n=0

f(xn)]

≥ inf
SII

Ex0

S0
I ,SII

[gv(xτ ) + ε2
τ∑
n=0

f(xn)− η2−τ ]

≥ inf
SII

lim inf
k→∞

Ex0

S0
I ,SII

[v(xτ∧k) + ε2
τ∧k∑
n=0

f(xn)− η2−(τ∧k)]

≥ inf
SII

ES0
I ,SII

[M0] = v(x0)− η,

where τ∧k = min(τ, k), and we used Fatou’s lemma as well as the optional stopping
theorem for Mk. Since η is arbitrary this proves the claim. �
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A symmetric result can be proved for uII, hence we obtain the following result:

Theorem 4.6. Assume that β1, β2 > 0, sup f < 0 or inf f > 0. Then there exists
a unique p1-p2-harmonious function. Even more the game has a value, that is
uI = uII, which coincides with the unique p1-p2-harmonious function.

Proof. Let u be a p1-p2-harmonious function, that we know that exits by Lemma 4.2.
From the definition of the game values we know that uI ≤ uII . Then by Lemma 4.5
we have that

uI ≤ uII ≤ u ≤ uI .
This is uI = uII = u. Since we can repeat the argument for any p1-p2-harmonious
function, uniqueness follows. �

Remark 4.7. Note that if we have a sub-p1-p2-harmonious function u, then v
given by v = u−C in Ω and v = u in Γε is sub-p1-p2-harmonious for every constant
C > 0. In this way we can obtain a sub-p1-p2-harmonious function smaller that any
super-p1-p2-harmonious function, and then if we start the above construction with
this function we get the smallest p1-p2-harmonious function. That is, there exists a
minimal p1-p2-harmonious function. We can do the analogous construction to get
the larger p1-p2-harmonious function (the maximal p1-p2-harmonious function).

We now tackle the remaining case in which f ≡ 0 and one of the βi is zero (that
is the same as saying that one of the αi is equal to one).

Theorem 4.8. There exists a unique p1-p2-harmonious function when α1 = 1,
α2 > 0 and f ≡ 0.

Proof. Supposed not, this is, we have u,v, such that

v(x) = max

{
1

2

(
sup
Bε(x)

v + inf
Bε(x)

v

)
,
α

2

(
sup
Bε(x)

v + inf
Bε(x)

v

)
+ β

∫
Bε(x)

v

}

u(x) = max

{
1

2

(
sup
Bε(x)

u+ inf
Bε(x)

u

)
,
α

2

(
sup
Bε(x)

u+ inf
Bε(x)

u

)
+ β

∫
Bε(x)

u

}
in Ω and

u = v = g

on Γε with

‖u− v‖∞ = M > 0.

As we observed in Remark 4.7 we can assume u ≥ v (just take v the minimal
solution to the DPP). Now we want to build a point where the difference between
u and v is almost attained and v has a large variation in the ball of radius ε around
this point (all this has to be carefully quantified). First, we apply a compactness
argument. We know that

Ω̄ ε
4
⊂
⋃
x∈Ω

B ε
2
(x).

As Ω̄ ε
4

is compact there exists yi such that

Ω̄ ε
4
⊂

k⋃
i=1

B ε
2
(yi).
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Let A = {i ∈ {1, . . . , k} : u or v are not constant on B ε
2
(yi)} and let λ > 0 such

that for every i ∈ A

sup
Bε(yi)

u− inf
Bε(yi)

u >

(
4 +

4β

α

)
λ or sup

Bε(yi)

v − inf
Bε(yi)

v > 2λ.

We fix this λ. Now, for every δ such that M,λ > δ > 0, let z ∈ Ω such that
M − δ < u(z)− v(z). Let

O = {x ∈ Ω : u(x) = u(z) and v(x) = v(z)} ⊂ Ω.

Take z̄ ∈ ∂O ⊂ Ω̄. Let i0 such that z̄ ∈ B ε
2
(yi0), we have

B ε
2
(yi0) ∩O 6= ∅ and B ε

2
(yi0) ∩Oc 6= ∅

hence i0 ∈ A. Let x0 ∈ B ε
2
(yi0) ∩ O. In this way we have obtained x0 such that

u(x0)− v(x0) > M − δ and one of the following holds:

(1)

sup
Bε(x0)

u− inf
Bε(x0)

u >

(
4 +

4β

α

)
λ

(2)

sup
Bε(x0)

v − inf
Bε(x0)

v > 2λ.

Let us show that in fact the second statement must hold. Supposed not, then the
first holds and we have

sup
Bε(x0)

v − inf
Bε(x0)

v ≤ 2λ.

Given that

v(x0) ≥ 1

2

(
sup
Bε(x0)

v + inf
Bε(x0)

v

)
we get

v(x0) + λ ≥ sup
Bε(x0)

v.

Hence

v(x0) + λ+M ≥ sup
Bε(x0)

v +M ≥ sup
Bε(x0)

u.

But we have more, since

u(x0)− v(x0) > M − δ > M − λ,

we get

u(x0) + 2λ > sup
Bε(x0)

u,

and

sup
Bε(x0)

u > inf
Bε(x0)

u+

(
4 +

4β

α

)
λ.

Hence

u(x0)−
(

2 +
4β

α

)
λ > inf

Bε(x0)
u.
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If we bound the integral by the value of the supremum we can control all the terms
in the DPP in terms of u(x0). We have

u(x0) = max

{
1

2

(
sup
Bε(x0)

u+ inf
Bε(x0)

u

)
,
α

2

(
sup
Bε(x0)

u+ inf
Bε(x0)

u

)
+ β

∫
Bε(x0)

u

}

< max

{
1

2

(
u(x0) + 2λ+ u(x0)−

(
2 +

4β

α

)
λ

)
,

α

2

(
u(x0) + 2λ+ u(x0)−

(
2 +

4β

α

)
λ

)
+ β(u(x0) + 2λ)

}
< max

{
u(x0)− 4β

α
λ, u(x0)

}
= u(x0),

which is a contradiction. Hence we obtain that the second condition must hold,
that is, we have

sup
Bε(x0)

v − inf
Bε(x0)

v > 2λ.

Applying the DPP we get

v(x0) ≥ 1

2

(
sup
Bε(x0)

v + inf
Bε(x0)

v

)
together with the fact that

sup
Bε(x0)

v − inf
Bε(x0)

v > 2λ,

then we conclude that

v(x0) > inf
Bε(x0)

v + λ.

We have proved that there exists x0 such that

v(x0) > inf
Bε(x0)

v + λ and u(x0)− v(x0) > M − δ.

Now we are going to build a sequence of points where the difference between u and
v is almost maximal and where the value of v decrease at least λ in every step.
Applying the DPP to M − δ < u(x0) − v(x0) and bounding the difference of the
suprema by M we get:

M − 2

α
δ + inf

Bε(x0)
v < inf

Bε(x0)
u.

Let x1 be such that v(x0) > v(x1) + λ and infBε(x0) v + δ > v(x1). We get

M −
(

1 +
2

α

)
δ + v(x1) < u(x1).

To repeat this construction we need two things:

• In the last inequality if δ is small enough we have u(x1) 6= v(x1), hence
x1 ∈ Ω.
• We know that 2v(x1) ≥ infBε(x1) v + supBε(x1) v > v(x0) + infBε(x1) v.

Hence, since v(x0) > v(x1) + λ, we get v(x1) > infBε(x1) v + λ.
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Then we get

v(xn−1) > v(xn) + λ

and

M −

(
n∑
k=0

(
2

α

)k)
δ + v(xn) < u(xn).

We can repeat this argument as long as

M −

(
n∑
k=0

(
2

α

)k)
δ > 0,

which is a contradiction with the fact that we know that v is bounded. �

Now we want to show that this unique function that satisfies the DPP is the
game value. The key point of the proof is to construct an strategy based on the
approximating sequence that we used to construct the solution.

Theorem 4.9. Given f ≡ 0 and α1, α2 > 0. The game has a value, that is
uI = uII, which coincides with the unique p1-p2-harmonious function.

Proof. Let u be the unique p1-p2-harmonious function. We will show that u ≤ uI .
The analogous result can be proved for uII completing the proof.

Let us consider a function u0, sub-p1-p2-harmonious smaller that infΩ g at every
point in Ω. Starting with this u0 we build the corresponding uk as in Lemma 4.4.
We have that uk → u as k →∞.

Now, given δ > 0 let n > 0 be such that un(x0) > u(x0) − δ
2 . We build an

strategy S0
I for Player I, in the firsts n moves, given xk−1 he will choose to move to

a point that almost maximize un−k, that is, he chooses xk ∈ Bε(xk−1) such that

un−k(xk) > sup
Bε(xk−1)

un−k −
δ

2n
.

and choose γ in order to maximize

αi
2

{
inf

Bε(xk−1)
un−k −

δ

2n
.+ sup

Bε(xk−1)

un−k

}
+ βi

∫
Bε(xk−1)

un−k dy.

After the first n moves he will follow a strategy that ends the game almost surely
(for example pointing in a fix direction).

We have

Ex0

S0
I ,SII

[un−k(xk) +
kδ

2n
|x0, . . . , xk−1]

≥ max
i∈{1,2}

(
αi
2

{
inf

Bε(xk−1)
un−k −

δ

2n
.+ sup

Bε(xk−1)

un−k

}

+βi

∫
Bε(xk−1)

un−k dy

)
− kδ

2n

≥ un−k+1(xk−1) +
(k − 1)δ

2n
,
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where we have estimated the strategy of Player II by inf and used the construction
for the uk’s. Thus

Mk =

 un−k(xk) +
kδ

2n
− δ

2
for 0 ≤ k ≤ n,

Mk = infΩ g for k > n,

is a submartingale.

Now we have

uI(x0) = sup
SI

inf
SII

Ex0

SI,SII
[g(xτ )]

≥ inf
SII

Ex0

S0
I ,SII

[g(xτ )]

≥ inf
SII

lim inf
k→∞

Ex0

S0
I ,SII

[Mk]

≥ inf
SII

ES0
I ,SII

[M0] = un(x0)− δ

2
> u(x0)− δ,

where τ ∧ k = min(τ, k), and we used the optional stopping theorem for Mk. Since
δ is arbitrary this proves the claim. �

As an immediate corollary of our results in this section we obtain a comparison
result for solutions to the DPP.

Corollary 4.10. If v and u are p1-p2-harmonious functions for gv, fv and gu, fu,
respectively such that gv ≥ gu and fv ≥ fu, then v ≥ u.

5. Properties of harmonious functions and convergence

First, we show some properties of p1-p2-harmonious functions that we need to
prove convergence as ε → 0. We want to apply the following Arzela-Ascoli type
lemma. For its proof see Lemma 4.2 from [30].

Lemma 5.1. Let {uε : Ω→ R, ε > 0} be a set of functions such that

(1) there exists C > 0 so that |uε(x)| < C for every ε > 0 and every x ∈ Ω,
(2) given η > 0 there are constants r0 and ε0 such that for every ε < ε0 and

any x, y ∈ Ω with |x− y| < r0 it holds

|uε(x)− uε(y)| < η.

Then, there exists a uniformly continuous function u : Ω → R and a subsequence
still denoted by {uε} such that

uε → u uniformly in Ω,

as ε→ 0.

So our task now is to show that the family uε satisfies the hypotheses of the
previous lemma. To this end we need some bounds on the expected exit time in
the case a player choose a certain strategy.

Let us start showing that uε are uniformly bounded. In Lemma 4.2 we obtained
a bound for the value of the game for a fixed ε, here we need a bound independent
of ε. To this end, let us define what we understand by pulling in one direction: We
fix a direction, that is, a unitary vector v and at each turn of the game the Player
strategy is given S(xk−1) = xk−1 + (ε− ε3/2k)v.
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Lemma 5.2. In a game where a player pulls in a fix direction the expectation of
the exit time is bounded above by

E[τ ] ≤ Cε−2

for some C > 0 independent of ε.

Proof. First, let us assume without lost of generality that

Ω ⊂ {x ∈ Rn : 0 < xn < R}

and that the direction that the player is pulling to is −en. Then

Mk = (xk)n +
ε3

2k

is a supermartingale. Indeed, if the random move occurs, then we know that the
expectation of (xk+1)n is equal to (xk)n. If the tug-of-war game is played we know
that with probability one half (xk+1)n = (xk)n − ε+ ε3/2k and if the other player

moves (xk+1)n ≤ (xk)n + ε, so the expectation is less or equal to (xk)n + ε3

2k+1 .

Let us consider the expectation for (Mk+1 −Mk)2. If the random walk occurs,

then the expectation is ε2

n+2 + o(ε2). Indeed,∫
Bε

x2
n =

1

n

∫
Bε

|x|2 =
1

εnn|B1|

∫ ε

0

r2|∂Br| dr =
|∂B1|
εnn|B1|

∫ ε

0

rn+1 dr =
ε2

n+ 2
.

If the tug-of-war occurs we know that with probability one half (xk+1)n = (xk)n−
ε+ ε3/2k, so the expectation is greater than or equal to ε2

3 .

Let us consider the expectation for M2
k −M2

k+1. We have,

E[M2
k −M2

k+1] = E[(Mk+1 −Mk)2] + 2E[(Mk −Mk+1)Mk+1].

As (xk)n is positive, we have 2E[(Mk −Mk+1)Mk+1] ≥ 0. Then E[M2
k −M2

k+1] ≥
ε2

n+2 , so M2
k+ kε2

n+2 is a supermartingale. According to the optional stopping theorem
for supermartingales

E
[
M2
τ∧k +

(τ ∧ k)ε2

n+ 2

]
≤M2

0 .

We have

E[(τ ∧ k)]
ε2

n+ 2
≤M2

0 − E[M2
τ∧k] ≤M2

0 .

Taking limit in k, we get a bound for the expected exit time,

E[τ ] ≤ (n+ 2)M2
0 ε
−2,

so, the statement holds for C = (n+ 2)R2. �

Lemma 5.3. A f -p1-p2-harmonious function uε with boundary values g satisfies

(5.1) inf
y∈Γε

g(y) + C inf
y∈Ω

f(y) ≤ uε(x) ≤ sup
y∈Γε

g(y) + C sup
y∈Ω

f(y).

Proof. We use the connection to games. Let one of the players choose a strategy
of pulling in a fix direction. Then

E[τ ] ≤ Cε−2
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and this gives the upper bound

E[g(Xτ ) + ε2
τ∑
n=0

f(Xn)] ≤ sup
y∈Γε

g(y) + E[τ ]ε2 sup
y∈Ω

f(y) ≤ sup
y∈Γε

g(y) + C sup
y∈Ω

f(y).

The lower bound follows analogously. �

Let us show now that the uε are asymptotically uniformly continuous. First
we need a lemma that bound the expectation for the exit time when one player is
pulling towards a fix point.

Lemma 5.4. Let us consider an annular domain BR(y) \Bδ(y) and a game where
in each round an ε step tug-of-war is played inside BR(y) or the token moves at
random with uniform probability in BR(y)∩Bε(x). Assume that one of the players
pulls towards y. Then

Ex0(τ∗) ≤ C(R/δ) dist(∂Bδ(y), x0) + o(1)

ε2
,(5.2)

for x0 ∈ BR(y) \Bδ(y). Here o(1)→ 0 as ε→ 0.

Proof. Let us denote

hε(x) = Ex(τ).

By symmetry we know that hε is radial and it is easy to see that it is increasing in
r = |x− y|. If we assume that the other player wants to maximize the expectation
for the exit time and that the random move or tug-of-war is chosen in the same
way, we have that the function hε satisfies a dynamic programming principle

hε(x) = max

{
1

2

(
max

Bε(x)∩BR(y)
hε + min

Bε(x)∩BR(y)
hε

)
,

∫
Bε(x)∩BR(y)

hε dz

}
+ 1

by the above assumptions and that the number of steps always increases by one
when making a step. Further, we denote vε(x) = ε2hε(x) and obtain

vε(x) = max

{
1

2

(
sup

Bε(x)∩BR(y)

vε + inf
Bε(x)∩BR(y)

vε

)
,

∫
Bε(x)∩BR(y)

vε dz

}
+ ε2

This induces us to look for a function v such that

v(x) ≥
∫
Bε(x)

v dz + ε2

and

v(x) ≥ 1

2

(
sup
Bε(x)

v + inf
Bε(x)

v

)
+ ε2.

(5.3)

Note that for small ε this is a sort of discrete version to the following inequalities{
∆v(x) ≤ −2(n+ 2), x ∈ BR+ε(y) \Bδ−ε(y),

∆∞v(x) ≤ −2, x ∈ BR+ε(y) \Bδ−ε(y).
(5.4)
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This leads us to consider the problem
∆v(x) = −2(n+ 2), x ∈ BR+ε(y) \Bδ(y),

v(x) = 0, x ∈ ∂Bδ(y),
∂v

∂ν
= 0, x ∈ ∂BR+ε(y),

(5.5)

where ∂u
∂ν refers to the normal derivative. The solution to this problem is radially

symmetric and strictly increasing in r = |x− y|. It takes the form

v(r) = −ar2 − br2−N + c,

if N > 2 and

v(r) = −ar2 − b log(r) + c,

if N = 2. If we extend this v to Bδ(y) \Bδ−ε(y), it satisfies ∆v(x) = −2(N + 2) in
BR+ε(y) \Bδ−ε(y). We know that

∆∞v = vrr ≤ vrr +
N − 1

r
vr = ∆v.

Thus, v satisfy the inequalities (5.4). Then, the classical calculation shows that v
satisfies (5.3) for each Bε(x) ⊂ BR+ε(y) \Bδ−ε(y).

In addition, as v is increasing in r, it holds for each x ∈ BR(y) \Bδ(y) that∫
Bε(x)∩BR(y)

v dz ≤
∫
Bε(x)

v dz ≤ v(x)− ε2

and

1

2

(
sup

Bε(x)∩BR(y)

v+ inf
Bε(x)∩BR(y)

v

)
≤ 1

2

(
sup
Bε(x)

v+ inf
Bε(x)

v

)
≤ v(x)− ε2.

It follows that

E[v(xk) + kε2|x0, . . . , xk−1]

≤ max

{
1

2

(
sup

Bε(xk−1)∩BR(y)

v + inf
Bε(xk−1)∩BR(y)

v

)
,

∫
Bε(xk−1)∩BR(y)

v dz

}
≤ v(xk−1) + (k − 1)ε2,

if xk−1 ∈ BR(y) \ Bδ(y). Thus v(xk) + kε2 is a supermartingale, and the optional
stopping theorem yields

Ex0 [v(xτ∗∧k) + (τ∗ ∧ k)ε2] ≤ v(x0).(5.6)

Because xτ∗ ∈ Bδ(y) \Bδ−ε(y), we have

0 ≤ −Ex0 [v(xτ∗)] ≤ o(1).

Furthermore, the estimate

0 ≤ v(x0) ≤ C(R/δ) dist(∂Bδ(y), x0)

holds for the solutions of (5.5). Thus, by passing to the limit as k →∞, we obtain

ε2Ex0 [τ∗] ≤ v(x0)− E[u(xτ∗)] ≤ C(R/δ)(dist(∂Bδ(y), x0) + o(1)).

This completes the proof. �
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Next we derive a uniform bound and estimate for the asymptotic continuity of
the family of p1-p2-harmonious functions.

We assume here that Ω satisfies an exterior sphere condition: For each y ∈ ∂Ω,
there exists Bδ(z) ⊂ Rn \ Ω such that y ∈ ∂Bδ(z).

Lemma 5.5. Let g be Lipschitz continuous in Γε and f Lipschitz continuous in Ω
such that f ≡ 0, inf f > 0 or sup f < 0. The p1-p2-harmonious function uε with
data g and f satisfies

(5.7)
|uε(x)− uε(y)| ≤ Lip(g)(|x− y|+ δ)

+C(R/δ)(|x− y|+ o(1))(1 + ‖f‖∞) + C̃Lip(f)|x− y|,

for every small enough δ > 0 and for every two points x, y ∈ Ω ∪ Γε.

Proof. The case x, y ∈ Γε is clear. Thus, we can concentrate on the cases x ∈ Ω
and y ∈ Γε as well as x, y ∈ Ω.

We use the connection to games. Suppose first that x ∈ Ω and y ∈ Γε. By the
exterior sphere condition, there exists Bδ(z) ⊂ Rn \ Ω such that y ∈ ∂Bδ(z). Now
Player I chooses a strategy of pulling towards z, denoted by SzI . Then

Mk = |xk − z| − Cε2k

is a supermartingale for a constant C large enough independent of ε. Indeed,

Ex0

SzI ,SII
[|xk − z| |x0, . . . , xk−1]

≤ max
i∈{1,2}

(
αi
2

{
|xk−1 − z|+ ε− ε3 + |xk−1 − z| − ε

}
+ βi

∫
Bε(xk−1)

|x− z| dx

)
≤ |xk−1 − z|+ Cε2.

The first inequality follows from the choice of the strategy, and the second from the
estimate ∫

Bε(xk−1)

|x− z| dx ≤ |xk−1 − z|+ Cε2.

By the optional stopping theorem, this implies that

Ex0

SzI ,SII
[|xτ − z|] ≤ |x0 − z|+ Cε2Ex0

SzI ,SII
[τ ].(5.8)

Next we can estimate Ex0

SzI ,SII
[τ ] by the stopping time of Lemma 5.4. Let R > 0

be such that Ω ⊂ BR(z). Thus, by (5.2),

ε2Ex0

SzI ,SII
[τ ] ≤ ε2Ex0

SzI ,SII
[τ∗] ≤ C(R/δ)(dist(∂Bδ(z), x0) + o(1)).

Since y ∈ ∂Bδ(z),

dist(∂Bδ(z), x0) ≤ |y − x0| ,

and thus, (5.8) implies

Ex0

SzI ,SII
[|xτ − z|] ≤ C(R/δ)(|x0 − y|+ o(1)).

We get

g(z)− C(R/δ)(|x− y|+ o(1)) ≤ Ex0

SzI ,SII
[g(xτ )].



28 P. BLANC, J. P. PINASCO, AND J. D. ROSSI

Thus, we obtain

sup
SI

inf
SII

Ex0

SI,SII
[g(xτ ) + ε2

τ−1∑
n=0

f(xn)]

≥ inf
SII

Ex0

SzI ,SII
[g(xτ ) + ε2

τ−1∑
n=0

f(xn)]

≥ g(z)− C(R/δ)(|x0 − y|+ o(1))− ε2 inf
SII

Ex0

SzI ,SII
[τ ]‖f‖∞

≥ g(y)− Lip(g)δ − C(R/δ)(|x0 − y|+ o(1))(1 + ‖f‖∞).

The upper bound can be obtained by choosing for Player II a strategy where he
points to z, and thus, (5.7) follows.

Finally, let x, y ∈ Ω and fix the strategies SI, SII for the game starting at x. We
define a virtual game starting at y: we use the same coin tosses and random steps
as the usual game starting at x. Furthermore, the players adopt their strategies
SvI , S

v
II from the game starting at x, that is, when the game position is yk−1 a

player chooses the step that would be taken at xk−1 in the game starting at x. We
proceed in this way until for the first time xk ∈ Γε or yk ∈ Γε. At that point we
have |xk−yk| = |x−y|, and we may apply the previous steps that work for xk ∈ Ω,
yk ∈ Γε or for xk, yk ∈ Γε.

If we are in the case f ≡ 0 we are done. In the case infy∈Ω |f(y)| > 0, as we
know that the uε are uniformly bounded according to Lemma 5.3, we have that the
expected exit time is bounded by

C̃ =
maxy∈Γε |g(y)|+ C maxy∈Ω |f(y)|

infy∈Ω |f(y)|
.

So the expected difference in the running payoff in the game starting at x and

the virtual one is bounded by C̃Lip(f)|x − y|, because |xi − yi| = |x − y| for all
0 ≤ i ≤ k. �

Corollary 5.6. Let {uε} be a family of p1-p2-harmonious. Then there exists a
uniformly continuous u and a subsequence still denoted by {uε} such that

uε → u uniformly in Ω.

Proof. Using Lemmas 5.3 and 5.5 we get that the family uε satisfies the hypothesis
of the compactness Lemma 5.1. �

Theorem 5.7. Any uniform limit of a subsequence of uε, u, (that there is such
was subsequence was proved in Corollary 5.6) is a viscosity solution to (1.2) taking
f/2 as the running pay-off function.

Proof. First, we observe that u = g on ∂Ω due to uε = g on ∂Ω for all ε > 0.
Hence, we can focus our attention on showing that u is p1-p2-harmonic inside Ω in
the viscosity sense. To this end, we recall from [28] an estimate that involves the
regular Laplacian (p = 2) and an approximation for the infinity Laplacian (p =∞).
Choose a point x ∈ Ω and a C2-function φ defined in a neighborhood of x. Note
that since φ is continuous then we have

min
y∈Bε(x)

φ(y) = inf
y∈Bε(x)

φ(y)
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for all x ∈ Ω. Let xε1 be the point at which φ attains its minimum in Bε(x)

φ(xε1) = min
y∈Bε(x)

φ(y).

It follows from the Taylor expansions in [28] that

α

2

(
max

y∈Bε(x)
φ(y) + min

y∈Bε(x)
φ(y)

)
+ β

∫
Bε(x)

φ(y) dy − φ(x)

≥ ε2

2(n+ p)

{
(p− 2)

〈
D2φ(x)

(
xε1 − x
ε

)
,

(
xε1 − x
ε

)〉
+ ∆φ(x)

}
+ o(ε2).

(5.9)

Suppose that φ touches u at x strictly from below. We want to prove that
F ∗(∇φ(x), D2φ(x)) ≥ f(x). By the uniform convergence, there exists sequence
{xε} converging to x such that uε− φ has an approximate minimum at xε, that is,
for ηε > 0, there exists xε such that

uε(x)− φ(x) ≥ uε(xε)− φ(xε)− ηε.

Moreover, considering φ̃ = φ− uε(xε)−φ(xε), we can assume that φ(xε) = uε(xε).
Thus, by recalling the fact that uε is p1-p2-harmonious, we obtain

ηε ≥ ε2 f(xε)

2
− φ(xε) + max

i∈{1,2}

{
αi
2

(
max
Bε(xε)

φ+ min
Bε(xε)

φ

)
+ βi

∫
Bε(xε)

φ(y) dy

}
,

and thus, by (5.9), and choosing ηε = o(ε2), we have

0 ≥ ε2

2
max
i∈{1,2}

{
αi

〈
D2φ(xε)

(
xε1 − xε

ε

)
,

(
xε1 − xε

ε

)〉
+ θi∆φ(xε)

}
+ε2 f(xε)

2
+ o(ε2).

Next we need to observe that〈
D2φ(xε)

(
xε1 − xε

ε

)
,

(
xε1 − xε

ε

)〉
converge to ∆∞φ(x) when ∇φ(x) 6= 0 and always is bounded in the limit by
λmin(D2φ(x)) and λmax(D2φ(x)). Dividing by ε2 and letting ε→ 0, we get

F ∗(∇φ(x), D2φ(x)) ≥ f(x).

Therefore u is a viscosity supersolution.

To prove that u is a viscosity subsolution, we use a reverse inequality to (5.9)
by considering the maximum point of the test function and choose a smooth test
function that touches u from above. �

Now, we just observe that this probabilistic approach provides an alternative
existence proof of viscosity solutions to our PDE problem.

Corollary 5.8. Any limit function obtained as in Corollary 5.6 is a viscosity so-
lution to the problem{

max {−∆p1u,−∆p2u} = f on Ω,

u = g on ∂Ω.

In particular, the problem has a solution.
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We proved that the problem has an unique solution using PDE methods, there-
fore we conclude that we have convergence as ε → 0 of uε (not only along subse-
quences).

Corollary 5.9. It holds that

uε → u uniformly in Ω,

being u the unique solution to the problem{
max {−∆p1u,−∆p2u} = f on Ω,

u = g on ∂Ω.
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Depto. Matemática, FCEyN, Buenos Aires University,

Ciudad Universitaria, Pab 1 (1428),
Buenos Aires, Argentina.

pblanc@dm.uba.ar, jpinasco@dm.uba.ar, jrossi@dm.uba.ar


