Behavior of the best Sobolev trace constant on domains with holes

J. Fernández Bonder*, J.D. Rossi and N. Wolanski

Univ. of Buenos Aires June 2004

*URL: http://mate.dm.uba.ar/~jfbonder

Sobolev Trace Inequality:

$$S \|u\|_{L^{q}(\partial\Omega)}^{p} \le \|u\|_{W^{1,p}(\Omega)}^{p}, \quad 1 \le q \le p_{*} = \frac{p(N-1)}{N-p}$$

Sobolev Trace Inequality:

$$S \|u\|_{L^{q}(\partial\Omega)}^{p} \le \|u\|_{W^{1,p}(\Omega)}^{p}, \quad 1 \le q \le p_{*} = \frac{p(N-1)}{N-p}$$

The best constant for this inequality is

$$S = \inf_{u \in W^{1,p}(\Omega) \setminus W_0^{1,p}(\Omega)} \frac{\int_{\Omega} |\nabla u|^p + |u|^p \, dx}{(\int_{\partial \Omega} |u|^q \, dS)^{p/q}}$$

Sobolev Trace Inequality:

$$S \|u\|_{L^{q}(\partial\Omega)}^{p} \le \|u\|_{W^{1,p}(\Omega)}^{p}, \quad 1 \le q \le p_{*} = \frac{p(N-1)}{N-p}$$

The best constant for this inequality is

$$S = \inf_{u \in W^{1,p}(\Omega) \setminus W_0^{1,p}(\Omega)} \frac{\int_{\Omega} |\nabla u|^p + |u|^p \, dx}{(\int_{\partial \Omega} |u|^q \, dS)^{p/q}}$$

For $1 \leq q < p_*$ the inclusion is compact, so *extremals* exist. These extremals are weak solutions of

$$\begin{cases} \Delta_p u = |u|^{p-2}u & \text{in } \Omega \\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = \lambda |u|^{q-2}u & \text{on } \partial \Omega \end{cases}$$

Let
$$A \subset \Omega$$
, $|A| = \alpha > 0$ and consider

$$S_A = \inf \left\{ \frac{\int_{\Omega} |\nabla u|^p + |u|^p \, dx}{(\int_{\partial \Omega} |u|^q \, dS)^{p/q}} \mid u \in W^{1,p}(\Omega) \setminus W_0^{1,p}(\Omega), \ u = 0 \text{ a.e. in } A \right\}$$

Let
$$A \subset \Omega$$
, $|A| = \alpha > 0$ and consider

$$S_A = \inf \left\{ \frac{\int_{\Omega} |\nabla u|^p + |u|^p \, dx}{(\int_{\partial \Omega} |u|^q \, dS)^{p/q}} \mid u \in W^{1,p}(\Omega) \setminus W_0^{1,p}(\Omega), \ u = 0 \text{ a.e. in } A \right\}$$

Extremals for ${\cal S}_{\cal A}$ are weak solutions of

$$\begin{cases} \Delta_p u = |u|^{p-2} u & \text{in } \Omega \setminus A, \\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = \lambda |u|^{q-2} u & \text{on } \partial \Omega, \\ u = 0 & \text{in } A. \end{cases}$$

Observe that if $A = \emptyset$ or if |A| = 0 then, $S_A = S$.

<u>Problem 1:</u> For fixed $0 < \alpha < |\Omega|$, find $A_0 \subset \Omega$, $|A_0| = \alpha$ such that

$$S_{A_0} = \inf_{A \subset \Omega, \ |A| = \alpha} S_A.$$

Study properties of this optimal (minimal) set (existence, symmetry, regularity, etc.)

<u>Problem 1:</u> For fixed $0 < \alpha < |\Omega|$, find $A_0 \subset \Omega$, $|A_0| = \alpha$ such that

$$S_{A_0} = \inf_{A \subset \Omega, \ |A| = \alpha} S_A.$$

Study properties of this optimal (minimal) set (existence, symmetry, regularity, etc.)

What about *maximal* sets?

<u>Problem 1:</u> For fixed $0 < \alpha < |\Omega|$, find $A_0 \subset \Omega$, $|A_0| = \alpha$ such that

$$S_{A_0} = \inf_{A \subset \Omega, \ |A| = \alpha} S_A.$$

Study properties of this optimal (minimal) set (existence, symmetry, regularity, etc.)

What about *maximal* sets?

<u>Problem 2:</u> How can we give sense to S_A if |A| = 0?

Special case: $p = q \longrightarrow$ Nonlinear eigenvalue problem

When $A = \emptyset$ was studied by J.D. Rossi, S. Martinez, J.F.B.

The linear case, p = 2 is classical \longrightarrow Steklov eigenvalue problem

Special case: $p = q \longrightarrow$ Nonlinear eigenvalue problem

When $A = \emptyset$ was studied by J.D. Rossi, S. Martinez, J.F.B.

The linear case, p = 2 is classical \longrightarrow Steklov eigenvalue problem

Questions similar to Problem 1 for other eigenvalue problems: A. Henrot, J. Denzler, S. Chanillo et al., R. Pedroza,...

Optimal design problems in general: N. Aguilera – H.W. Alt – L.A. Caffarelli, B. Kawohl, C. Lederman,...

Theorem (Semicontinuity) Let $A_n, A \subset \Omega$ such that $\chi_{A_n} \stackrel{*}{\rightharpoonup} \chi_A$ in $L^{\infty}(\Omega)$. Then

 $S_A \le \liminf_{n \to \infty} S_{A_n}$

Theorem (Semicontinuity) Let $A_n, A \subset \Omega$ such that $\chi_{A_n} \stackrel{*}{\rightharpoonup} \chi_A$ in $L^{\infty}(\Omega)$.

Then

 $S_A \le \liminf_{n \to \infty} S_{A_n}$

Remark The continuity does not hold. Take, for instance, $A_n = B_1(x^0) \cup B_{1/n}(x^1)$, $A = B_1(x^0)$. Then $\chi_{A_n} \stackrel{*}{\rightharpoonup} \chi_A$ in $L^{\infty}(\Omega)$, but $S_A < \liminf_{n \to \infty} S_{A_n}$ (if p > N). A similar construction works for 1 .

Theorem (Semicontinuity) Let $A_n, A \subset \Omega$ such that

$$\chi_{A_n} \stackrel{*}{\rightharpoonup} \chi_A \qquad \text{ in } L^{\infty}(\Omega).$$

Then

 $S_A \le \liminf_{n \to \infty} S_{A_n}$

Remark The continuity does not hold. Take, for instance, $A_n = B_1(x^0) \cup B_{1/n}(x^1)$, $A = B_1(x^0)$. Then $\chi_{A_n} \stackrel{*}{\rightharpoonup} \chi_A$ in $L^{\infty}(\Omega)$, but $S_A < \liminf_{n \to \infty} S_{A_n}$ (if p > N). A similar construction works for 1 .

Remark The semicontinuity result does not give the existence of minimal *holes* because sets of fixed positive measure are not compact with respect to the topology of the Theorem.

Theorem (Existence of minimal holes) Given $0 < \alpha < |\Omega|$ we define $S(\alpha) := \inf_{A \subset \Omega, |A| = \alpha} S_A$. Then there exists $A_0 \subset \Omega$, $|A_0| = \alpha$ such that $S_{A_0} = S(\alpha)$.

Theorem (Existence of minimal holes) Given $0 < \alpha < |\Omega|$ we define $S(\alpha) := \inf_{A \subset \Omega, |A| = \alpha} S_A$. Then there exists $A_0 \subset \Omega, |A_0| = \alpha$ such that $S_{A_0} = S(\alpha)$.

Proof: The idea is:

Step 1: minimize $J(u) = \int_{\Omega} |\nabla u|^p + |u|^p \, dx$ over the class $E(\Omega, \alpha) = \left\{ (u, \phi) \in W^{1,p}(\Omega) \times L^{\infty}(\Omega) \mid ||u||_{L^q(\partial\Omega)} = 1, \ 0 \le \phi \le 1, \\ \int_{\Omega} \phi \ge \alpha, \ u.\phi = 0 \text{ a.e. in } \Omega \right\}$

Theorem (Existence of minimal holes) Given $0 < \alpha < |\Omega|$ we define $S(\alpha) := \inf_{A \subset \Omega, |A| = \alpha} S_A$. Then there exists $A_0 \subset \Omega, |A_0| = \alpha$ such that $S_{A_0} = S(\alpha)$.

Proof: The idea is:

Step 1: minimize $J(u) = \int_{\Omega} |\nabla u|^p + |u|^p \, dx$ over the class $E(\Omega, \alpha) = \left\{ (u, \phi) \in W^{1,p}(\Omega) \times L^{\infty}(\Omega) \mid ||u||_{L^q(\partial\Omega)} = 1, \ 0 \le \phi \le 1, \\ \int_{\Omega} \phi \ge \alpha, \ u.\phi = 0 \text{ a.e. in } \Omega \right\}$

<u>Step 2</u>: Show that the minimizer (u, ϕ) verifies that ϕ is a characteristic function and $\int_{\Omega} \phi = \alpha$.

Step 1: Existence of a minimizer in $E(\Omega, \alpha) \longrightarrow$ compactness argument.

Step 1:

Existence of a minimizer in $E(\Omega, \alpha) \longrightarrow$ compactness argument.

Step 2: This is the hard part.

First, we can replace $(u, \phi) \leftrightarrow (|u|, \chi_{\{\phi>0\}})$ so we can assume that $u \ge 0$ and ϕ is a characteristic function. We have to show that $\int_{\Omega} \phi = \alpha$. This follows easily from the strict monotonicity of $S(\alpha)$ with respect to α .

Step 1:

Existence of a minimizer in $E(\Omega, \alpha) \longrightarrow$ compactness argument.

Step 2: This is the hard part.

First, we can replace $(u, \phi) \leftrightarrow (|u|, \chi_{\{\phi>0\}})$ so we can assume that $u \ge 0$ and ϕ is a characteristic function. We have to show that $\int_{\Omega} \phi = \alpha$. This follows easily from the strict monotonicity of $S(\alpha)$ with respect to α .

To see the monotonicity, first it is easy to see that if $\alpha_1 < \alpha_2$ then $S(\alpha_1) \ge S(\alpha_2)$. Now, to get the strict inequality... \diamondsuit

Step 1:

Existence of a minimizer in $E(\Omega, \alpha) \longrightarrow$ compactness argument.

Step 2: This is the hard part.

First, we can replace $(u, \phi) \leftrightarrow (|u|, \chi_{\{\phi>0\}})$ so we can assume that $u \ge 0$ and ϕ is a characteristic function. We have to show that $\int_{\Omega} \phi = \alpha$. This follows easily from the strict monotonicity of $S(\alpha)$ with respect to α .

To see the monotonicity, first it is easy to see that if $\alpha_1 < \alpha_2$ then $S(\alpha_1) \ge S(\alpha_2)$. Now, to get the strict inequality... \diamond

Corollary The strict monotonicity of $S(\alpha)$ implies that

 $|\{u=0\}|=\alpha.$

Theorem A maximal hole does not exists, in fact,

 $\sup_{A\subset\Omega,\ |\Omega|=\alpha}S_A=\infty.$

Theorem A maximal hole does not exists, in fact,

$$\sup_{A \subset \Omega, \ |\Omega| = \alpha} S_A = \infty.$$

Proof: Take a "strip" of measure α ,

 $A_{\varepsilon} = \{x \in \Omega \mid \varepsilon < \mathsf{dist}(x, \partial \Omega) < \delta(\varepsilon)\}$

and observe that the extremals for $S_{A_{\varepsilon}}$ verify $u_{\varepsilon} = 0$ in $\Omega_{\varepsilon} = \{x \in \Omega \mid \varepsilon < dist(x, \partial \Omega)\}.$

If $S_{A_{\varepsilon}}$ were bounded, up to a subsequence, $u_{\varepsilon} \to u$ and u = 0 in Ω , but $||u||_{L^{q}(\partial\Omega)} = 1$.

Definition Given $A \subset \mathbb{R}^N$ the spherical symmetrization A^* of A is defined as follows: for each r > 0, take $A \cap \partial B_r(0)$ and replace it by the spherical cap of the same area and center re_N . The union of these caps is A^* .

A set A is called spherically symmetric if $A = A^*$.

Definition Given $A \subset \mathbb{R}^N$ the spherical symmetrization A^* of A is defined as follows: for each r > 0, take $A \cap \partial B_r(0)$ and replace it by the spherical cap of the same area and center re_N . The union of these caps is A^* .

A set A is called spherically symmetric if $A = A^*$.

Theorem Let $\Omega = B_1(0)$ and $0 < \alpha < |B_1(0)|$. Then there exists an optimal hole that is spherically symmetric. Moreover, if p = 2, then every optimal hole is spherically symmetric.

If $|A| = 0 \longrightarrow$ different approach.

If $|A| = 0 \longrightarrow$ different approach.

In this case, we define $W_A^{1,p}(\Omega) = \overline{C_c^{\infty}(\overline{\Omega} \setminus A)}$. (The closure in $W^{1,p}$ -norm).

If $|A| = 0 \longrightarrow$ different approach.

In this case, we define $W_A^{1,p}(\Omega) = \overline{C_c^{\infty}(\overline{\Omega} \setminus A)}$. (The closure in $W^{1,p}$ -norm).

Define

$$\mathbf{S}_{A} = \inf_{\substack{W_{A}^{1,p}(\Omega) \setminus W_{0}^{1,p}(\Omega)}} \frac{\int_{\Omega} |\nabla u|^{p} + |u|^{p} dx}{\left(\int_{\partial \Omega} |u|^{q} dS\right)^{p/q}}.$$

With this definition, the constant \mathbf{S}_A "sees" sets of positive p-capacity.

With this definition, the constant \mathbf{S}_A "sees" sets of positive p-capacity. Recall that

 $\operatorname{Cap}_p(A) = \inf\left\{\int_{\mathbb{R}^N} |\nabla \phi|^p \, dx \mid \phi \in W^{1,p}(\mathbb{R}^N) \cap C^{\infty}(\mathbb{R}^N) \text{ and } A \subset \{\phi \ge 1\}^\circ\right\}$

With this definition, the constant \mathbf{S}_A "sees" sets of positive p-capacity. Recall that

 $\operatorname{Cap}_p(A) = \inf\left\{\int_{\mathbb{R}^N} |\nabla \phi|^p \, dx \mid \phi \in W^{1,p}(\mathbb{R}^N) \cap C^{\infty}(\mathbb{R}^N) \text{ and } A \subset \{\phi \ge 1\}^\circ\right\}$

We have

Theorem $W_A^{1,p}(\Omega) = W^{1,p}(\Omega)$ if and only if $\operatorname{Cap}_p(\Omega) = 0$.

With this definition, the constant \mathbf{S}_A "sees" sets of positive p-capacity. Recall that

 $\operatorname{Cap}_p(A) = \inf\left\{\int_{\mathbb{R}^N} |\nabla \phi|^p \, dx \mid \phi \in W^{1,p}(\mathbb{R}^N) \cap C^{\infty}(\mathbb{R}^N) \text{ and } A \subset \{\phi \ge 1\}^\circ\right\}$

We have

Theorem $W^{1,p}_A(\Omega) = W^{1,p}(\Omega)$ if and only if $\operatorname{Cap}_p(\Omega) = 0$.

Corollary $Cap_p(A) = 0$ if and only if $S_A = S$.

With this definition, the constant \mathbf{S}_A "sees" sets of positive p-capacity. Recall that

 $\operatorname{Cap}_p(A) = \inf\left\{\int_{\mathbb{R}^N} |\nabla \phi|^p \, dx \mid \phi \in W^{1,p}(\mathbb{R}^N) \cap C^{\infty}(\mathbb{R}^N) \text{ and } A \subset \{\phi \ge 1\}^\circ\right\}$

We have

Theorem $W^{1,p}_A(\Omega) = W^{1,p}(\Omega)$ if and only if $\operatorname{Cap}_p(\Omega) = 0$.

Corollary $Cap_p(A) = 0$ if and only if $S_A = S$.

Remark If A is a regular surface of dimension k, there exists a trace $T : W^{1,p}(\Omega) \to L^p(A)$ if k > N - p. This relates to our Theorem by the fact that $\dim_H(A) \leq N - p \Rightarrow \operatorname{Cap}_p(A) = 0$.

For the dependance of S_A with respect to A we have

Theorem S_A is continuous with respect to A in the topology given by the Haussdorff distance.

For the dependance of S_A with respect to A we have

Theorem S_A is continuous with respect to A in the topology given by the Haussdorff distance.

Remark (Relationship between S_A and S_A) It is easy to see that $S_A \leq S_A$. The other inequality is not true in general. However $S_A = S_A$ in several situations, for instance if A is the closure of an open set with smooth boundary.

For the dependance of S_A with respect to A we have

Theorem S_A is continuous with respect to A in the topology given by the Haussdorff distance.

Remark (Relationship between S_A and S_A) It is easy to see that $S_A \leq S_A$. The other inequality is not true in general. However $S_A = S_A$ in several situations, for instance if A is the closure of an open set with smooth boundary.

In the general case, one is led to consider the "precise" representative of the set A. There exists a "good" representative of A such that $S_A = S_A$? We don't know.