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Sobolev Trace Inequality:

S‖u‖p
Lq(∂Ω) ≤ ‖u‖p

W1,p(Ω)
, 1 ≤ q ≤ p∗ =

p(N − 1)

N − p

The best constant for this inequality is

S = inf
u∈W1,p(Ω)\W1,p

0 (Ω)

∫
Ω |∇u|p + |u|p dx

(
∫
∂Ω |u|q dS)p/q

For 1 ≤ q < p∗ the inclusion is compact, so extremals exist.

These extremals are weak solutions of




∆pu = |u|p−2u in Ω

|∇u|p−2∂u
∂ν = λ|u|q−2u on ∂Ω
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Let A ⊂ Ω, |A| = α > 0 and consider

SA = inf





∫
Ω |∇u|p + |u|p dx

(
∫
∂Ω |u|q dS)p/q

∣∣∣∣ u ∈ W1,p(Ω) \W
1,p
0 (Ω), u = 0 a.e. in A





Extremals for SA are weak solutions of




∆pu = |u|p−2u in Ω \A,

|∇u|p−2∂u
∂ν = λ|u|q−2u on ∂Ω,

u = 0 in A.

Observe that if A = ∅ or if |A| = 0 then, SA = S.
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Problem 1: For fixed 0 < α < |Ω|, find A0 ⊂ Ω, |A0| = α such

that

SA0
= inf

A⊂Ω, |A|=α
SA.

Study properties of this optimal (minimal) set (existence, sym-

metry, regularity, etc.)

What about maximal sets?

Problem 2: How can we give sense to SA if |A| = 0?
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Special case: p = q −→ Nonlinear eigenvalue problem

When A = ∅ was studied by J.D. Rossi, S. Martinez, J.F.B.

The linear case, p = 2 is classical −→ Steklov eigenvalue problem

Questions similar to Problem 1 for other eigenvalue problems:

A. Henrot, J. Denzler, S. Chanillo et al., R. Pedroza,...

Optimal design problems in general: N. Aguilera – H.W. Alt –

L.A. Caffarelli, B. Kawohl, C. Lederman,...
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Problem 1

Theorem (Semicontinuity) Let An, A ⊂ Ω such that

χAn

∗
⇀ χA in L∞(Ω).

Then

SA ≤ lim inf
n→∞ SAn

Remark The continuity does not hold. Take, for instance, An =
B1(x

0) ∪ B1/n(x
1), A = B1(x

0). Then χAn

∗
⇀ χA in L∞(Ω), but

SA < lim infn→∞ SAn (if p > N). A similar construction works for
1 < p ≤ N .

Remark The semicontinuity result does not give the existence
of minimal holes because sets of fixed positive measure are not
compact with respect to the topology of the Theorem.
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Problem 1

Theorem (Existence of minimal holes)Given 0 < α < |Ω| we
define S(α) := inf

A⊂Ω, |A|=α
SA. Then there exists A0 ⊂ Ω, |A0| = α

such that SA0
= S(α).

Proof: The idea is:

Step 1: minimize J(u) =
∫
Ω |∇u|p + |u|p dx over the class

E(Ω, α) =
{
(u, φ) ∈ W1,p(Ω)× L∞(Ω)

∣∣∣∣ ‖u‖Lq(∂Ω) = 1, 0 ≤ φ ≤ 1,

∫
Ω φ ≥ α, u.φ = 0 a.e. in Ω

}

Step 2: Show that the minimizer (u, φ) verifies that φ is a char-
acteristic function and

∫
Ω φ = α.
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Step 1:
Existence of a minimizer in E(Ω, α) −→ compactness argument.X

Step 2: This is the hard part.

First, we can replace (u, φ) ↔ (|u|, χ{φ>0}) so we can assume
that u ≥ 0 and φ is a characteristic function. We have to show
that

∫
Ω φ = α. This follows easily from the strict monotonicity

of S(α) with respect to α.

To see the monotonicity, first it is easy to see that if α1 < α2
then S(α1) ≥ S(α2). Now, to get the strict inequality... ♦

Corollary The strict monotonicity of S(α) implies that

|{u = 0}| = α.
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Problem 1

Theorem A maximal hole does not exists, in fact,

sup
A⊂Ω, |Ω|=α

SA = ∞.

Proof: Take a “strip” of measure α,

Aε = {x ∈ Ω | ε < dist(x, ∂Ω) < δ(ε)}
and observe that the extremals for SAε verify uε = 0 in Ωε = {x ∈
Ω | ε < dist(x, ∂Ω)}.

If SAε were bounded, up to a subsequence, uε → u and u = 0 in

Ω, but ‖u‖Lq(∂Ω) = 1. ♦
21
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Problem 1

Definition Given A ⊂ RN the spherical symmetrization A∗ of A

is defined as follows: for each r > 0, take A∩∂Br(0) and replace

it by the spherical cap of the same area and center reN . The

union of these caps is A∗.

A set A is called spherically symmetric if A = A∗.

Theorem Let Ω = B1(0) and 0 < α < |B1(0)|. Then there

exists an optimal hole that is spherically symmetric. Moreover,

if p = 2, then every optimal hole is spherically symmetric.
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Problem 2

If |A| = 0 −→ different approach.

In this case, we define W
1,p
A (Ω) = C∞c (Ω \A). (The closure in

W1,p–norm).

Define

SA = inf
W

1,p
A (Ω)\W1,p

0 (Ω)

∫

Ω
|∇u|p + |u|p dx

(∫

∂Ω
|u|q dS

)p/q
.
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Problem 2

With this definition, the constant SA “sees” sets of positive
p−capacity. Recall that

Capp(A) = inf
{ ∫

RN
|∇φ|p dx | φ ∈ W1,p(RN)∩C∞(RN) and A ⊂ {φ ≥ 1}◦

}

We have

Theorem W
1,p
A (Ω) = W1,p(Ω) if and only if Capp(Ω) = 0.

Corollary Capp(A) = 0 if and only if SA = S.

Remark Observe that if A is a regular surface of dimension k,
there exists a trace T : W1,p(Ω) → Lp(A) if k > N−p. This relates
to Theorem 5 by the fact that dimH(A) ≤ N −p ⇒ Capp(A) = 0.
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Problem 2

For the dependance of SA with respect to A we have

Theorem SA is continuous with respect to A in the topology

given by the Haussdorff distance.

Remark (Relationship between SA and SA) It is easy to see

that SA ≤ SA. The other inequality is not true in general. How-

ever SA = SA in several situations, for instance if A is the closure

of an open set with smooth boundary.

In the general case, one is led to consider the “precise” repre-

sentative of the set A. There exists a “good” representative of

A such that SA = SA? We don’t know.
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