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Sobolev Trace Theorem

H1(Ω) ↪→ Lq(∂Ω), 1 ≤ q ≤ 2∗ :=
2(N − 1)

N − 2
.

• Ω is a bounded smooth domain in RN

Sobolev Trace Constant

Sq := inf
{∫

Ω |∇v|2 + v2, dx
( ∫

∂Ω |v|q dS
)2/q

: v ∈ H1(Ω) \H1
0(Ω)

}

Is the optimal constant in the Sobolev inequality

S‖v‖2Lq(∂Ω) ≤ ‖v‖2
H1(Ω).



If 1 ≤ q < 2∗ (subcritical), the immersion

H1(Ω) ↪→ Lq(∂Ω) is compact

Therefore, there exists extremals. These extremals are weak

solutions to 


−∆u + u = 0 in Ω
∂u

∂ν
= λ|u|q−2u on ∂Ω

(λ = Lagrange multiplier).

If u is such that ‖u‖Lq(∂Ω) = 1 then λ = Sq.

In the linear case (q = 2) this problem is known as the

Steklov eigenvalue problem



Problem with Holes

Let A ⊂ Ω be measurable. We define

Sq(A) := inf
{∫

Ω |∇v|2 + v2, dx
( ∫

∂Ω |v|q dS
)2/q

: v ∈ H1(Ω) such that v |A≡ 0
}

If A is closed, then extremals are weak solutions to




−∆u + u = 0 in Ω \A
∂u

∂ν
= λ|u|q−2u on ∂Ω \A

u = 0 in A



PROBLEM

There exists A∗ ⊂ Ω, |A∗| = α such that Sq(A
∗) = inf

A⊂Ω
|A|=α

Sq(A)?

And other questions like

• Location • Topology

• Symmetry • Regularity

• Computation
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Recall that when q = 2 the problem becomes a linear eigenvalue

problem −→ Steklov eigenvalue problem.

Our results are new, even in this classical setting.

Similar questions for other eigenvalue problems: A. Henrot, J.

Denzler, S. Chanillo et al., R. Pedroza,...

Optimal design problems in general: N. Aguilera–H.W. Alt–L.A.

Caffarelli, B. Kawohl, C. Lederman,...



Proof of existence (sketch)

Let S(α) := inf
A⊂Ω
|A|=α

Sq(A) = inf
A⊂Ω
|A|≥α

Sq(A). Then

S(α) = inf
{ ∫

Ω
|∇v|2 + v2 dx | v ∈ H1(Ω), v ≥ 0,

‖v‖Lq(∂Ω) = 1, |{v = 0}| ≥ α

}

Let now {un}n∈N be a minimizing sequence.

Then ‖un‖H1(Ω) ≤ C and hence...
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un ⇀ u weakly in H1(Ω)

un → u strongly in L2(Ω)

un → u strongly in Lq(∂Ω)

Then u ∈ H1(Ω), ‖u‖Lq(∂Ω) = 1 and u ≥ 0.

Also, if we call An := {un = 0}, then there exists φ ∈ L∞(Ω),

0 ≤ φ ≤ 1 s.t. χAn ⇀ φ weakly in L2(Ω).

Hence, if A := {φ = 0}, we have

|A| ≥
∫

Ω
φ dx = lim

n→∞
∫

Ω
χAn dx = lim

n→∞ |An| = α.
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On the other hand,
∫

Ω
uφ dx =

∫

Ω
unχAn dx = 0.

Therefore, u = 0 a.e. A = {φ > 0}.

It remains to see that |{u = 0}| = α. Assume that |{u = 0}| > α

Ω 

A 

u=0 in A 

| A | > α 
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CONTRADICTION! ¤
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Properties of Optimal Holes

• Topology: We only know that the complement of the hole

Ω \A∗ = {u > 0} is (measure–theoretic) connected.

• Symmetry: If Ω is symmetric, does A∗ inherits the symmetry

of the domain?

If Ω = B1(0) , then A∗ is spherically symmetric.

Is A∗ radially symmetric? NO!
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Properties of Optimal Holes

• Regularity: Different approach. Let β := |Ω| − α and

Aβ := {v ∈ H1(Ω) | ‖v‖Lq(∂Ω) = 1, |{v > 0}| = β}. Then

S(α) = inf
v∈Aβ

∫

Ω
|∇v|2 + v2 dx

The idea is to penalize and minimize without the measure re-
striction.

Let Fε(s) be

Fε(s) :=





1
ε(s− β) s ≥ β

ε(s− β) s < β
β 

Fε(s) 



Then, we minimize the penalized functional

Jε(v) :=
∫

Ω
|∇v|2 + v2 dx + Fε(|{v > 0}|)

over the class A := {v ∈ H1(Ω) | ‖v‖Lq(∂Ω) = 1}

This idea was introduced by [Aguilera–Alt–Caffarelli], 1983.

The main feature of the method is: For each ε > 0 fixed, there

exists uε minimizer of Jε that is locally Lipschitz and the free

boundary ∂{uε > 0} is a C1,γ surface ([Alt–Caffarelli], 1981.)

Then, for ε0 small (but fixed!), we have

|{uε0 > 0}| = β.

So we recover a solution of our original optimization problem.
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Computation of Optimal holes,

We consider:

• Th a regular triangulation of Ω,

• Vh ⊂ H1(Ω) the subspace of continuous piecewise linear func-

tions,

• Ah := {A ⊂ Ω | A = ∪n
i=1Thi

, |A| ≥ α and ∃Thi
s.t. |A\Thi

| < α}
the class of admissible numerical holes.



Then:

Sh
q (A) := inf

{ ∫

Ω
|∇v|2 + v2 dx | v ∈ Vh, ‖v‖Lq(∂Ω) = 1, v|A ≡ 0

}

and

Sh
q (α) := inf

A∈Ah

Sh
q (A) = min

A∈Ah

Sh
q (A) = Sh

q (A∗h).

We have the following result:

Theorem There holds:

1. Sh
q (α) → Sq(α) as h → 0.

2. The extremals uh for Sh
q (α) converges in H1(Ω), along

subsequences, to an extremal u of Sq(α).

3. Again, along subsequences, χA∗h
→ χA∗ in L1(Ω).
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How to compute the discrete optimal hole?

• Optimality criteria: At the free boundary ∂{u > 0} the extremal

u verifies ∂u/∂ν = constant.



The algorithm:

1. Choose an initial hole A0 ∈ Ah.

2. Compute Sh
q (A0) and the extremal u0

h.

3. Compute
∂u0

h
∂ν at ∂A0.

4. Remove the triangles with larger normal derivative until the

measure of the hole lies below α and add triangles to the hole

in regions of the boundary where the normal derivative is small.

5. Update the hole.



Initial hole Final hole Extremal



Optimal computed holes for different values of h

h = 0.80 h = 0.50 h = 0.25 h = 0.1


