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Abstract

In this paper we find the asymptotic distribution of eigenvalues for the
radial p-Laplacian in RN , −∆pu = −div(|∇u|p−2∇u) = (λ−q(|x|)|u|p−2u
when the potential q is increasing.

1 Introduction

In this work we answer a question posed in [1], concerning the asymptotic dis-
tribution of eigenvalues for the radial p-Laplacian in RN for 1 < p < +∞,

−div(|∇v|p−2∇v) = (λ− q(|x|)|v|p−2v (1.1)

with a radially symmetric potential q(|x|). The value λ ∈ R is called a radial
eigenvalue if a radially symmetric solution v 6= 0, v ∈ Lp(RN ) of (1.1) exists.
Let us observe that problem (1.1) is a one-dimensional eigenvalue problem,

−(rN−1|u′|p−2u′)′ = rN−1(λ− q(r))|u|p−2u,
u′(0) = 0, u ∈ Lp(0,∞; rN−1), (1.2)

The existence of a sequence of isolated eigenvalues λ1 < λ2 < . . . → ∞
was proved recently by Brown and Reichel, [1], for potentials q(r) ∈ C1(0,∞)
satisfying the following condition:

(a) There exist α > 0 and β > max{(p−n)/(p−1), 0} such that q(r) ≥ αrβ

for large r, and q′(r)/q(r)1+1/p → 0 as r →∞.
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Throughout the paper we will write f ∼ g to mean that limn→∞ f/g = 1.
We will need the following condition on the potential q(r):

(b) There exist r0 > 0 such that q(r) is increasing for r ≥ r0, and q(0) = 0.

Condition q(0) = 0 gives λ1 > 0. This is no restriction, since the general
case q(0) = c 6= 0 can be obtained from the case q(0) = 0, by defining λ̂ = λ− c
and q̂(x) = q(x)− c, which gives

λ̂− q̂(x) = (λ− c)− (q(x)− c) = λ− q(x).

Our main result is the following theorem:

Theorem 1.1 Let {λn}n be the sequence of eigenvalues of problem (1.2), and
rλn

∈ R such that q(rλn
) = λn, where q(r) satisfies conditions (a) and (b).

Then,

(n− 1) ∼ 1
πp(p− 1)1/p

∫ rλn

0

(λn − q(r))1/pdr.

From Theorem 1.1 we obtain the asymptotic distribution of eigenvalues:

Corollary 1.2 Let {(λn, un)}n be the eigenvalues and eigenfunctions of prob-
lem (1.2), and q(r) as in Theorem 1.1. Let N(λ) be the eigenvalue counting
function,

N(λ) = #{n ∈ N : λn ≤ λ}.
Then,

N(λ) ∼ 1
πp(p− 1)1/p

∫ rλ

0

(λ− q(r))1/pdr

as λ → +∞.

Theorem 1.1 and Corollary 1.2 generalizes the classical result of Milne [5] for
p = 2, his result was proved assuming q ∈ C3, convex, and q′′(x) = o(q′(x)4/3).
A simplified proof is due to Titchmarsh [6], retaining all of Milne’s assumptions
except q ∈ C3. Later, Hartman [4] obtained the same result under weaker
assumptions, and deduce it from the asymptotic formula for the number of
zeros of solutions of u′′+Q(t)u = 0, where no parameter λ occurs. We combine
here his idea with the Prufer transformation techniques used in [3] instead of
the ones in [1]. Let us mention that the results in [3, 4, 6] deals with a regular
case, without singular coefficients like rN−1.

The paper is organized as follows: in Section 2 we introduce the Prufer trans-
formation and we reformulate Theorem 1.1 in terms of the zeros of solutions.
In Section 3 we prove Theorem 1.1 and we obtain the asymptotic distribution
of eigenvalues.
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2 The Prufer Transformation

Let us introduce the generalized sine function Sp(x), the unique solution of

−(|u′(r)|p−2u′(r))′ = (p− 1)|u(r)|p−2u(r)
u(0) = 0 u′(0) = 1 (2.3)

(see [2]). This function has a zero if and only if r = kπp, where

πp = 2(p− 1)1/p

∫ 1

0

ds

(1− sp)1/p
.

Let us call Cp(r) = S′p(r). Both functions are well defined, and the following
identity could be easily derived from equation (2.3):

|Cp(r)|p + |Sp(r)|p = 1, (2.4)

Also, if Cp(x) 6= 0,

|Cp(r)|p−2C ′p(r) + |Sp(r)|p−2Sp(r) = 0. (2.5)

We define the following Prufer transform:

u(r) = f(r)ρ(r)Sp(ϕ(r)),
u′(x) = g(r)ρ(r)Cp(ϕ(r)). (2.6)

where

f(r) =
(

rN−1(λ− q(r))
p− 1

)−1/p

and g(r) = (rN−1)−1/p (2.7)

Remark 2.1 Let us observe that our Prufer transformation is different to the
one in [1]. Moreover, it is valid only for 0 ≤ r ≤ rλ.

Differentiating the first equation in (2.6), and multiplying by gf−1|Cp|p−2Cp,
we obtain from the second equation,

gf−1f ′ρ|Cp|p−2CpSp + gρ′|Cp|p−2CpSp + gρ|Cp|pϕ′ = g2f−1ρ|Cp|p (2.8)

On the other hand, replacing u and u′ in equation (1.2) we obtain

−(rN−1gp−1ρp−1|Cp|p−2Cp)′ = rN−1(λ− q(r))fp−1ρp−1|Sp|p−2Sp.

Hence, from (2.7) we have

−(g−1ρp−1|Cp|p−2Cp)′ = (p− 1)f−1ρp−1|Sp|p−2Sp
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Now, we differentiate the first term and replace C ′p from equation (2.5).
After multiplying by g2ρ2−pSp/(p− 1), we have

g′ρ|Cp|p−2CpSp/(p− 1)− gρ′|Cp|p−2CpSp + gρ|Sp|pϕ′ = g2f−1ρ|Sp|p

Adding the last equation to equation (2.8), and multiplying by (ρg)−1, we
obtain

(g′g−1/(p− 1) + f ′f−1)|Cp|p−2CpSp + (|Cp|p + |Sp|p)ϕ′ = gf−1(|Cp|p + |Sp|p)
By using the identity (2.4) and rearranging the terms, we obtain

ϕ′ = −(g′g−1/(p− 1) + f ′f−1)|Cp|p−2CpSp + gf−1.

Finally, replacing f and g from equations (2.7) we have

ϕ′ = −
(

1−N

p− 1
r−1 +

q′

p(λ− q)

)
|Cp|p−2CpSp +

(
λ− q

p− 1

)1/p

. (2.9)

Remark 2.2 In much the same way, it is possible to obtain a first order differ-
ential equation for ρ, which could be used to compute the corresponding eigen-
functions. However, we will need only the phase function ϕ, and let us observe
that equation (2.9) is independent of ρ.

Radially symmetric solutions of equation (1.2) satisfy u′(0) = 0, which gives
an initial condition at r = 0,

ϕ(0) = πp/2.

Let un be the nth-eigenfunction, with zeros r1 < r2 < . . . < rn−1, (where
0 < r1). Then,

un(r) = f(r)ρn(r)Sp(ϕn(r)),

where
ϕn(rj) = jπp, 1 ≤ j ≤ n− 1.

We may restate Theorem 1.1 in terms of the number of zeros of eigenfunc-
tions. We introduce the function

N(un, (a, b)) = #{j ∈ N : rj ∈ [a, b)},
which counts the number of zeros rj of un in [a, b). Since N(un, (0,∞)) = n−1,
we have:

Theorem 2.3 Let {(λn, un)}n be the eigenvalues and eigenfunctions of problem
(1.2), and rλn ∈ R such that q(rλn) = λn, where q(r) satisfies conditions (a)
and (b). Then,

N(un, (0,∞)) ∼ 1
πp(p− 1)1/p

∫ rλn

0

(λn − q(r))1/pdr.

Thus, in order to prove Theorem 1.1, in the following section we will obtain
the asymptotic expansion of N(un, (0,∞)).
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3 Proof of Theorems 1.1 and 2.3

Let us state and proof several useful Lemmas.

Lemma 3.1 Let {(λn, un)}n and q(r) as in Theorem 2.3. Then,

N(un, (0,∞)) ∼ N(un, (0, rλn)).

Proof: Suppose that un has two consecutive zeros z1, z2 ∈ (rλn ,∞). Then, un

is a solution in (z1, z2) of

−(rN−1|u′n|p−2u′n)′ = rN−1(λn − q(r))|un|p−2un.

Multiplying by un the previous equation and integrating by parts the left hand
side, we obtain

∫ z2

z1

rN−1|u′n|pdr =
∫ z2

z1

rN−1(λn − q(r))|un|pdr,

which is impossible because λn − q(r) < 0 in (rλn ,∞), and the right hand side
is negative, unless un ≡ 0.

Since un has n−1 zeros, at least n−2 belongs to the interval (0, rλn), which
gives

lim sup
n→∞

N(un, (0,∞))
N(un, (0, rλn))

≤ lim
n→∞

n− 1
n− 2

= 1

On the other hand, N(un, (0,∞)) ≥ N(un, (0, rλn)). Hence,

1 ≤ lim inf
n→∞

N(un, (0,∞))
N(un, (0, rλn))

,

and the Lemma is proved. 2

Remark 3.2 Let us observe that

N(un, (0, rλn)) = N(un, (0, a)) + N(un, [a, rλn)),

for every a ∈ (0, rλn). For the rest of the paper, we choose a such that

q(a) = λn − r1−p−N
λn

. (3.10)

Lemma 3.3 Let {(λn, un)}n and q(r) as in Theorem 2.3. Then,

N(un, (a, rλn)) ∼ O(1).
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Proof: Let r0 be fixed such that q(r) is increasing for r ≥ r0. We can assume
that λn is big enough to have a > max{1, r0}. Now, we apply the Sturmian
oscillation theory. We have λn−q(r) ≤ λn−q(a) = r1−p−N

λn
, since q is increasing

for r ≥ r0. By using the inequalities 1 ≤ rN−1 ≤ rN−1
λn

, we have the following
equations:

−(rN−1|u′n|p−2u′n)′ = rN−1(λn − q(r))|un|p−2un,

and
−(|v′|p−2v′)′ = rN−1

λn
(r1−p−N

λn
)|v|p−2v.

Now, between two consecutive zeros of un, we have at least a zero of v.
Hence, an upper bound for the number of zeros of u is given by N(v, [a, rλn

))+1,
where N(v, [a, rλn)) is the number of zeros of v . Let us observe that the number
of zeros of two different solutions of the same equation can differ only by one.
Hence, from equation (2.3), a solution can be computed explicitly and we have

v(r) = Sp

(
r

rλn(p− 1)1/p

)

A direct computation shows that the number of zeros of v is bounded by

rλn − a

πprλn(p− 1)1/p
+ 1 = O(1),

independent of n. 2

Lemma 3.4 Let {(λn, un)}n and q(r) as in Theorem 2.3. Then,

N(un, (0, a)) ∼ 1
πp(p− 1)1/p

∫ a

0

(λn − q(r))1/pdr.

Proof: We apply the Prufer transformation, and the phase function ϕn corre-
sponding to un satisfies

ϕn(0) = πp/2, ϕn(a) = θa

By integrating equation (2.9), we get

θa − πp

2 = ϕn(a)− ϕn(0)

=
∫ a

0

(
1−N

(p−1)r + q′

p(λn−q)

)
|Cp|p−2CpSp +

(
λn−q
p−1

)1/p

dr

=
∫ a

0

(
λn−q
p−1

)1/p

dr + R1 + R2,

(3.11)

where
R1 = −1−N

p− 1

∫ a

0

r−1|Cp|p−2CpSpdr (3.12)
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R2 = −1
p

∫ a

0

q′

λn − q
|Cp|p−2CpSpdr. (3.13)

Our next task is to obtain upper bounds for |R1| and |R2|.
Let us observe that the term R1 is not present when N = 1. We may assume

here that N ≥ 2. From equation (2.4) we have |Cp(r)| ≤ 1 and |Sp(r)| ≤ 1.
Then, ∣∣∣∣

p− 1
1−N

R1

∣∣∣∣ ≤
∫ 1

0

|r−1Sp|dr +
∫ a

1

r−1dr.

Since Sp(0) = 0, S′p(0) = 1, by applying the L’Hopital rule, the first integral
is bounded by a constant independent of n. The second integral is bounded by
log(a). Now, condition (a) gives

λn > λn − r1−p−N
λn

= q(a) ≥ αaβ .

Thus,
log(λn) > β log(a) + log(α),

which gives

|R1| = O(log(λn)). (3.14)

Let us consider now R2. We have

|pR2| ≤ ∫ a

0
q′

λn−q dr

= − log(λn − q(a)) + log(λn − q(0))
≤ log(λn)− log(r1−p−N

λn
)

≤ log(λn) + (N + p− 1) log(rλn)

By using again condition (a), we get

λn = q(rλn) ≥ αrβ
λn

.

Hence,
log(λn) ≥ β log(rλn) + log(α)

which gives

|R2| = O(log(λn)). (3.15)

Finally, since

N(un, (0, a)) =
[
θa − πp/2

πp

]
=

θa − πp/2
πp

+ O(1),

from equations (3.14) and (3.15) we have:

N(un, (0, a)) =
1

πp(p− 1)1/p

∫ a

0

(λn − q(r))1/pdr + O(log(λn))

and the proof is finished. 2
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Lemma 3.5 Let {(λn, un)}n and q(r) as in Theorem 2.3. Then,

1
πp

∫ rλn

a

(
λn − q(r)

p− 1

)1/p

dr = O(1)

Proof: Let us observe that
∫ rλn

a
(λn − q(r))1/pdr ≤ (rλn − a)(λn − q(a))1/p

≤ rλn
(λn − λn + r1−p−N

λn
)1/p

= r
(1−N)/p
λn

,

which goes to zero when N > 1, since rλn → ∞ as n → ∞. For N = 1, we
obtain ∫ rλn

a

(λn − q(r))1/pdr ≤ 1,

and the lemma is proved. 2

We can prove now Theorem 2.3:

Proof of Theorem 2.3: From Lemma 3.1 and Remark 3.2 we have

N(un, (0,∞)) ∼ N(un, (0, a)) + N(un, (a, rλn)).

Now, Lemma 3.3 gives

N(un, (0, a)) =
1

πp(p− 1)1/p

∫ a

0

(λn − q(r))1/pdr + O(log(λn)),

and Lemmas 3.4 and 3.5 gives

N(un, (a, rλn)) =
1

πp(p− 1)1/p

∫ rλn

a

(λn − q(r))1/pdr + O(1).

Hence,

N(un, (0,∞)) =
1

πp(p− 1)1/p

∫ rλn

0

(λn − q(r))1/pdr + O(log(λn))

and Theorem 2.3 is proved. 2

Remark 3.6 Since N(un, (0,∞)) = n − 1, the proof of Theorem 1.1 follows
immediately:

n− 1 = N(un, (0,∞)) ∼ 1
πp(p− 1)1/p

∫ rλn

0

(λn − q(r))1/pdr.
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We close the paper with the proof of Corollary 1.2, which gives the asymp-
totic distribution of eigenvalues:

Proof of Corollary 1.2: Given λ, there exists n such that

λn ≤ λ < λn+1.

Now, by using that ν < µ implies
∫ rν

0

(ν − q(r))1/pdr <

∫ rµ

0

(µ− q(r))1/pdr,

the result follows from Theorem 1.1 since

1
πp(p− 1)1/p

∫ rλn

0

(λn − q(r))1/pdr ∼ n− 1

1
πp(p− 1)1/p

∫ rλn+1

0

(λn+1 − q(r))1/pdr ∼ n. 2
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