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Abstract
In this paper we find the asymptotic distribution of eigenvalues for the
radial p-Laplacian in RY, —A,u = —div(|Vu|P"2Vu) = (A—q(|z])|u|P">u
when the potential ¢ is increasing.

1 Introduction

In this work we answer a question posed in [1], concerning the asymptotic dis-
tribution of eigenvalues for the radial p-Laplacian in R for 1 < p < +o0,

—div(|VuP~>Vv) = (A - qJe]) o~ (L1)

with a radially symmetric potential ¢(|z|). The value A € R is called a radial
eigenvalue if a radially symmetric solution v # 0, v € LP(RY) of (1.1) exists.
Let us observe that problem (1.1) is a one-dimensional eigenvalue problem,

_(TN_l\u’\P—Qu')/ = rN_l(/\ —q(r))| |p_2u’ (1.2)
W(0) =0, ue LP(0,00rN 1), |

The existence of a sequence of isolated eigenvalues \; < Ay < ... — o0
was proved recently by Brown and Reichel, [1], for potentials g(r) € C*(0, o)
satisfying the following condition:

(a) There exist a > 0 and 8 > maz{(p—n)/(p—1),0} such that ¢(r) > ar?
for large 7, and ¢'(r)/q(r)**1/? — 0 as r — oo.
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Throughout the paper we will write f ~ g to mean that lim,, ., f/g = 1.
We will need the following condition on the potential ¢(r):

(b) There exist rg > 0 such that ¢(r) is increasing for r > rg, and ¢(0) = 0.

Condition ¢(0) = 0 gives A; > 0. This is no restriction, since the general
case ¢(0) = ¢ # 0 can be obtained from the case ¢(0) = 0, by defining A = A —¢
and §(x) = q(z) — ¢, which gives

A=q(z) =(A—c) = (q(x) —c) = A — q(z).
Our main result is the following theorem:

Theorem 1.1 Let {\,}, be the sequence of eigenvalues of problem (1.2), and
rx, € R such that q(ry,) = An, where q(r) satisfies conditions (a) and (b).
Then,

1 "An U
(n—1)~ 77 /0 (An — q(r))/Pdr.

mp(p—1
From Theorem 1.1 we obtain the asymptotic distribution of eigenvalues:

Corollary 1.2 Let {(An, un)}n be the eigenvalues and eigenfunctions of prob-
lem (1.2), and q(r) as in Theorem 1.1. Let N(\) be the eigenvalue counting
function,

N =#{neN: X\, <A}
Then,

N(A) ~ 1 E /Om(/\—q(r))l/Pdr

mp(p—1

as A — +00.

Theorem 1.1 and Corollary 1.2 generalizes the classical result of Milne [5] for
p = 2, his result was proved assuming ¢ € C%, convex, and ¢"(x) = o(q'(z)*/?).
A simplified proof is due to Titchmarsh [6], retaining all of Milne’s assumptions
except ¢ € C3. Later, Hartman [4] obtained the same result under weaker
assumptions, and deduce it from the asymptotic formula for the number of
zeros of solutions of u” + Q(¢)u = 0, where no parameter A occurs. We combine
here his idea with the Prufer transformation techniques used in [3] instead of
the ones in [1]. Let us mention that the results in [3, 4, 6] deals with a regular
case, without singular coefficients like V1,

The paper is organized as follows: in Section 2 we introduce the Prufer trans-
formation and we reformulate Theorem 1.1 in terms of the zeros of solutions.
In Section 3 we prove Theorem 1.1 and we obtain the asymptotic distribution
of eigenvalues.



2 The Prufer Transformation

Let us introduce the generalized sine function Sp(z), the unique solution of

—(Ju/ () [P~/ (1)) = (p = Du(r)[P~2u(r)
w0 20 w(0)=1 (2:3)

(see [2]). This function has a zero if and only if r = km,, where

1
ds
= 2p 1)1/13/0 T

Let us call Cy(r) = S, (r). Both functions are well defined, and the following
identity could be easily derived from equation (2.3):

|Cp(r)[P +1Sp(r) [P =1, (2.4)
Also, if Cy(z) # 0,

|Co(r)PT2C(r) + 18, (r) P28, (r) = 0. (2.5)

We define the following Prufer transform:

u(r) = f(r)p(r)Sy(e(r)),
W(x) = g(r)p(r)Cyle(r)). 26)

where

PN=1(\ _ o(r -1/p
R e e I e R

Remark 2.1 Let us observe that our Prufer transformation is different to the
one in [1]. Moreover, it is valid only for 0 <r <r).

Differentiating the first equation in (2.6), and multiplying by gf~*|Cp[P72C),
we obtain from the second equation,

gfilflp|cp‘p72cpsp + gp'|Cp|p72CpSp + 90l CplPy’ = 92f71p|0p|p (2.8)
On the other hand, replacing v and «’ in equation (1.2) we obtain
—(rN g PTG PTC) = N T A = () TS PR S,.
Hence, from (2.7) we have

_(9_1pp_1|0p|p_20p)l =(p-— 1)f_1pp_1‘5p‘p_25p



Now, we differentiate the first term and replace C, from equation (2.5).

After multiplying by ¢?p*7?S,/(p — 1), we have
9 PIC P2 CoSp /(0 = 1) = gp'|Cp P72 CySy + 9ol SplPe" = g f ol S|

Adding the last equation to equation (2.8), and multiplying by (pg)~!, we
obtain
(9'97H /(= 1)+ [ FICPT2CpS), + (IC,[P + 18, P) 0" = g f T |Cpl? + S, [7)

By using the identity (2.4) and rearranging the terms, we obtain

¢ =—(dg7 =1+ ' f G 2CoS, +gf

Finally, replacing f and g from equations (2.7) we have

/p
, 1-N _, q s A—q\!
= — + [ —— . 2.

© (p—lr +p(>\—q) |CpP72CL S p— (2.9)

Remark 2.2 In much the same way, it is possible to obtain a first order differ-
ential equation for p, which could be used to compute the corresponding eigen-
functions. However, we will need only the phase function ¢, and let us observe
that equation (2.9) is independent of p.

Radially symmetric solutions of equation (1.2) satisfy v/(0) = 0, which gives
an initial condition at r = 0,

90(0) = 7717/2‘
Let w,, be the nth—eigenfunction, with zeros 11 < ro < ... < r_1, (where
0 < 71). Then,
un(r) = f(r)pn(r)Sp(en(r)),
where

on(r;) = jmp, 1<j<n—1.

We may restate Theorem 1.1 in terms of the number of zeros of eigenfunc-
tions. We introduce the function

N(tup, (a,b)) =#{j € N:r; €[a,])},

which counts the number of zeros r; of u, in [a,b). Since N(u,, (0,00)) =n—1,
we have:

Theorem 2.3 Let {(\y, un)}n be the eigenvalues and eigenfunctions of problem
(1.2), and rx, € R such that q(ry,) = A\n, where q(r) satisfies conditions (a)
and (b). Then,

N 0.00) ~ = [ O = at)

Thus, in order to prove Theorem 1.1, in the following section we will obtain
the asymptotic expansion of N (uy,, (0,00)).



3 Proof of Theorems 1.1 and 2.3

Let us state and proof several useful Lemmas.
Lemma 3.1 Let {(\n,un)}n and q(r) as in Theorem 2.3. Then,
N (tn, (0,00)) ~ N(un, (0,7x,)).

Proof: Suppose that u, has two consecutive zeros z1, zo € (), ,00). Then, u,
is a solution in (21, 22) of
=N g P 2u) = N O = a(r) [Py

Multiplying by u,, the previous equation and integrating by parts the left hand
side, we obtain

zZ2 Z2
/ rN_1|u;l|pdr:/ VN = q(r) [ug |Pdr,

21 21

which is impossible because A\, — ¢(r) < 0 in (r),,o0), and the right hand side
is negative, unless u,, = 0.

Since u, has n—1 zeros, at least n — 2 belongs to the interval (0,7, ), which
gives

N, (0,00) _ =1

li _—
P N, (0,75,)) — oo —2

On the other hand, N (uy, (0,00)) > N(un, (0,75, )). Hence,

.. . N(up,(0,00))
1 <liminf ——————~~,
~ n—oo N(unv (07 T)\n,))

and the Lemma is proved. O
Remark 3.2 Let us observe that
N (tn, (0,75,)) = N(un, (0,a)) + N(un,[a,rx,)),
for every a € (0,ry,). For the rest of the paper, we choose a such that
qla) =X\, — ri;pr. (3.10)
Lemma 3.3 Let {(An,un)}n and q(r) as in Theorem 2.3. Then,

N (tn, (a,ry,)) ~ O(1).



Proof: Let rg be fixed such that ¢(r) is increasing for r > ry. We can assume

that A, is big enough to have a > max{1,79}. Now, we apply the Sturmian
oscillation theory. We have A\, —q(r) < A\, —q(a) = r}\:p ~N since ¢ is increasing

for r > ro. By using the inequalities 1 < rN=1 < p{/~!

equations:

, we have the following

=N g P 2u) = N O = a(r) [unlP g,

and
—(W' P2 =Yy P P2

Now, between two consecutive zeros of u,, we have at least a zero of v.
Hence, an upper bound for the number of zeros of u is given by N (v, [a,7y,))+1,
where N (v, [a, ), )) is the number of zeros of v . Let us observe that the number
of zeros of two different solutions of the same equation can differ only by one.
Hence, from equation (2.3), a solution can be computed explicitly and we have

0 =5 (55 5m)

A direct computation shows that the number of zeros of v is bounded by

X, —a

— +1=0(1
o (p =D 1= O

independent of n. O

Lemma 3.4 Let {(An,un)}n and q(r) as in Theorem 2.3. Then,

N (un, (0,a)) ~ 1y@AQM—«mWwﬂ

mp(p—1

Proof: We apply the Prufer transformation, and the phase function ¢,, corre-
sponding to u,, satisfies

©n(0) =7,/2, on(a) =0,

By integrating equation (2.9), we get

Tp

aT 2 = on(a) — ¢n(0) Y
a _ ’ - e p
=y ((11)—{\)[7“ 1+/ p(AZ—q)) CplP~2Cp Sy, + (Ap—f}) dr (3.11)
= foa (LL*Q) : dr + Ry + Ro,

p—1

where 1_N fo
R -1Z / 10, P20, S, dr (3.12)
0

p—



_ L[ d p—2
Fy =~ /0 An_q|cp| CpS,dr. (3.13)

Our next task is to obtain upper bounds for |R;| and |Rs|.
Let us observe that the term R; is not present when N = 1. We may assume
here that N > 2. From equation (2.4) we have |C,(r)| < 1 and |S,(r)| < 1.
-1
i

Then,
1 a
- N S/o |7“_1Sp|d7“—l—/1 rdr.

Since S,,(0) = 0, S,(0) = 1, by applying the L'Hopital rule, the first integral
is bounded by a constant independent of n. The second integral is bounded by
log(a). Now, condition (a) gives

1-p—N __

An > A — 1y q(a) > aaP.

Thus,
log(An) > Blog(a) + log(a),

which gives
|R1| = O(log(An)).- (3.14)
Let us consider now Ry. We have

pRal < Jj i
= IOg()‘n - Q(a')) + IOg(/\n - Q(O))
<log(\,) — log(r}\;pr)
<log(Ay) + (N +p—1)log(ra,)
By using again condition (a), we get
An =q(ry,) > arfn.

Hence,
log(An) > Blog(ry, ) + log(a)
which gives
| Ra| = O(log(An)). (3.15)

Finally, since

N(un, (0,a)) = [9“ - ”p/z} _ b=/ o),

Tp Tp

from equations (3.14) and (3.15) we have:

T, O = a2+ Olog0)

and the proof is finished. O

N(un, (0,a)) =



Lemma 3.5 Let {(\n,un)}n and q(r) as in Theorem 2.3. Then,
1 EYIVS W 1/p
- («Mﬂ) dr = O(1)
Tp Ja b= 1

Proof: Let us observe that

2 O = a(r)Pdr - < (ra, — a)(An — g(a))V/?
<o O = Ay #1370
_ =N/
T A )

which goes to zero when N > 1, since r), — 00 as n — oco. For N =1, we
obtain

[ =t rar <1
and the lemma is proved. E(ll
We can prove now Theorem 2.3:
Proof of Theorem 2.3: From Lemma 3.1 and Remark 3.2 we have
N(up, (0,00)) ~ N(un, (0,a)) + N(un, (a,7y,))-

Now, Lemma 3.3 gives

NG 0.0) =~ [ = ()i + Olag0,)

mp(p—1

and Lemmas 3.4 and 3.5 gives

N(up, (a,ry,)) = 7Tp(p_ll)l/p /n" (An — q(r))YPdr + O(1).
Hence,
NG, (0,09) = /0 (An = g(r)7dr + Olog(A,))

and Theorem 2.3 is proved. O

Remark 3.6 Since N(uy,(0,00)) = n — 1, the proof of Theorem 1.1 follows
immediately:

n—1= N(unv (Ov OO)) ~ : )1/1’ /OT/\TL (An - Q(T))l/pdr.

mp(p—1



We close the paper with the proof of Corollary 1.2, which gives the asymp-
totic distribution of eigenvalues:

Proof of Corollary 1.2: Given ), there exists n such that
An <A< A

Now, by using that v < p implies

T

/Or” (v —q(r)YPdr < / (1 — q(r))/?dr,

0

the result follows from Theorem 1.1 since

1 o 1/p
- L dr ~n—1
m,(p— 1)1/p /O (An —q(r))/Pdr ~n

S [ Ou—a) il n o
_— nt1 —q(r T~ n.
m(p = DVP Jo o
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