Optimal design problems for the first Steklov eigenvalue *

J. Fernández Bonder

http://mate.dm.uba.ar/~jfbonder

Univ. of Buenos Aires January 2006

*Joint work with P. Groisman, J.D. Rossi and N. Wolanski

Sobolev Trace Theorem

$$H^1(\Omega) \hookrightarrow L^q(\partial \Omega), \qquad 1 \le q \le 2_* := \frac{2(N-1)}{N-2}.$$

• Ω is a bounded smooth domain in \mathbb{R}^N

Sobolev Trace Constant

$$S_q := \inf\left\{\frac{\int_{\Omega} |\nabla v|^2 + v^2, dx}{\left(\int_{\partial \Omega} |v|^q \, dS\right)^{2/q}} : v \in H^1(\Omega) \setminus H^1_0(\Omega)\right\}$$

Is the optimal constant in the Sobolev inequality

 $S \|v\|_{L^q(\partial\Omega)}^2 \le \|v\|_{H^1(\Omega)}^2.$

If $1 \leq q < 2_*$ (subcritical), the immersion

$$H^1(\Omega) \hookrightarrow L^q(\partial \Omega)$$
 is compact

Therefore, there exists extremals. These extremals are weak solutions to

$$\begin{cases} -\Delta u + u = 0 & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = \lambda |u|^{q-2} u & \text{on } \partial \Omega \\ (\lambda = \text{Lagrange multiplier}). \end{cases}$$

If u is such that $||u||_{L^q(\partial\Omega)} = 1$ then $\lambda = S_q$.

In the *linear case* (q = 2) this problem is known as the Steklov eigenvalue problem

Problem with Holes

Let $A \subset \Omega$ be measurable. We define

$$S_q(A) := \inf\left\{\frac{\int_{\Omega} |\nabla v|^2 + v^2, dx}{\left(\int_{\partial \Omega} |v|^q \, dS\right)^{2/q}} : v \in H^1(\Omega) \text{ such that } v \mid_A \equiv 0\right\}$$

If A is *closed*, then extremals are weak solutions to

$$\begin{cases} -\Delta u + u = 0 & \text{in } \Omega \setminus A \\ \frac{\partial u}{\partial \nu} = \lambda |u|^{q-2} u & \text{on } \partial \Omega \setminus A \\ u = 0 & \text{in } A \end{cases}$$

PROBLEM

There exists $A^* \subset \Omega$, $|A^*| = \alpha$ such that $S_q(A^*) = \inf_{\substack{A \subset \Omega \\ |A| = \alpha}} S_q(A)$?

PROBLEM

There exists $A^* \subset \Omega$, $|A^*| = \alpha$ such that $S_q(A^*) = \inf_{\substack{A \subset \Omega \\ |A| = \alpha}} S_q(A)$?

And other questions like

- Location
 Topology
- Symmetry Regularity
- Computation

Recall that when q = 2 the problem becomes a linear eigenvalue problem \longrightarrow Steklov eigenvalue problem.

Our results are new, even in this classical setting.

Similar questions for other eigenvalue problems: A. Henrot, J. Denzler, S. Chanillo et al., R. Pedroza,...

Optimal design problems in general: N. Aguilera–H.W. Alt–L.A. Caffarelli, B. Kawohl, C. Lederman,...

Proof of existence (sketch)

Let
$$S(\alpha) := \inf_{\substack{A \in \Omega \\ |A| = \alpha}} S_q(A) = \inf_{\substack{A \in \Omega \\ |A| \ge \alpha}} S_q(A)$$
. Then
$$S(\alpha) = \inf \left\{ \int_{\Omega} |\nabla v|^2 + v^2 \, dx \mid v \in H^1(\Omega), \ v \ge 0, \\ \|v\|_{L^q(\partial\Omega)} = 1, \ |\{v = 0\}| \ge \alpha \right\}$$

Proof of existence (sketch)

Let
$$S(\alpha) := \inf_{\substack{A \subset \Omega \\ |A| = \alpha}} S_q(A) = \inf_{\substack{A \subset \Omega \\ |A| \ge \alpha}} S_q(A)$$
. Then
$$S(\alpha) = \inf \left\{ \int_{\Omega} |\nabla v|^2 + v^2 \, dx \mid v \in H^1(\Omega), \ v \ge 0, \\ \|v\|_{L^q(\partial\Omega)} = 1, \ |\{v = 0\}| \ge \alpha \right\}$$

Let now $\{u_n\}_{n\in\mathbb{N}}$ be a minimizing sequence.

Then $||u_n||_{H^1(\Omega)} \leq C$ and hence...

$$u_n
ightarrow u$$
 weakly in $H^1(\Omega)$
 $u_n
ightarrow u$ strongly in $L^2(\Omega)$
 $u_n
ightarrow u$ strongly in $L^q(\partial \Omega)$

Then $u \in H^1(\Omega)$, $||u||_{L^q(\partial\Omega)} = 1$ and $u \ge 0$.

$$u_n \rightarrow u$$
 weakly in $H^1(\Omega)$
 $u_n \rightarrow u$ strongly in $L^2(\Omega)$
 $u_n \rightarrow u$ strongly in $L^q(\partial \Omega)$

Then $u \in H^1(\Omega)$, $||u||_{L^q(\partial\Omega)} = 1$ and $u \ge 0$.

Also, if we call $A_n := \{u_n = 0\}$, then there exists $\phi \in L^{\infty}(\Omega)$, $0 \le \phi \le 1$ s.t. $\chi_{A_n} \rightharpoonup \phi$ weakly in $L^2(\Omega)$.

Hence, if $A := \{\phi = 0\}$, we have

$$|A| \ge \int_{\Omega} \phi \, dx = \lim_{n \to \infty} \int_{\Omega} \chi_{A_n} \, dx = \lim_{n \to \infty} |A_n| = \alpha.$$

Therefore, u = 0 a.e. $A = \{\phi > 0\}$.

Therefore, u = 0 a.e. $A = \{\phi > 0\}$.

Therefore, u = 0 a.e. $A = \{\phi > 0\}$.

Therefore, u = 0 a.e. $A = \{\phi > 0\}$.

Therefore, u = 0 a.e. $A = \{\phi > 0\}$.

It remains to see that $|\{u = 0\}| = \alpha$. Assume that $|\{u = 0\}| > \alpha$

CONTRADICTION!

• Topology: We only know that the complement of the hole $\Omega \setminus A^* = \{u > 0\}$ is (measure-theoretic) connected.

• Topology: We only know that the complement of the hole $\Omega \setminus A^* = \{u > 0\}$ is (measure-theoretic) connected.

• Symmetry: If Ω is symmetric, does A^* inherits the symmetry of the domain?

• Topology: We only know that the complement of the hole $\Omega \setminus A^* = \{u > 0\}$ is (measure-theoretic) connected.

• Symmetry: If Ω is symmetric, does A^* inherits the symmetry of the domain?

If $\Omega = B_1(0)$, then A^* is spherically symmetric.

• Topology: We only know that the complement of the hole $\Omega \setminus A^* = \{u > 0\}$ is (measure-theoretic) connected.

• Symmetry: If Ω is symmetric, does A^* inherits the symmetry of the domain?

If $\Omega = B_1(0)$, then A^* is spherically symmetric.

Is A^* radially symmetric? NO!

• Regularity: Different approach. Let $\beta := |\Omega| - \alpha$ and

 $\mathcal{A}_{\beta} := \{ v \in H^{1}(\Omega) \mid \|v\|_{L^{q}(\partial\Omega)} = 1, \ |\{v > 0\}| = \beta \}.$ Then $S(\alpha) = \inf_{v \in \mathcal{A}_{\beta}} \int_{\Omega} |\nabla v|^{2} + v^{2} dx$

The idea is to penalize and minimize without the measure restriction.

Let $F_{\varepsilon}(s)$ be

Then, we minimize the penalized functional

$$\mathcal{J}_{\varepsilon}(v) := \int_{\Omega} |\nabla v|^2 + v^2 \, dx + F_{\varepsilon}(|\{v > 0\}|)$$

over the class $\mathcal{A} := \{ v \in H^1(\Omega) \mid \|v\|_{L^q(\partial\Omega)} = 1 \}$

This idea was introduced by [Aguilera–Alt–Caffarelli], 1983.

Then, we minimize the penalized functional

$$\mathcal{J}_{\varepsilon}(v) := \int_{\Omega} |\nabla v|^2 + v^2 \, dx + F_{\varepsilon}(|\{v > 0\}|)$$

over the class $\mathcal{A} := \{ v \in H^1(\Omega) \mid ||v||_{L^q(\partial\Omega)} = 1 \}$

This idea was introduced by [Aguilera–Alt–Caffarelli], 1983.

The main feature of the method is: For each $\varepsilon > 0$ fixed, there exists u_{ε} minimizer of $\mathcal{J}_{\varepsilon}$ that is locally Lipschitz and the free boundary $\partial \{u_{\varepsilon} > 0\}$ is a $C^{1,\gamma}$ surface ([Alt–Caffarelli], 1981.)

Then, for ε_0 small (but fixed!), we have

 $|\{u_{\varepsilon_0} > 0\}| = \beta.$

So we recover a solution of our original optimization problem.

Computation of Optimal holes,

We consider:

• T_h a regular triangulation of Ω ,

• $\mathcal{V}_h \subset H^1(\Omega)$ the subspace of continuous piecewise linear functions,

• $\mathcal{A}_h := \{A \subset \Omega \mid A = \bigcup_{i=1}^n T_{h_i}, |A| \ge \alpha \text{ and } \exists T_{h_i} \text{ s.t. } |A \setminus T_{h_i}| < \alpha \}$ the class of admissible *numerical holes*. Then:

$$S_q^h(A) := \inf\left\{\int_{\Omega} |\nabla v|^2 + v^2 dx \mid v \in \mathcal{V}_h, \ \|v\|_{L^q(\partial\Omega)} = 1, \ v|_A \equiv 0\right\}$$

and

$$S_q^h(\alpha) := \inf_{A \in \mathcal{A}_h} S_q^h(A) = \min_{A \in \mathcal{A}_h} S_q^h(A) = S_q^h(A_h^*).$$

Then:

$$S_q^h(A) := \inf \left\{ \int_{\Omega} |\nabla v|^2 + v^2 \, dx \mid v \in \mathcal{V}_h, \ \|v\|_{L^q(\partial\Omega)} = 1, \ v|_A \equiv 0 \right\}$$

and

$$S_q^h(\alpha) := \inf_{A \in \mathcal{A}_h} S_q^h(A) = \min_{A \in \mathcal{A}_h} S_q^h(A) = S_q^h(A_h^*).$$

We have the following result:

Theorem There holds:

1. $S_q^h(\alpha) \to S_q(\alpha)$ as $h \to 0$.

2. The extremals u_h for $S_q^h(\alpha)$ converges in $H^1(\Omega)$, along subsequences, to an extremal u of $S_q(\alpha)$.

3. Again, along subsequences, $\chi_{A_h^*} \to \chi_{A^*}$ in $L^1(\Omega)$.

How to compute the *discrete optimal hole*?

• Optimality criteria: At the free boundary $\partial \{u > 0\}$ the extremal u verifies $\partial u / \partial v = constant$.

The algorithm:

- 1. Choose an initial hole $A^0 \in \mathcal{A}_h$.
- 2. Compute $S_q^h(A^0)$ and the extremal u_h^0 .
- 3. Compute $\frac{\partial u_h^0}{\partial \nu}$ at ∂A^0 .
- 4. Remove the triangles with larger normal derivative until the measure of the hole lies below α and add triangles to the hole in regions of the boundary where the normal derivative is small.
- 5. Update the hole.

Optimal computed holes for different values of \boldsymbol{h}

