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The Problem: 



dx = b(x)dt + σ(x)dW

x(0) = z ∈ R>0

• W is a one dimensional Wiener process

• b and σ are smooth and positive.

If b is not globally Lipschitz, solutions to this problem may ex-

plode in finite time with positive probability.
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There exists a stopping time T = T (ω) such that x(ω, t) is defined

in [0, T (ω)), but

x(ω, t) ↗ +∞ as t ↗ T (ω).

and

P(T < ∞) > 0.

The Feller Test for Explosions provides a precise criteria to de-

termine, in terms of b and σ, whether solutions explode with

probability zero, positive or one.



We assume

• 0 < C1 < σ2(s) < C2b(s).

• b(s) is nondecreasing for large s and
∫ ∞ 1

b(s)
ds < +∞.

Under these conditions explosion occur with probability one.

Example:

dx = (1 + |x|2)dt + dW.



What are we looking for in a numerical method
for explosive solutions?

• Convergence of the numerical solutions to the continuous

one.

• Explosions in the numerical solutions for small choices of the

parameter.

• Convergence of the numerical explosion times to the contin-

uous one.
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The Euler-Maruyama method (for bounded solutions)

Xi ≈ x(ti)

h = ti+1 − ti, ∆Wi = W (ti+1)−W (ti)





Xi+1 = Xi + b(Xi)h + σ(Xi)∆Wi

X0 = x(0) = z



The E-M method: Xi+1 = Xi + b(Xi)h + σ(Xi)∆Wi

• Not suitable to reproduce explosions! Numerical solutions

are define for every positive time.

• The time-step h cannot be constant. It must be adapted

according to the computed solution.

• We propose hi =
h

b(Xi)
.

Our scheme reads: Xi+1 = Xi + h + σ(Xi)∆Wi
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The numerical solution

X(ti) = Xi,

X(t) = Xi + b(Xi)(t− ti) + σ(Xi)(W (t)−W (ti)), for t ∈ [ti, ti+1),

is a well define process up to time

Th :=
∞∑

i=1

hi =
∞∑

i=1

h

b(Xi)
.

We say that the numerical solution explode in finite time Th if

P(Th < ∞) > 0.



Mean Square Convergence (while solutions are bounded)

Theorem 1. Fix a time S > 0 and a constant M > 0. Consider

the stopping times given by

RM := inf{t > 0 : x(t) = M}, RM
h := inf{t > 0 : X(t) = M},

τh := min{RM , R2M
h , S}.

Then

lim
h→0

E
[

sup
0≤t≤τh

|x(t)−X(t)|2
]
= 0.



Explosions in the numerical scheme

Theorem 2.

1. X(·) explodes in finite time with probability one.

2. For every h > 0 we have

lim
i→+∞

X(ti)

hi
= 1, i.e. X(ti) ∼ hi

This is the asymptotic behavior for the numerical scheme.

For b(s) ∼ sp at infinity, we get

X(ti)(Th − ti)
1/(p−1) →

(
1

p− 1

)1/(p−1)
as ti → Th (i → +∞).



Idea of the Proof.

Rewriting our scheme, we get

Xi= z + hi +
i∑

j=1

σ(Xj)∆Wj
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σ(Xj)
√

hj
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' z + hi +
i∑

j=1

√
h
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b(Xj)

N(0,1)
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N(0,1)
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So, we get

Xi

hi
' z

hi
+ 1 + C

1

i

i∑

j=1

N(0,1) → 1 a.s.

by the Strong Law of the Large Numbers.



So, we get

Xi

hi
' z

hi
+ 1 + C

1

i

i∑

j=1

N(0,1) → 1 a.s.

by the Strong Law of the Large Numbers. ¤
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Figure 2: Xi/hi → 1 a.s.



Convergence of the Numerical Explosion Times

Theorem 3. The stopping times RM
h defined in Theorem 1,

converges to the continuous explosion time T in probability as

h → 0 and M → +∞. That is, for every ε > 0,

lim
M→+∞

lim
h→0

P(|RM
h − T | > ε) = 0.



Idea of the Proof.

For the proof, we use the following Lemma:

Lemma. P(RM ≥ R2M
h ) → 0 and P(RM

h ≥ R2M) → 0 as h → 0.

Now, we compute:

P(|RM
h −T | > ε)

= P(RM
h − T > ε) + P(RM

h − T < −ε)

≤ P(RM ≥ R2M
h ) + P(RM/2 −RM

h > ε/2) + P(T −RM/2 > ε/2)

≤ P(RM ≥ R2M
h ) + P(RM/2 > RM

h ) + P(|T −RM/2| > ε/2)

→ 0 by the Lemma and since RM → T a.s.¤
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