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Sobolev inequalities:

Sobolev trace Theorem
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The best constants for these inequalities are
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One of the main differences between these two
quantities is the fact that the first one is not
homogeneous under dilations of the domain
while the second one is:
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For 1 < g <pxand 1l <r < p*theinclusions are
compact, so extremals exist. These extremals
are weak solutions of
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respectively, where Apu = div(|Vu|P~2Vu) is

the p—laplacian and % iIs the outer normal

derivative.



Problem: To study the dependance of the best
Sobolev trace constant and extremals with re-
spect to the domain.

Consider the family of domains

p$2 = {pz | x € 2}

and we are interested first on contracting do-
mains (that is © — 0).

FB - Rossi (CPAA, 2002) showed
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as u — 0

Recall 8= (Ngq— Np+p)/q.

Behavior of extremals:

FB - Rossi: the extremals, when rescaled to

the original domain as v(x) = u(ux) and prop-

erly normalized, converge to a constant in W1P(Q).
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Consider now a different family of domains.
Let Q ¢ RN = R*tF and set

Q= {(pz,y) | (z,y) € Q, ze€ R, ye R

and look for the dependance on Sp 4(£2,) on p.

We are specially interested in the case u — O
(thin domains).

Let us define the projection
P(Q) = {y € R* | 3z € R™ with (z,y) € Q}.
and consider the immersion
WHP(P(R),a) — LI(P(S),6)

with best constant S, ;(P(£2),a, 3), where a, 3 €
L*°(P(£2)) are nonnegative weights functions.



We have

Theorem 1 (FB - Martinez - Rossi, 2002)
There exists two nonnegative weights o, €
L*°(P(£2)) such that

im _opa(§2u)
p—0+ p(ng—np=+p)/q

— gp,q(P(Q)a a, 3)

and the extremals u, of Sp 4(S2), properly rescaled
and normalized converges strongly in W1P(Q),
to an extremal for Sy o(P(2),, 3).

Remark: The weights a« and 3 are given ‘“ex-

plicitly” in terms of the geometry of €2.



Case p = q. The eigenvalue problem.

—Apu+ [uPP2u=0 inQ

|Vu|p_2% = AulP7%u  on N

For p = 2 (linear case) this problem is known
as the Steklov problem.

We will call this problem as the nonlinear Steklov
problem.

Observation: The first eigenvalue A1 coincides
with the best Sobolev trace constant (and the
extremals with the respective eigenfunctions).




This problem presents some similar facts with
the following

—Apu = MulP™%u  in Q
u=20 on 0f2

that was studied by many authors (Anane -
Cuesta - de Figueiredo - Gossez - etc.)



When applying the Ljusternik-Schnirelman the-
ory on the nonlinear Steklov problem, we ob-
tain:

e [ here exists a sequence of variational eigen-
values {\.} with A\, " oo (FB - Rossi, JMAA
'01).

e [ he first eigenvalue \q is isolated and sim-
ple (Martinez - Rossi, Abst. Appl. Anal.
'02).

e The second eigenvalue Ao = inf{A > A}
coincides with the second variational eigen-
value (FB - Rossi, Pub. Mat. '02).



We are interested in the behavior of the eigen-
values and eigenfunctions of the nonlinear Steklov
problem for thin domains. We have:

Theorem 2 (FB - Martinez - Rossi, '02) Every
eigenvalue (variational or not) and eigenfunc-
tion of the nonlinear Steklov problem converges

(when properly “normalized” ) to an eigenvalue
and an eigenfunction of

—div(a|VulP72Vu) + alulP72u = X 6|ulP"2u

in P(Q)

g—ﬁ = 0 on OP(2)

where P(S2) is the projection of 2 over the

y variable and o,3 are the same weights as
before.
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