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The Problem:

dx = b(x)dt + o(z)dW
QZ(O) =z € R>O

W is a one dimensional Wiener process
b and o are smooth and positive.

If b is not globally Lipschitz, solutions to this problem may ex-
plode in finite time with positive probability.
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There exists a stopping time T = T'(w) such that z(w, t) is defined
in [0, T(w)), but

x(w,t) /o0 as t /S T(w).
and

P(T < >0) > 0.

The Feller Test for Explosions provides a precise criteria to de-
termine, in terms of b and o, whether solutions explode with
probability zero, positive or one.



We assume

0 < C1 < c2(s) < Cab(s).

ds < +o0.

oo
b(s) is nondecreasing for large s and /

1
b(s)

Under these conditions explosion occur with probability one.

dz = (1 + |z|?)dt + dW.
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What are we |looking for in a numerical method
for explosive solutions?

Convergence of the numerical solutions to the continuous
one.

Explosions in the numerical solutions for small choices of the
parameter.

Convergence of the numerical explosion times to the contin-
uous one.



The Euler-Maruyama method (for bounded solutions)

Xz' ~ $(tz)

h=t4+1—t AW; = W(t;41) — W(t;)

Xiy1 = X; +b(Xp)h + o(X;)AW;
Xo=z(0) ==z
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The E-M method: X, 11 = X; + b(X;))h + o(X;) AW;

Numerical solutions
are define for every positive time.

The time-step cannot be constant. It must be adapted
according to the computed solution.

h

We propose h; = b(T)
i

Our scheme reads:  X,;11 = X; + h+ o(X;)AW;



The numerical solution
X(t;) =X

X() = X; +b(X)(t—t) +o(X)W(t) —W(t)), fortelt,tiy1),
is a well define process up to time

h
Th _.Zh — b(X;)’

We say that the numerical solution explode in finite time 73, if

P(Th < o0) > 0.



Mean Square Convergence (while solutions are bounded)

Theorem 1. Fix a time S > 0 and a constant M > 0. Consider
the stopping times given by

RM :=inf{t>0 : z(t) =M}, RM:=inf{t>0 : X{)= M},
Th = min{RM,R%M,S}.
Then

imE| sup |z(t) — X()|?| =0
h—0  [0<t<7y,



Explosions in the numerical scheme

Theorem 2.
1. X(-) explodes in finite time with probability one.

2. For every h > 0 we have
X (t;
i—4+oco  hi
This is the asymptotic behavior for the numerical scheme.

1, i.e. X(t;) ~ hi

For b(s) ~ sP at infinity, we get

as t;, — Th (’L — —|—OO>

1 )1/(29—1)

R
-
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Idea of the Proof.

Rewriting our scheme, we get

X;,=z+ hi+ ZO’(X )AW

:z—l—hz’—l—CZN(O,l)
j=1



So, we get

1 )
~ ) N(0,1) —» 1 as.

X.

i 4140
hi A

1=1

h1
by the Strong Law of the Large Numbers.



So, we get

X, =z 1
~ 1+ C— N(O,1 1 a.s.
i STt z'j; (0,1) =

by the Strong Law of the Large Numbers.
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Convergence of the Numerical Explosion Times

Theorem 3. The stopping times R defined in Theorem 1,
converges to the continuous explosion time 7' in probability as
h— 0 and M — +oo. That is, for every € > 0,

im lim PR —T| >¢) = 0.
M——+oco h—0
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Idea of the Proof.
For the proof, we use the following Lemma:
Lemma. P(RM > R2M) — 0 and P(RM > R?M) — 0 as h — 0.

Now, we compute:

P(|Rp' =T| > &)
=P(RY —T>e)+ PR —T < —¢)
< P(RM > R?MY + P(RM/2 — RM > £/2) + P(T — RM/? > ¢/2)
< P(RM > R?MY + P(RM/? > RM) + P(|IT — RM/?| > ¢/2)
—~0 by the Lemma and since RM — T a.s.O
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The kernel density estimator of R{‘f for different values of h.



