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Abstract. We study the asymptotic behavior for nonlocal diffusion
models of the form ut = J ∗ u − u in the whole RN or in a bounded
smooth domain with Dirichlet or Neumann boundary conditions. In
RN we obtain that the long time behavior of the solutions is determined
by the behavior of the Fourier transform of J near the origin, which is

linked to the behavior of J at infinity. If Ĵ(ξ) = 1 − A|ξ|α + o(|ξ|α)
(0 < α 6 2), the asymptotic behavior is the same as the one for solu-
tions of the evolution given by the α/2 fractional power of the laplacian.
In particular when the nonlocal diffusion is given by a compactly sup-
ported kernel the asymptotic behavior is the same as the one for the heat
equation, which is a local model. Concerning the Dirichlet problem for
the nonlocal model we prove that the asymptotic behavior is given by
an exponential decay to zero at a rate given by the first eigenvalue of
an associated eigenvalue problem with profile an eigenfunction of the
first eigenvalue. Finally, we analyze the Neumann problem and find an
exponential convergence to the mean value of the initial condition.

1. Introduction

The aim of this paper is to study the asymptotic behavior of solutions
of a nonlocal diffusion operator in the whole RN or in a bounded smooth
domain with Dirichlet or Neumann boundary conditions.

First, let us introduce what kind of nonlocal diffusion problems we con-
sider. To this end, let J : RN → R be a nonnegative, radial function with∫
RN J(r)dr = 1. Nonlocal evolution equations of the form

(1.1)
ut(x, t) = J ∗ u− u(x, t) =

∫

RN

J(x− y)u(y, t) dy − u(x, t),

u(x, 0) = u0(x),

and variations of it, have been recently widely used to model diffusion
processes, see [1], [3], [6], [9], [11], [16], [17], [20], [21] and [22]. As stated in
[16], if u(x, t) is thought of as the density of a single population at the point
x at time t, and J(x−y) is thought of as the probability distribution of jump-
ing from location y to location x, then (J ∗u)(x, t) =

∫
RN J(y−x)u(y, t) dy is
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the rate at which individuals are arriving to position x from all other places
and −u(x, t) = − ∫

RN J(y−x)u(x, t) dy is the rate at which they are leaving
location x to travel to all other sites. This consideration, in the absence of
external or internal sources, leads immediately to the fact that the density
u satisfies equation (1.1).

Equation (1.1), is called nonlocal diffusion equation since the diffusion
of the density u at a point x and time t does not only depend on u(x, t),
but on all the values of u in a neighborhood of x through the convolution
term J ∗ u. This equation shares many properties with the classical heat
equation, ut = cuxx, such as: bounded stationary solutions are constant,
a maximum principle holds for both of them and, even if J is compactly
supported, perturbations propagate with infinite speed, [16]. However, there
is no regularizing effect in general. For instance, if J is rapidly decaying (or
compactly supported) the singularity of the source solution, that is a solution
of (1.1) with initial condition a delta measure, u0 = δ0, remains with an
exponential decay. In fact, this fundamental solution can be decomposed as
w(x, t) = e−tδ0 +v(x, t) where v(x, t) is smooth, see Lemma 2.2. In this way
we see that there is no regularizing effect since the solution u of (1.1) can
be written as u = w ∗ u0 = e−tu0 + v ∗ u0 with v smooth, which means that
u(t) is as regular as u0 is, and no more (see again Lemma 2.2). For more
information on this topic, we refer to the Comments section at the end of
the introduction.

Let us also mention that our results have a probabilistic counterpart in
the setting of Markov chains (we refer also to the Comments section for a
brief exposition of this matter).

Main results. Let us now state our results concerning the asymptotic be-
havior for equation (1.1), for the Cauchy, Dirichlet and Neumann problems.

- The Cauchy problem - We will understand a solution of (1.1) as a func-
tion u ∈ C0([0,+∞);L1(RN )) that verifies (1.1) in the integral sense, see
Theorem 2.1. Our first result states that the decay rate as t goes to infinity
of solutions of this nonlocal problem is determined by the behavior of the
Fourier transform of J near the origin. The asymptotic decays are the same
as the ones that hold for solutions of the evolution problem with right hand
side given by a power of the laplacian.

In the sequel we denote by f̂ the Fourier transform of f . Let us recall our
hypotheses on J that we will assume throughout the paper,

(H) J ∈ C(RN ,R) is a nonnegative, radial function with
∫
RN J(r) dr = 1.

This means that J is a radial density probability which implies obviously
that |Ĵ(ξ)| 6 1 with Ĵ(0) = 1, and we shall assume that Ĵ has an expansion
of the form Ĵ(ξ) = 1 − A|ξ|α + o(|ξ|α) for ξ → 0 (A > 0). Remark that
in this case, (H) implies also that 0 < α 6 2 and α 6= 1 if J has a first
momentum (see Lemma 2.1).
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Theorem I. Let u be a solution of (1.1) with u0, û0 ∈ L1(RN ). If there
exist A > 0 and 0 < α 6 2 such that

(1.2) Ĵ(ξ) = 1−A|ξ|α + o(|ξ|α), ξ → 0,

then the asymptotic behavior of u(x, t) is given by

lim
t→+∞ tN/α max

x
|u(x, t)− v(x, t)| = 0,

where v is the solution of vt(x, t) = −A(−∆)α/2v(x, t) with initial condition
v(x, 0) = u0(x). Moreover, we have

‖u(·, t)‖L∞(RN ) 6 C t−N/α,

and the asymptotic profile is given by

lim
t→+∞max

y

∣∣∣tN/αu(yt1/α, t)− ‖u0‖L1GA(y)
∣∣∣ = 0,

where GA(y) satisfies ĜA(ξ) = e−A|ξ|α.

In the special case α = 2, the decay rate is t−N/2 and the asymp-
totic profile is a gaussian GA(y) = (4πA)N/2 exp(−A|y|2/4) with A · Id =
−(1/2)D2Ĵ(0), see Lemma 2.1. Note that in this case (that occurs, for ex-
ample, when J is compactly supported) the asymptotic behavior is the same
as the one for solutions of the heat equation and, as happens for the heat
equation, the asymptotic profile is a gaussian.

The decay in L∞ of the solutions together with the conservation of mass
give the decay of the Lp-norms by interpolation. As a consequence of The-
orem I, we find that this decay is analogous to the decay of the evolution
given by the fractional laplacian, that is,

‖u(·, t)‖Lp(RN ) 6 C t
−N

α

(
1− 1

p

)
,

see Corollary 2.2. We refer to [10] for the decay of the Lp-norms for the
fractional laplacian, see also [7], [12] and [14] for finer decay estimates of
Lp-norms for solutions of the heat equation.

Next we consider a bounded smooth domain Ω ⊂ RN and impose bound-
ary conditions to our model. From now on we assume that J is continuous.

- The Dirichlet problem - We consider the problem

(1.3)

ut(x, t) =
∫

RN

J(x− y)u(y, t) dy − u(x, t), x ∈ Ω, t > 0,

u(x, t) = 0, x 6∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

In this model we have that diffusion takes place in the whole RN but we
impose that u vanishes outside Ω. This is the analogous of what is called
Dirichlet boundary conditions for the heat equation. However, the boundary
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data is not understood in the usual sense, see Remark 3.1. As for the Cauchy
problem we understand solutions in an integral sense, see Theorem 3.1.

In this case we find an exponential decay given by the first eigenvalue of
an associated problem and the asymptotic behavior of solutions is described
by the unique (up to a constant) associated eigenfunction. Let λ1 = λ1(Ω)
be given by

(1.4) λ1 = inf
u∈L2(Ω)

1
2

∫

RN

∫

RN

J(x− y)(u(x)− u(y))2 dx dy
∫

Ω
(u(x))2 dx

and φ1 an associated eigenfunction (a function where the infimum is at-
tained).

Theorem II. For every u0 ∈ L1(Ω) there exists a unique solution u of
(1.3) such that u ∈ C([0,∞);L1(Ω)). Moreover, if u0 ∈ L2(Ω), solutions
decay to zero as t →∞ with an exponential rate

(1.5) ‖u(·, t)‖L2(Ω) 6 ‖u0‖L2(Ω)e
−λ1t.

If u0 is continuous, positive and bounded then there exist positive constants
C and C∗ such that

(1.6) ‖u(·, t)‖L∞(Ω) 6 C e−λ1t

and

(1.7) lim
t→∞max

x

∣∣∣eλ1tu(x, t)− C∗φ1(x)
∣∣∣ = 0.

- The Neumann problem - Let us turn our attention to Neumann boundary
conditions. We study

(1.8)
ut(x, t) =

∫

Ω
J(x− y)(u(y, t)− u(x, t)) dy, x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

Again solutions are to be understood in an integral sense, see Theorem 4.1.
In this model we have that the integral terms take into account the diffusion
inside Ω. In fact, as we have explained the integral

∫
J(x − y)(u(y, t) −

u(x, t)) dy takes into account the individuals arriving or leaving position x
from other places. Since we are integrating in Ω, we are imposing that
diffusion takes place only in Ω. The individuals may not enter nor leave Ω.
This is the analogous of what is called homogeneous Neumann boundary
conditions in the literature.
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Again in this case we find that the asymptotic behavior is given by an
exponential decay determined by an eigenvalue problem. Let β1 be given by

(1.9) β1 = inf
u∈L2(Ω),

R
Ω u=0

1
2

∫

Ω

∫

Ω
J(x− y)(u(y)− u(x))2 dy dx

∫

Ω
(u(x))2 dx

.

Concerning the asymptotic behavior of solutions of (1.8) our last result
reads as follows:

Theorem III. For every u0 ∈ L1(Ω) there exists a unique solution u of
(1.8) such that u ∈ C([0,∞);L1(Ω)). This solution preserves the total mass
in Ω ∫

Ω
u(y, t) dy =

∫

Ω
u0(y) dy.

Moreover, let ϕ = 1
|Ω|

∫
Ω u0, then the asymptotic behavior of solutions of

(1.8) is described as follows: if u0 ∈ L2(Ω),

(1.10) ‖u(·, t)− ϕ‖L2(Ω) 6 e−β1t‖u0 − ϕ‖L2(Ω),

and if u0 is continuous and bounded there exist a positive constant C such
that

(1.11) ‖u(·, t)− ϕ‖L∞(Ω) 6 Ce−β1t.

Comments. We will now devote some lines to comment on our results from
the qualitative viewpoint, in order to give a clearer picture of the situation.

- Absence of regularization - As was said above, there is clearly NO regu-
larizing effect as seen in Lemma 2.2, since the fundamental solution takes
the form:

u(x, t) = e−tδ0(x) + v(x, t).

The function v has no point singularity at x = 0. Moreover, if Ĵ ∈ L1(RN )
then v ∈ C∞(RN × R+). This phenomenon is in sharp contrast with what
happens for the heat equation, for which an initial condition like δ0 is auto-
matically regularized and the corresponding solution is C∞.

One could think that this situation is in some sense close to what happens
in the subcritical fast-diffusion case: ut = ∆(um), with 0 < m 6 (N−2)+/N .
Indeed, it is proved in [5] that the solution with initial data u0 = δ0 has a
permanent singularity for all positive times, u(x, t) = δ0(x) ⊗ 1(t), which
means that there is no diffusion at all for this special data.

But in fact, the nonlocal equation (1.1) is a little bit more interesting since
some mass transfer occurs. Although the Dirac delta remains at x = 0, its
mass decays exponentially fast. Thus, total conservation of mass implies
that this mass is redistributed in all the surrounding space, through the
function v(x, t).
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This may be seen as a radiation phenomena, which is a feature shared
by the fast diffusion equation in the case (N − 2)+/N < m < 1. When
considering strong singularities of the kind∞·δ0 (see [8]), there is an explicit
solution which reads

u(x, t) =
(

Ct

|x|2
) 1

1−m

.

Such a solution has also a standing singularity at x = 0, but nevertheless
radiation occurs. The only difference is that, in the fast diffusion situation,
the singularity has an infinite mass, and the amount of mass spread into
the surrounding space will eventually lead to u(x, t) → +∞ as t → ∞
everywhere.

- Influence of the behavior of J - Let us first notice that in the Cauchy
problem, if J is compactly supported in RN , then it has a second momentum,∫
RN |x|2J(x) dx < +∞, and since by symmetry the first momentum of J is

null, we necessarily have

Ĵ(ξ) = 1− c|ξ|2 + o(|ξ|2), ξ → 0,

which implies an asymptotic behavior of heat equation type, which is quite
surprising since the Heat Equation is a local equation.

The same happens even if J is not compactly supported, but decreases
sufficiently fast at infinity (roughly speaking, faster than |x|−(N+2)). A well-
known example is provided by the Gaussian law, namely in 1-D,

J(x) = e−x2
, Ĵ(ξ) = e−|ξ|

2
= 1− |ξ|2 + o(|ξ|2), ξ → 0.

In general, J may not have a second momentum, so that more general
expansions may occur: Ĵ(ξ) = 1 − c|ξ|α + o(|ξ|α) with α ∈ (0, 2], like it is
the case for stable laws of index α (see [13], p.149). A typical example (in
1-D) is the Cauchy Law,

J(x) =
1

1 + |x|2 , where Ĵ(ξ) = 1− |ξ|+ o(|ξ|), ξ → 0.

Note that this example provides a J that does not have a first momentum
but has nevertheless an expansion of the form Ĵ(ξ) = 1 − |ξ| + o(|ξ|). In
these cases (0 < α < 2), we obtain that the asymptotic behavior is given by
the non-local fractional Laplace parabolic equation.

But more diffusions may be considered like for instance the case when

Ĵ(ξ) ∼ 1 + ξ2 ln ξ as ξ → 0.

This last case is really interesting since it can be shown (see the Final
remarks section) that the asymptotic behavior is still given by a solution
of the Heat Equation, yet viewed in a different time scale. More precisely, if
Ĵ is as above and v is the solution of the Heat Equation vt = (1/2)∆v with
the same initial datum, then

lim
t→+∞(t ln t)N/2 max

x
|u(x, t)− v(x, t ln t)| = 0.
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- On the diffusive effect of the equation - In the case when J has a moment
of order 2, then Ĵ(ξ) = 1−A|ξ|2 + o(|ξ|2), where A is defined as follows (see
Lemma 2.1):

−1
2
D2Ĵ(0) =

(
1

2N

∫
x2J(x)dx

)
Id = A · Id.

Since the first moment of J is null, its second moment measures the dis-
persion of J around its mean, which is zero. Now, the asymptotic behavior
of solutions to (1.1) is related to those of the heat equation with speed
c = A1/2. This means that the more dispersed J is, the greater the speed.

This effect can be understood as follows: if J is not dispersed, then almost
no diffusion occurs since J ∗ u ≈ u, the limit case being J = δ0 for which
the equation becomes : ut = δ0 ∗ u− u = 0. Thus for concentrated J ’s, the
diffusion effect is very small, which is also visible in the asymptotic behavior
since the speed of the Gaussian profile is also small.

On the contrary, when J is very dispersed, (J ∗ u)(x0, t) will take into
accounts values of the density u situated at points “far” from x0 so that a
great diffusion effect occurs. This is reflected in the asymptotic Gaussian
profile which has a great velocity.

- The frequency viewpoint - A simple way to understand our results in
the Cauchy problem is the following: the behavior (1.2) means that at low
frequencies (ξ ∼ 0), the operator is very much like the fractional Laplacian
(usual Laplacian if α = 2). Now, as time evolves, diffusion occurs and high
frequencies of the initial data go to zero, this si reflected in the explicit
frequency solution (see Theorem 2.1) :

û(ξ, t) = e(Ĵ(ξ)−1)tû0(ξ).

Indeed, if J is a L1 function, then it happens that Ĵ(ξ) → 0 as ξ → ∞, so
that for |ξ| >> 1, the high frequencies of u0 are multiplied by something
decreasing exponentially fast in time (this could be different in the case when
J is a measure, but we do not consider such a case here).

Thus, roughly speaking, only low frequencies of the solution will play an
important role in the asymptotic behavior as t → ∞, which explains why
we obtain something similar to the fractional Laplacian equation (or heat
equation) in the rescaled limit.

And in fact what we do in the proof of Theorem I is precisely to separate
the low frequencies where we use the expansion (1.2) from the high frequen-
cies that we control since they tend to zero fast enough in a suitable time
scale.

- Asymptotics in bounded domains - In the case of bounded domains, the
asymptotic behavior of solutions is NOT related to the behavior of Ĵ near
zero. Indeed, this case is similar to the case when J is compactly supported,
since the operator will not take into account values of u at |x| = +∞. The
asymptotic behavior thus depends only on the eigenvalues of the operator
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(whether in Dirichlet or Neumann problems). However, if the domain is
unbounded the behavior of J at infinity may enter into play (see Final
remarks).

- Probabilistic interpretation - Recently, E. Lesigne and M. Peigné [19]
turned our attention on the fact that the problem we study has a clear
probabilistic interpretation, that we briefly explain below.

Let (E, E) be a measurable space and P : E × E → [0, 1] be a probability
transition on E. Then we define a markovian transition function as follows:
for any x ∈ E, A ∈ E , let

Pt(x,A) = e−t
+∞∑

n=0

tn

n!
P (n)(x,A) t ∈ R+,

where P (n) denotes the n-ieth iterate of P acting on the space of bounded
measurable functions on E. The associated family of markovian operators,
Ptf(x) =

∫
f(y)Pt(x, dy) satisfies

∂

∂t
Ptf(x) =

∫
Ptf(y)P (x, dy)− Ptf(x).

If we consider a Markov process (Zt)t>0 associated to the transition func-
tion (Pt)t>0, and if we denote by µt the distribution of Zt, then the family
(µt)t>0 satisfies also a linear partial differential equation

∂

∂t
µt =

∫
P (y, ·)µt(dy)− µt.

In particular, if E = RN , if the probability transition P (x, dy) has a
density y 7→ J(x, y), and if µt has a density y 7→ u(y, t), then the following
equation is satisfied

(1.12)
∂

∂t
u(x, t) =

∫
J(y, x)u(y, t) dλ(y)− u(x, t).

With different particular choices of P we recover the equation studied
in the Cauchy, the Dirichlet and the Neumann cases. For example, if
P (x, dy) = J(y− x)dy is the transition probability of a random walk, equa-
tion (1.12) is just equation (1.1). In this particular case, the asymptotic
behavior described in Theorem I can be obtained as a consequence of the
so-called “Local Limit Theorem for Random Walks” which is a classical re-
sult in probability theory (see Theorem 1 (p. 506) and Theorem 2 (p. 508)
in [15]).

In the Dirichlet and Neumann cases, the results described in the present
article give interesting information on the asymptotic behavior of some nat-
ural Markov process in the space.

Organization of the paper. The rest of the paper is organized as follows:
in Section 2 we prove Theorem I and we also find the estimate of the decay of
the Lp-norms; in Section 3 we deal with the Dirichlet problem; in Section 4
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we analyze the behavior of the Neumann problem and finally in Section 5
we discuss some possible extensions of this work.

2. The Cauchy problem. Proof of Theorem I

In this section, we shall make an extensive use of the Fourier transform
in order to obtain explicit solutions in frequency formulation. Let us recall
(see for instance [18]) that if f ∈ L1(RN ) then f̂ and f̌ are bounded and
continuous, where f̂ is the Fourier transform of f and f̌ its inverse Fourier
transform. Moreover,

lim
|ξ|→∞

f̂(ξ) = 0 and lim
|x|→∞

f̌(x) = 0.

We begin by collecting some properties of the function J .

Lemma 2.1. Let J satisfy hypotheses (H). Then,

i) |Ĵ(ξ)| 6 1, Ĵ(0) = 1.
ii) If

∫
RN J(x)|x| dx < +∞ then

(
∇ξĴ

)
i
(0) = −i

∫

RN

xiJ(x) dx = 0

and if
∫
RN J(x)|x|2 dx < +∞ then

(
D2Ĵ

)
ij

(0) = −
∫

RN

xixjJ(x) dx,

therefore
(
D2Ĵ

)
ij

(0) = 0 when i 6= j and
(
D2Ĵ

)
ii
(0) 6= 0. Hence the

Hessian matrix of Ĵ at the origin is given by

D2Ĵ(0) = −
(

1
N

∫

RN

|x|2J(x) dx

)
· Id.

iii) If Ĵ(ξ) = 1−A|ξ|α + o(|ξ|)α then necessarily α ∈ (0, 2], and if J has
a first momentum, then α 6= 1 . Finally, if α = 2, then

A · Id = −(1/2)
(
D2Ĵ

)
ij
(0).

Proof. Points i) and ii) are rather straightforward (recall that J is radially
symmetric). Now we turn to iii). Let us recall a well-known probability
lemma (see for instance Theorem 3.9 in [13]) that says that if Ĵ has an
expansion of the form,

Ĵ(ξ) = 1 + i〈a, ξ〉 − 1
2
〈ξ,Bξ〉+ o(|ξ|2),

then J has a second momentum and we have

ai =
∫

xiJ(x)dx, Bij =
∫

xixjJ(x)dx < ∞.

Thus if iii) holds for some α > 2, it would turn out that the second moment
of J is null, which would imply that J ≡ 0, a contradiction. Finally, when
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α = 2, then clearly Bij = −(
D2Ĵ

)
ij

(0) hence the result since by symmetry,
the Hessian is diagonal. ¤

Now, we first prove existence and uniqueness of solutions using the Fourier
transform.

Theorem 2.1. Let u0 ∈ L1(RN ) such that û0 ∈ L1(RN ). There exists a
unique solution u ∈ C0([0,∞);L1(RN )) of (1.1), and it is given by

û(ξ, t) = e(Ĵ(ξ)−1)tû0(ξ).

Proof. We have

ut(x, t) = J ∗ u− u(x, t) =
∫

RN

J(x− y)u(y, t) dy − u(x, t).

Applying the Fourier transform to this equation we obtain

ût(ξ, t) = û(ξ, t)(Ĵ(ξ)− 1).

Hence,
û(ξ, t) = e(Ĵ(ξ)−1)tû0(ξ).

Since û0 ∈ L1(RN ) and e(Ĵ(ξ)−1)t is continuous and bounded, the result
follows by taking the inverse of the Fourier transform. ¤
Remark 2.1. One can also understand solutions of (1.1) directly in Fourier
variables. This concept of solution is equivalent to the integral one in the
original variables under our hypotheses on the initial condition.

Now we prove a lemma concerning the fundamental solution of (1.1).

Lemma 2.2. Let J ∈ S(RN ), the space of rapidly decreasing functions.
The fundamental solution of (1.1), that is the solution of (1.1) with initial
condition u0 = δ0, can be decomposed as

(2.1) w(x, t) = e−tδ0(x) + v(x, t),

with v(x, t) smooth. Moreover, if u is a solution of (1.1) it can be written
as

u(x, t) = (w ∗ u0)(x, t) =
∫

RN

w(x− z, t)u0(z) dz.

Proof. By the previous result we have

ŵt(ξ, t) = ŵ(ξ, t)(Ĵ(ξ)− 1).

Hence, as the initial datum verifies û0 = δ̂0 = 1,

ŵ(ξ, t) = e(Ĵ(ξ)−1)t = e−t + e−t(eĴ(ξ)t − 1).

The first part of the lemma follows applying the inverse Fourier transform
in S(RN ).

To finish the proof we just observe that w ∗ u0 is a solution of (1.1) (just
use Fubini’s theorem) with (w ∗ u0)(x, 0) = u0(x). ¤



NONLOCAL DIFFUSION 11

Remark 2.2. The above proof together with the fact that Ĵ(ξ) → 0 (since
J ∈ L1(RN )) shows that if Ĵ ∈ L1(RN ) then the same decomposition (2.1)
holds and the result also applies.

Next, we prove the first part of Theorem I.

Theorem 2.2. Let u be a solution of (1.1) with u0, û0 ∈ L1(RN ). If

Ĵ(ξ) = 1−A|ξ|α + o(|ξ|α), ξ → 0,

the asymptotic behavior of u(x, t) is given by

lim
t→+∞ tN/α max

x
|u(x, t)− v(x, t)| = 0,

where v is the solution of vt(x, t) = −A(−∆)α/2v(x, t) with initial condition
v(x, 0) = u0(x).

Proof. As in the proof of the previous lemma we have

ût(ξ, t) = û(ξ, t)(Ĵ(ξ)− 1).

Hence
û(ξ, t) = e(Ĵ(ξ)−1)tû0(ξ).

On the other hand, let v(x, t) be a solution of

vt(x, t) = −A(−∆)α/2v(x, t),

with the same initial datum v(x, 0) = u0(x). Solutions of this equation are
understood in the sense that

v̂(ξ, t) = e−A|ξ|α tû0(ξ).

Hence in Fourier variables,∫

RN

|û− v̂|(ξ, t) dξ =
∫

RN

∣∣∣
(
et(Ĵ(ξ)−1) − e−A|ξ|αt

)
û0(ξ)

∣∣∣ dξ

6
∫

|ξ|>r(t)

∣∣∣
(
et(Ĵ(ξ)−1) − e−A|ξ|αt

)
û0(ξ)

∣∣∣ dξ

+
∫

|ξ|<r(t)

∣∣∣
(
et(Ĵ(ξ)−1) − e−A|ξ|αt

)
û0(ξ)

∣∣∣ dξ = I + II.

To get a bound for I we proceed as follows, we decompose it in two parts,

I 6
∫

|ξ|>r(t)

∣∣∣e−A|ξ|αtû0(ξ)
∣∣∣ dξ +

∫

|ξ|>r(t)

∣∣∣et(Ĵ(ξ)−1)û0(ξ)
∣∣∣ dξ = I1 + I2.

First, we deal with I1. We have,

tN/α

∫

|ξ|>r(t)
e−A|ξ|αt|û0(ξ)|dξ 6 ‖û0‖L∞(RN )

∫

|η|>r(t)t1/α

e−A|η|α → 0,

as t →∞ if we impose that

(2.2) r(t)t1/α →∞ as t →∞.



12 E. CHASSEIGNE, M. CHAVES AND J.D. ROSSI

Now, remark that from our hypotheses on J we have that Ĵ verifies

Ĵ(ξ) 6 1−A|ξ|α + |ξ|αh(ξ),

where h is bounded and h(ξ) → 0 as ξ → 0. Hence there exists D > 0 such
that

Ĵ(ξ) 6 1−D|ξ|α, for |ξ| 6 a,

and δ > 0 such that

Ĵ(ξ) 6 1− δ, for |ξ| > a.

Therefore, I2 can be bounded by∫

|ξ|>r(t)

∣∣∣et(Ĵ(ξ)−1)û0(ξ)
∣∣∣ dξ 6

∫

a>|ξ|>r(t)

∣∣∣et(Ĵ(ξ)−1)û0(ξ)
∣∣∣ dξ

+
∫

|ξ|>a

∣∣∣et(Ĵ(ξ)−1)û0(ξ)
∣∣∣ dξ 6

∫

a>|ξ|>r(t)

∣∣∣et(Ĵ(ξ)−1)û0(ξ)
∣∣∣ dξ + Ce−δt.

Using this bound and changing variables, η = ξt1/α,

tN/αI2 6 C

∫

at1/α>|η|>t1/αr(t)

∣∣∣e−D|η|α û0(ηt−1/α)
∣∣∣ dη + tN/αCe−δt

6 C

∫

|η|>t1/αr(t)
e−D|η|α dη + tN/αCe−δt,

and then
tN/αI2 → 0, as t →∞,

if (2.2) holds.
Now we estimate II as follows,

tN/α

∫

|ξ|<r(t)
|e(Ĵ(ξ)−1+A|ξ|α)t − 1| e−A|ξ|αt |û0(ξ)| dξ

6 CtN/α

∫

|ξ|<r(t)
t|ξ|αh(ξ)e−A|ξ|αt dξ,

provided we impose

(2.3) t (r(t))αh(r(t)) → 0 as t →∞.

In this case, we have

tN/αII 6 C

∫

|η|<r(t)t1/α

|η|αh(η/t1/α)e−A|η|αdη,

and we use dominated convergence, h(η/t1/α) → 0 as t → ∞ while the
integrand is dominated by ‖h‖∞|η|α exp(−c|η|α), which belongs to L1(RN ).

This shows that

(2.4) tN/α(I + II) → 0 as t →∞,

provided we can find a r(t) → 0 as t → ∞ which fulfills both conditions
(2.2) and (2.3). This is done in Lemma 2.3, which is postponed just after
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the end of the present proof. To conclude, we only have to observe that
from (2.4) we obtain

tN/α max
x
|u(x, t)− v(x, t)| 6 tN/α

∫

RN

|û− v̂|(ξ, t) dξ → 0, t →∞,

which ends the proof of the theorem. ¤

The following Lemma shows that there exists a function r(t) satisfying
(2.2) and (2.3), as required in the proof of the previous theorem.

Lemma 2.3. Given a function h ∈ C(R,R) such that h(ρ) → 0 as ρ → 0
with h(ρ) > 0 for small ρ, there exists a function r with r(t) → 0 as t →∞
which satisfies

lim
t→∞ r(t)t1/α = ∞

and
lim
t→∞ t(r(t))αh(r(t)) = 0.

Proof. For fixed t large enough, we choose r(t) as a small solution of

(2.5) r(h(r))1/(2α) = t−1/α.

This equation defines a function r = r(t) which, by continuity arguments,
goes to zero as t goes to infinity. Indeed, if there exists tn → ∞ with no
solution of (2.5) for r ∈ (0, δ) then h(r) ≡ 0 in (0, δ) a contradiction. ¤

Remark 2.3. In the case when h(t) = ts with s > 0, we can look for a
function h of power-type, r(t) = tβ with β < 0 and the two conditions read
as follows:

(2.6) β + 1/α > 0, 1 + βα + sβ < 0.

This implies that β ∈ (−1/α,−1/(α+s)) which is of course always possible.

As a consequence of Theorem 2.2, we obtain the following corollary which
completes the results gathered in Theorem I in the Introduction.

Corollary 2.1. If Ĵ(ξ) = 1 − A|ξ|α + o(|ξ|α), ξ → 0, 0 < α 6 2, the
asymptotic behavior of solutions of (1.1) is given by

‖u(·, t)‖L∞(RN ) 6 C

tN/α
.

Moreover, the asymptotic profile is given by

lim
t→+∞max

y

∣∣∣tN/αu(yt1/α, t)− ‖u0‖L1GA(y)
∣∣∣ = 0,

where GA(y) satisfies ĜA(ξ) = e−A|ξ|α.

Proof. From Theorem 2.2 we obtain that the asymptotic behavior is the
same as the one for solutions of the evolution given by the fractional lapla-
cian.
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It is easy to check that this asymptotic behavior is exactly the one de-
scribed in the statement of the corollary. Indeed, in Fourier variables we
have for t →∞

v̂(t−1/αη, t) = e−A|η|α û0(ηt−1/α) −→ e−A|η|α û0(0) = e−A|η|α‖u0‖L1(RN ).

Therefore

lim
t→+∞max

y

∣∣∣tN/αv(yt1/α, t)− ‖u0‖L1GA(y)
∣∣∣ = 0,

where GA(y) satisfies ĜA(ξ) = e−A|ξ|α . ¤
To end this section we find the decay rate in Lp of solutions of (1.1).

Corollary 2.2. Let 1 < p < ∞. If Ĵ(ξ) = 1 − A|ξ|α + o(|ξ|α), ξ → 0,
0 < α 6 2, then, the decay of the Lp-norm of the solution of (1.1) is given
by

‖u(·, t)‖Lp(RN ) 6 Ct
−N

α

(
1− 1

p

)
.

Proof. By interpolation, see [4], we have

‖u‖Lp(RN ) 6 ‖u‖
1
p

L1(RN )
‖u‖1− 1

p

L∞(RN )
.

As (1.1) preserves the L1 norm, the result follows from the previous results
that give the decay in L∞ of the solutions. ¤

3. The Dirichlet problem. Proof of Theorem II

In this section we assume that J is continuous and verifies (H). Recall that
a solution of the Dirichlet problem is defined as follows: u ∈ C([0,∞);L1(Ω))
satisfying

ut(x, t) =
∫

RN

J(x− y)u(y, t) dy − u(x, t), x ∈ Ω, t > 0,

u(x, t) = 0, x 6∈ Ω, t > 0,

u(x, 0) = u0(x) x ∈ Ω.

Before studying the asymptotic behavior, we shall first derive existence and
uniqueness of solutions, which is a consequence of Banach’s fixed point the-
orem.

Fix t0 > 0 and consider the Banach space

Xt0 =
{
w ∈ C([0, t0]; L1(Ω))

}

with the norm
|||w||| = max

06t6t0
‖w(·, t)‖L1(Ω).

We will obtain the solution as a fixed point of the operator T : Xt0 → Xt0

defined by

Tw0(w)(x, t) = w0(x) +
∫ t

0

∫

RN

J (x− y) (w(y, s)− w(x, s)) dy ds,
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Tw0(w)(x, t) = 0, x 6∈ Ω.

Lemma 3.1. Let w0, z0 ∈ L1(Ω) and w, z ∈ Xt0, then there exists a constant
C depending on J and Ω such that

|||Tw0(w)− Tz0(z)||| 6 Ct0|||w − z|||+ ||w0 − z0||L1(Ω).

Proof. We have
∫

Ω
|Tw0(w)(x, t)− Tz0(z)(x, t)| dx =

∫

Ω
|w0 − z0|(x) dx

+
∫

Ω

∣∣∣∣
∫ t

0

∫

RN

J (x− y)
[
(w(y, s)− z(y, s))

−(w(x, s)− z(x, s))
]
dy ds

∣∣∣ dx.

Hence, taking into account that w and z vanish outside Ω,

|||Tw0(w)− Tz0(z)||| 6 ||w0 − z0||L1(Ω) + Ct0|||w − z|||,
as we wanted to prove. ¤

Theorem 3.1. For every u0 ∈ L1(Ω) there exists a unique solution u, such
that u ∈ C([0,∞);L1(Ω)).

Proof. We check first that Tu0 maps Xt0 into Xt0 . Taking z0, z ≡ 0 in
Lemma 3.1 we get that T (w) ∈ C([0, t0]; L1(Ω)).

Choose t0 such that Ct0 < 1. Now taking z0 ≡ w0 ≡ u0 in Lemma
3.1 we get that Tu0 is a strict contraction in Xt0 and the existence and
uniqueness part of the theorem follows from Banach’s fixed point theorem
in the interval [0, t0]. To extend the solution to [0,∞) we may take as initial
data u(x, t0) ∈ L1(Ω) and obtain a solution up to [0, 2t0]. Iterating this
procedure we get a solution defined in [0,∞). ¤

Next we look for steady states of (1.3).

Proposition 3.1. u ≡ 0 is the unique stationary solution of (1.3).

Proof. Let u be a stationary solution of (1.3). Then

0 =
∫

RN

J(x− y)(u(y)− u(x)) dy, x ∈ Ω,

and u(x) = 0 for x 6∈ Ω. Hence, using that
∫

J = 1 we obtain that for every
x ∈ RN it holds,

u(x) =
∫

RN

J(x− y)u(y) dy.

This equation, together with u(x) = 0 for x 6∈ Ω, implies that u ≡ 0. ¤

Now, let us analyze the asymptotic behavior of the solutions. As there
exists a unique stationary solution, it is expected that solutions converge to
zero as t →∞. Our main concern will be the rate of convergence.
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First, let us look the eigenvalue given by (1.4), that is we look for the first
eigenvalue of

(3.1) u(x)−
∫

RN

J(x− y)u(y) dy = λ1u(x).

This is equivalent to,

(3.2) (1− λ1)u(x) =
∫

RN

J(x− y)u(y) dy.

Let T : L2(Ω) → L2(Ω) be the operator given by

T (u)(x) :=
∫

RN

J(x− y)u(y) dy.

In this definition we have extended by zero a function in L2(Ω) to the whole
RN . Hence we are looking for the largest eigenvalue of T . Since T is compact
this eigenvalue is attained at some function φ1(x) that turns out to be an
eigenfunction for our original problem (3.1).

By taking |φ1| instead of φ1 in (1.4) we may assume that φ1 > 0 in Ω.
Indeed, one simply has to use the fact that (a− b)2 > (|a| − |b|)2.

Next, we analyze some properties of the eigenvalue problem (3.1).

Proposition 3.2. Let λ1 the first eigenvalue of (3.1) and denote by φ1(x)
a corresponding non-negative eigenfunction. Then φ1(x) is strictly positive
in Ω and λ1 is a positive simple eigenvalue with λ1 < 1.

Proof. In what follows, we denote by φ̄1 the natural continuous extension of
φ1 to Ω̄. We begin with the positivity of the eigenfunction φ1. Assume for
contradiction that the set B = {x ∈ Ω : φ1(x) = 0} is non-void. Then, from
the continuity of φ1 in Ω, we have that B is closed. We next prove that B is
also open, and hence, since Ω is connected, standard topological arguments
allows to conclude that Ω ≡ B yielding to a contradiction. Consider x0 ∈ B.
Since φ1 > 0, we obtain from (3.2) that Ω∩B1(x0) ∈ B. Hence B is open and
the result follows. Analogous arguments apply to prove that φ̄1 is positive
in Ω̄.

Assume now for contradiction that λ1 6 0 and denote by M∗ the maxi-
mum of φ̄1 in Ω̄ and by x∗ a point where such maximum is attained. Assume
for the moment that x∗ ∈ Ω. From Proposition 3.1, one can choose x∗ in
such a way that φ1(x) 6= M∗ in Ω ∩B1(x∗). By using (3.2) we obtain that,

M∗ 6 (1− λ1)φ1(x∗) =
∫

RN

J(x∗ − y)φ1(y) < M∗

and a contradiction follows. If x∗ ∈ ∂Ω, we obtain a similar contradiction
after substituting and passing to the limit in (3.2) on a sequence {xn} ∈ Ω,
xn → x∗ as n →∞. To obtain the upper bound, assume that λ1 > 1. Then,
from (3.2) we obtain for every x ∈ Ω that

0 > (1− λ1)φ1(x∗) =
∫

RN

J(x∗ − y)φ1(y)
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a contradiction with the positivity of φ1.
Finally, to prove that λ1 is a simple eigenvalue, let φ1 6= φ2 be two different

eigenfunctions associated to λ1 and define

C∗ = inf{C > 0 : φ̄2(x) 6 Cφ̄1(x), x ∈ Ω̄}.
The regularity of the eigenfunctions and the previous analysis shows that C∗
is nontrivial and bounded. Moreover from its definition, there must exists
x∗ ∈ Ω̄ such that φ̄2(x∗) = C∗φ̄1(x∗). Define φ(x) = C∗φ1(x) − φ2(x).
From the linearity of (3.1), we have that φ is a non-negative eigenfunction
associated to λ1 with φ̄(x∗) = 0. From he positivity of the eigenfunctions
stated above, it must be φ ≡ 0. Therefore, φ2(x) = C∗φ1(x) and the result
follows. This completes the proof. ¤

Remark 3.1. Note that the first eigenfunction φ1 is strictly positive in Ω
(with positive continuous extension to Ω̄) and vanishes outside Ω. Therefore
a discontinuity occurs on ∂Ω and the boundary value is not taken in the usual
”classical” sense.

Proof of Theorem II. Using the symmetry of J , we have

∂

∂t

(
1
2

∫

Ω
u2(x, t) dx

)
=

∫

RN

∫

RN

J(x− y)[u(y, t)− u(x, t)]u(x, t) dy dx

= −1
2

∫

RN

∫

RN

J(x− y)[u(y, t)− u(x, t)]2 dy dx.

From the definition of λ1, (1.4), we get

∂

∂t

∫

Ω
u2(x, t) dx 6 −2λ1

∫

Ω
u2(x, t) dx.

Therefore ∫

Ω
u2(x, t) dx 6 e−2λ1t

∫

Ω
u2

0(x) dx

and we have obtained (1.5).
We now establish the decay rate and the convergence stated in (1.6) and

(1.7) respectively. Consider a nontrivial and non-negative continuous initial
data u0(x) and let u(x, t) be the corresponding solution to (1.1). We first
note that u(x, t) is a continuous function satisfying u(x, t) > 0 for every x ∈
Ω and t > 0, and the same holds for ū(x, t), the unique natural continuous
extension of u(x, t) to Ω. This instantaneous positivity can be obtained by
using analogous topological arguments to those in Proposition 3.2.

In order to deal with the asymptotic analysis, is more convenient to in-
troduce the rescaled function v(x, t) = eλ1tu(x, t). By substituting in (1.1),
we find that the function v(x, t) satisfies

(3.3) vt(x, t) =
∫

RN

J(x− y)v(y, t) dy − (1− λ1)v(x, t).
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On the other hand, we have that Cφ1(x) is a solution of (3.3) for every
C ∈ R and moreover, it follows from the eigenfunction analysis above, that
the set of stationary solutions of (3.3) is given by S∗ = {Cφ1, C ∈ R}.

Define now for every t > 0, the function

C∗(t) = inf{C > 0 : v(x, t) 6 Cφ1(x), x ∈ Ω}.
By definition and by using the linearity of equation (3.3), we have that C∗(t)
is a non-increasing function. In fact, this is a consequence of the comparison
principle applied to the solutions C∗(t1)φ1(x) and v(x, t) for t larger than
any fixed t1 > 0. It implies that C∗(t1)φ1(x) > v(x, t) for every t > t1, and
therefore, C∗(t1) > C∗(t) for every t > t1. In an analogous way, one can see
that the function

C∗(t) = sup{C > 0 : v(x, t) > Cφ1(x), x ∈ Ω},
is non-decreasing. These properties imply that both limits exist,

lim
t→∞C∗(t) = K∗ and lim

t→∞C∗(t) = K∗,

and also provides the compactness of the orbits necessary in order passing to
the limit (after subsequences if needed) to obtain that v(·, t + tn) → w(·, t)
as tn → ∞ uniformly on compact subsets in Ω × R+ and that w(x, t) is a
continuous function which satisfies (3.3). We also have for every g ∈ ω(u0)
there holds,

K∗φ1(x) 6 g(x) 6 K∗φ1(x).
Moreover, C∗(t) plays a role of a Lyapunov function and this fact allows

to conclude that ω(u0) ⊂ S∗ and the uniqueness of the convergence profile.
In more detail, assume that g ∈ ω(u0) does not belong to S∗ and consider
w(x, t) the solution of (3.3) with initial data g(x) and define

C∗(w)(t) = inf{C > 0 : w(x, t) 6 Cφ1(x), x ∈ Ω}.
It is clear that W (x, t) = K∗φ1(x) − w(x, t) is a non-negative continuous
solution of (3.3) and it becomes strictly positive for every t > 0. This implies
that there exists t∗ > 0 such that C∗(w)(t∗) < K∗ and by the convergence,
the same holds before passing to the limit. Hence, C∗(t∗ + tj) < K∗ if j
is large enough and a contradiction with the properties of C∗(t) follows.
The same arguments allow to establish the uniqueness of the convergence
profile. ¤

4. The Neumann problem. Proof of Theorem III

As we did for the Dirichlet problem, we assume that J is continuous.
Solutions of the Neumann problem are functions u ∈ C([0,∞);L1(Ω)) which
satisfy

ut(x, t) =
∫

Ω
J(x− y)(u(y, t)− u(x, t)) dy, x ∈ Ω, t > 0,

u(x, 0) = u0(x) x ∈ Ω.
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As in the previous section, see also [11], existence and uniqueness will be a
consequence of Banach’s fixed point theorem. The main arguments are basi-
cally the same but we repeat them here to make this section self-contained.

Fix t0 > 0 and consider the Banach space

Xt0 = C([0, t0]; L1(Ω))

with the norm
|||w||| = max

06t6t0
‖w(·, t)‖L1(Ω).

We will obtain the solution as a fixed point of the operator T : Xt0 → Xt0

defined by

(4.1) Tw0(w)(x, t) = w0(x) +
∫ t

0

∫

Ω
J (x− y) (w(y, s)− w(x, s)) dy ds.

The following lemma is the main ingredient in the proof of existence.

Lemma 4.1. Let w0, z0 ∈ L1(Ω) and w, z ∈ Xt0, then there exists a constant
C depending only on Ω and J such that

|||Tw0(w)− Tz0(z)||| 6 Ct0|||w − z|||+ ‖w0 − z0‖L1(Ω).

Proof. We have∫

Ω
|Tw0(w)(x, t)− Tz0(z)(x, t)| dx 6

∫

Ω
|w0 − z0|(x) dx

+
∫

Ω

∣∣∣∣
∫ t

0

∫

Ω
J (x− y)

[
(w(y, s)− z(y, s))− (w(x, s)− z(x, s))

]
dy ds

∣∣∣∣ dx.

Hence∫

Ω
|Tw0(w)(x, t)− Tz0(z)(x, t)| dx 6 ‖w0 − z0‖L1(Ω)

+
∫ t

0

∫

Ω
|(w(y, s)− z(y, s))| dy +

∫ t

0

∫

Ω
|(w(x, s)− z(x, s))| dx.

Therefore, we obtain,

|||Tw0(w)− Tz0(z)||| 6 Ct0|||w − z|||+ ‖w0 − z0‖L1(Ω),

as we wanted to prove. ¤

Theorem 4.1. For every u0 ∈ L1(Ω) there exists a unique solution u of
(1.8) such that u ∈ C([0,∞);L1(Ω)). Moreover, the total mass in Ω verifies,

(4.2)
∫

Ω
u(y, t) dy =

∫

Ω
u0(y) dy.

Proof. We check first that Tu0 maps Xt0 into Xt0 . From (4.1) we see that
for 0 < t1 < t2 6 t0,

‖Tu0(w)(t2)− Tu0(w)(t1)‖L1(Ω) 6 2
∫ t2

t1

∫

Ω
|w(y, s)| dx dy ds.
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On the other hand, again from (4.1)

‖Tu0(w)(t)− w0‖L1(Ω) 6 Ct|||w|||.
These two estimates give that Tu0(w) ∈ C([0, t0]; L1(Ω)). Hence Tu0 maps
Xt0 into Xt0 .

Choose t0 such that Ct0 < 1. Now taking z0 ≡ w0 ≡ u0, in Lemma
4.1 we get that Tu0 is a strict contraction in Xt0 and the existence and
uniqueness part of the theorem follows from Banach’s fixed point theorem
in the interval [0, t0]. To extend the solution to [0,∞) we may take as initial
data u(x, t0) ∈ L1(Ω) and obtain a solution up to [0, 2t0]. Iterating this
procedure we get a solution defined in [0,∞).

We finally prove that if u is the solution, then the integral in Ω of u
satisfies (4.2). Since

u(x, t)− u0(x) =
∫ t

0

∫

Ω
J (x− y) (u(y, s)− u(x, s)) dy ds.

We can integrate in x and apply Fubini’s theorem to obtain
∫

Ω
u(x, t) dx−

∫

Ω
u0(x) dx = 0

and the theorem is proved. ¤

Now we study the asymptotic behavior as t →∞. We start by analyzing
the corresponding stationary problem so we consider the equation

(4.3) 0 =
∫

Ω
J(x− y)(ϕ(y)− ϕ(x)) dy.

The only solutions are constants. In fact, in particular, (4.3) implies that ϕ
is a continuous function. Set

K = max
x∈Ω

ϕ(x)

and consider the set
A = {x ∈ Ω | ϕ(x) = K}.

The set A is clearly closed and non empty. We claim that it is also open in
Ω. Let x0 ∈ A. We have then

ϕ(x0) =
( ∫

Ω
J(x0 − y) dy

)−1
∫

Ω
J(x0 − y)ϕ(y) dy,

and ϕ(y) 6 ϕ(x0) this implies ϕ(y) = ϕ(x0) for all y ∈ Ω ∩ B(x0, d), and
hence A is open as claimed. Consequently, as Ω is connected, A = Ω and ϕ
is constant.

We have proved the following proposition:

Proposition 4.1. Every stationary solution of (1.8) is constant in Ω.
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We end this section with a proof of the exponential rate of convergence
to steady states of solutions in L2.

Let us take β1 as

(4.4) β1 = inf
u∈L2(Ω),

R
Ω u=0

1
2

∫

Ω

∫

Ω
J(x− y)(u(y)− u(x))2 dy dx

∫

Ω
(u(x))2 dx

.

It is clear that β1 > 0. Let us prove that β1 is in fact strictly positive. To
this end we consider the subspace of L2(Ω) given by the orthogonal to the
constants, H = 〈cts〉⊥ and the symmetric (self-adjoint) operator T : H 7→ H
given by

T (u) =
∫

Ω
J(x− y)(u(x)− u(y)) dy = −

∫

Ω
J(x− y)u(y) dy + A(x)u(x).

Note that T is the sum of an inversible operator and a compact operator.
Since T is symmetric we have that its spectrum verifies σ(T ) ⊂ [m,M ],
where

m = inf
u∈H, ‖u‖L2(Ω)=1

〈Tu, u〉

and
M = sup

u∈H, ‖u‖L2(Ω)=1
〈Tu, u〉,

see [4]. Remark that

m = inf
u∈H, ‖u‖L2(Ω)=1

〈Tu, u〉

= inf
u∈H, ‖u‖L2(Ω)=1

∫

Ω

∫

Ω
J(x− y)(u(x)− u(y)) dy u(x) dx

= β1.

Then m > 0. Now we just observe that

m > 0.

In fact, if not, as m ∈ σ(T ) (see [4]), we have that T : H 7→ H is not
inversible. Using Fredholm’s alternative this implies that there exists a
nontrivial u ∈ H such that T (u) = 0, but then u must be constant in Ω.
This is a contradiction with the fact that H is orthogonal to the constants.

To study the asymptotic behavior of the solutions we need an upper
estimate on β1.

Lemma 4.2. Let β1 be given by (4.4) then

(4.5) β1 6 min
x∈Ω

∫

Ω
J(x− y) dy.
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Proof. Let

A(x) =
∫

Ω
J(x− y) dy.

Since Ω is compact and A is continuous there exists a point x0 ∈ Ω such
that

A(x0) = min
x∈Ω

A(x).

For every ε small let us choose two disjoint balls of radius ε contained in Ω,
B(x1, ε) and B(x2, ε) in such a way that xi → x0 as ε → 0. We use

uε(x) = χB(x1,ε)(x)− χB(x2,ε)(x)

as a test function in the definition of β1, (4.4). Then we get that for every
ε small it holds

β1 6

1
2

∫

Ω

∫

Ω
J(x− y)(uε(y)− uε(x))2 dy dx

∫

Ω
(uε(x))2 dx

=

∫

Ω
A(x)u2

ε(x) dx−
∫

Ω

∫

Ω
J(x− y)uε(y) uε(x) dy dx

∫

Ω
(uε(x))2 dx

=

∫

Ω
A(x)u2

ε(x) dx−
∫

Ω

∫

Ω
J(x− y)uε(y) uε(x) dy dx

2|B(0, ε)| .

Using the continuity of A and the explicit form of uε we obtain

lim
ε→0

∫

Ω
A(x)u2

ε(x) dx

2|B(0, ε)| = A(x0)

and

lim
ε→0

∫

Ω

∫

Ω
J(x− y)uε(y) uε(x) dy dx

2|B(0, ε)| = 0.

Therefore, (4.5) follows. ¤
Now let us prove the exponential convergence of u(x, t) to the mean value

of the initial datum.

Theorem 4.2. For every u0 ∈ L2(Ω) the solution u(x, t) of (1.8) satisfies

(4.6) ‖u(·, t)− ϕ‖L2(Ω) 6 e−β1t‖u0 − ϕ‖L2(Ω).

Moreover, if u0 is continuous and bounded, there exists a positive constant
C > 0 such that,

(4.7) ‖u(·, t)− ϕ‖L∞(Ω) 6 Ce−β1t.

Here β1 is given by (4.4).
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Proof. Let

H(t) =
1
2

∫

Ω
(u(x, t)− ϕ)2 dx.

Differentiating with respect to t and using (4.4) and the conservation of the
total mass, we obtain

H ′(t) = −1
2

∫

Ω

∫

Ω
J(x−y)(u(y, t)−u(x, t))2 dy dx 6 −β1

∫

Ω
(u(x, t)−ϕ)2 dx.

Hence
H ′(t) 6 −2β1H(t).

Therefore, integrating we obtain,

(4.8) H(t) 6 e−2β1tH(0),

and (4.6) follows.
In order to prove (4.7) let w(x, t) denote the difference

w(x, t) = u(x, t)− ϕ.

We seek for an exponential estimate in L∞ of the decay of w(x, t). The
linearity of the equation implies that w(x, t) is a solution of (1.8) and satisfies

w(x, t) = e−A(x)tw0(x) + e−A(x)t

∫ t

0
eA(x)s

∫

Ω
J(x− y)w(y, s) dy ds.

Recall that A(x) =
∫
Ω J(x− y)dx. By using (4.6) and the Holder inequality

it follows that

|w(x, t)| 6 e−A(x)tw0(x) + Ce−A(x)t

∫ t

0
eA(x)s−β1s ds.

Integrating this inequality, we obtain that the solution w(x, t) decays to zero
exponentially fast and moreover, it implies (4.7) thanks to Lemma 4.2. ¤

5. Final remarks on possible extensions

In this last section we briefly comment on some possible extensions of our
results.

• First, concerning the Cauchy problem, one can study the behavior of
the solutions when the asymptotic expansion of Ĵ near the origin is not of
the form Ĵ(ξ) = 1−A|ξ|α + o(|ξ|α).

Let us just illustrate this topic by the following result concerning loga-
rithmic perturbations (we thank Marc Peigné for showing this example
to us). In dimension 1, we consider a function J such that Ĵ(x) ∼ |x|−3

as |x| → +∞. Then we are just in the borderline case when the second
moment of J is infinite. In fact, what happens for the Fourier transform is
that

Ĵ(ξ) ∼ 1 + c ξ2 ln ξ as ξ → 0.
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In this interesting case, the asymptotic behavior is a little bit different,
it is still given by a solution of the heat equation, but with a different time
velocity, as the following result says.

Theorem 5.1. Let us assume that Ĵ has the following behavior near zero:

Ĵ(ξ) = 1 + c |ξ|2 ln(|ξ|) + o(|ξ|2 ln(|ξ|)),
and let u0 ∈ L1(RN ) such that û0 ∈ L1(RN ). Now, if u is the solution of
the Cauchy problem with initial data u0 and v is the solution of the heat
equation vt = (c/2)∆v, with the same initial data v(0) = u0, then

(t ln t)N/2 max
x
|u(x, t)− v(x, t ln t)| → 0 as t → +∞.

The proof is basically the same as for Theorem I. Let us give a sketch. In
Fourier variables we have to estimate the integral

(t ln t)N/2

∫
|û(ξ, t)− v̂(ξ, t ln t)| dξ.

Writing û and v̂ as exponentials we obtain that we have to deal with

(t ln t)N/2

∫ ∣∣∣e(Ĵ(ξ)−1)t − ec ξ2(t ln t)/2
∣∣∣ dξ.

Thus, for low frequencies |ξ| < r(t), we first change variables

(t ln t)N/2

∫

|ξ|<r(t)

∣∣∣e(Ĵ(ξ)−1)t − ecξ2(t ln t)/2
∣∣∣ dξ

=
∫

|η|<r(t)(t ln t)1/2

∣∣∣∣∣e
�

Ĵ

�
η

(t ln t)1/2

�
−1

�
t − ec η2/2

∣∣∣∣∣ dη.

We use the fact that in these variables,
(

Ĵ(
η√
t ln t

)− 1
)

t = c
η2

ln t
ln

(
η√
t ln t

)
+ l.o.t

= c
η2

ln t

(
ln η − 1

2
ln t− 1

2
ln(ln t)

)
+ l.o.t =

c η2

2
+ l.o.t.

Here with l.o.t we denote lower order terms as t → +∞. Choosing a suitable
r(t) → 0, we recover the fact that for such low frequencies, the solution
u(x, t) is close to the solution of the heat equation, yet viewed at a later
time v(x, t ln t).

Now as we did in the proof of Theorem I, high frequencies {|ξ| > r(t)}
goes to zero fast as time goes by, both for u and v. Hence we obtain indeed
the fact that

(t ln t)N/2

∫

RN

|û(ξ, t)− v̂(ξ, t ln t)| dξ → 0 as t → +∞.

Then the conclusion follows as in Theorem I, taking the inverse Fourier
transform. Details are left to the reader.
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• An interesting problem to look at is to study diffusions given by kernels
that depend on x and y and not only on x − y. That is, equations of the
form ut(x, t) =

∫
RN J(x, y)(u(y, t)−u(x, t)) dy. In this case our results do not

apply since the use of the Fourier transform was the key of our arguments.

• Also, let us remark that our proofs strongly rely on hypothesis (H). It
is interesting to known up to what extend (H) is necessary. To answer this
one can consider a kernel J that is non-symmetric or verifies

∫
RN J(r) dr 6= 1

(this fails out of the original model).

• Another interesting problem is to look at the Dirichlet or Neumann
problems in unbounded domains, for example in a half-space. In this case
it is not clear what the asymptotic behavior should be.

• Finally, one may try to analyze discrete in space versions of these prob-
lems (like the ones considered in [2]) and see if they behave as their con-
tinuous counterpart. We believe that this is an interesting issue in order to
develop numerical approximations for these problems.
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