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Sobolev inequalities:

S‖u‖p
Lq(∂Ω) ≤ ‖u‖p

W1,p(Ω)
, 1 ≤ q ≤ p∗ =

(N − 1)p

N − p
– TRACE

S̄‖u‖p
Lr(Ω) ≤ ‖u‖p

W
1,p
0 (Ω)

, 1 ≤ r ≤ p∗ =
Np

N − p
– IMMERSION

The best constants for these inequalities are

Sp,q(Ω) = inf
u∈W1,p(Ω)

∫
Ω |∇u|p + |u|p dx

(
∫
∂Ω |u|q dS)p/q

and

S̄p,r(Ω) = inf
u∈W

1,p
0 (Ω)

∫
Ω |∇u|p dx

(
∫
Ω |u|r dx)p/r
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One of the main differences between these two quantities is the

fact that the first one is not homogeneous under dilations of the

domain while the second one is:

Sp,q(µΩ) = µβ inf
v∈W1,p(Ω)

∫
Ω µ−p|∇v|p + |v|p dx

(
∫
∂Ω |v|q dS)p/q

where β = (Nq −Np + p)/q

but

S̄p,r(µΩ) = µαS̄p,r(Ω)

where α = (pr + Nr − pN)/r
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For 1 ≤ q < p∗ and 1 ≤ r < p∗ the inclusions are compact, so

extremals exists. These extremals are weak solutions of


∆pu = |u|p−2u in Ω

|∇u|p−2∂u
∂ν = λ|u|q−2u on ∂Ω

and 
−∆pu = λ|u|r−2u in Ω

u = 0 on ∂Ω

respectively, where ∆pu = div(|∇u|p−2∇u) is the p−Laplacian.
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Problem: To study the dependance of the best Sobolev trace
constant and extremals with respect to the domain.

Consider the family of domains

Ωµ = µΩ = {µx | x ∈ Ω}

Flores – del Pino proved (Comm. PDEs, 2001) that for expand-
ing domains (µ →∞)

S2,q(Ωµ) → S2,q(RN
+) as µ →∞, q > 2.

For contracting domains (µ → 0), FB – Rossi (CPAA, 2002)
showed

Sp,q(Ωµ)

µβ
→

|Ω|
|∂Ω|p/q

as µ → 0
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Behavior of extremals:

Flores - del Pino: for expanding domains the extremals develop

a single peak near a point where the mean curvature of the

boundary maximizes (q > p = 2).

FB - Rossi: for contracting domains the extremals, when rescaled

to the original domain as v(x) = u(µx) and properly normalized,

converge to a constant in W1,p(Ω).
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Consider now a different family of domains. Let Ω ⊂ RN = Rn+k

and set

Ωµ = {(µx, y) | (x, y) ∈ Ω, x ∈ Rn, y ∈ Rk}.

Now look for the dependance for Sp,q(Ωµ) on µ.

We are specially interested in the case µ → 0 (thin domains).

Let us define the projection

P : Rn+k → Rk, P (x, y) = y

and consider the immersion

W1,p(P (Ω), α) ↪→ Lq(P (Ω), β)

with best constant S̄p,q(P (Ω), α, β), where α, β ∈ L∞(P (Ω)) are

nonnegative weight functions.
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We have

Theorem 1 (FB – Martinez – Rossi) There exists two non-

negative weights α, β ∈ L∞(P (Ω)) such that

lim
µ→0+

Sp,q(Ωµ)

µ(nq−np+p)/q
= S̄p,q(P (Ω), α, β)

and the extremals uµ of Sp,q(Ω), properly rescaled and normalized

converges strongly in W1,p(Ω), to an extremal for S̄p,q(P (Ω), α, β).

Remark: The weights α and β are given “explicitly” in terms of

the geometry of Ω.
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Case p = q. The eigenvalue problem.


−∆pu + |u|p−2u = 0 in Ω

|∇u|p−2∂u
∂ν = λ|u|p−2u on ∂Ω

For p = 2 (linear case) this problem is known as the Steklov

problem.

We will call this problem as the nonlinear Steklov problem.

Observation: The first eigenvalue λ1 agrees with the best Sobolev

trace constant (and the extremals with the respective eigenfunc-

tions).
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This problem presents some similar facts with the following

−∆pu = λ|u|p−2u in Ω

u = 0 on ∂Ω

that was studied by many authors (Anane - Cuesta - de Figueiredo

- Gossez - Lindqvist - etc.)
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When applying the Ljusternik–Schnirelman theory on the non-

linear Steklov problem, we obtain:

• There exists a sequence of variational eigenvalues {λk} with

λk ↗∞ (FB – Rossi, JMAA ’01).

• The first eigenvalue λ1 is isolated and simple (Mart́ınez –

Rossi, Abst. Appl. Anal. ’02).

• The second eigenvalue λ2 = inf{λ > λ1} agrees with the

second variational eigenvalue (FB – Rossi, Pub. Mat. ’02).
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We are interested in the behavior of the eigenvalues and eigen-

functions of the nonlinear Steklov problem for thin domains. We

have:

Theorem 2 (FB – Mart́ınez – Rossi) Every eigenvalue (vari-

ational or not) and eigenfunction of the nonlinear Steklov prob-

lem converges (when properly “normalized”) to an eigenvalue

and an eigenfunction of

−div(α|∇u|p−2∇u) + α|u|p−2u = λ̄kβ|u|p−2u in P (Ω)

∂u

∂ν
= 0 on ∂P (Ω)

where P (Ω) is the projection of Ω over the y variable and α, β

are the same weights as before.
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Behavior of Extremals.

Another big difference between the Sobolev trace Theorem and

the Sobolev immersion Theorem arises in the behavior of the

extremals:

Assume p = 2 and that Ω is a ball, Ω = B(0, µ).

- Extremals for S̄2,r(B(0, µ)) are radial functions.

- Extremals for S2,q(B(0, µ)) are not radial, at least for large

values of µ (this fact is a consequence of Flores – del Pino)
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Question: Is it true that for small balls the extremals for S2,q(B(0, µ))

are radial functions?

Answer: Yes! This is a corollary of

Theorem 3 (FB – Lami-Dozo – Rossi) There exists µ0 > 0

such that for every µ < µ0 there exists a unique positive extremal

u for the embedding H1(Ωµ) ↪→ Lq(∂Ωµ) (after normalization).

Proof: The proof is based on the fact that the extremals are

nearly constant for µ small (FB – Rossi) and the Implicit Function

Theorem. ♦
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As a consequence of this result we have

Theorem 4 (FB – Lami-Dozo – Rossi) There exists µ0 > 0

such that, for any µ < µ0 there exists a radial extremal for the

immersion

H1(B(0, µ)) ↪→ L2∗(∂B(0, µ)).

The existence of extremals in the critical Sobolev case, for gen-

eral domains Ω (under very mild geometric assumptions) has

been proved by Adimurthi – Yadava (Comm. PDEs, 1991).

Question: There exists extremals for the Sobolev trace immer-

sion in the case p 6= 2, q = 2∗?
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Answer: yes! but we do not have a result as general as Adimurthi

– Yadava for p = 2.

Theorem 5 (FB – Rossi) Let Ω be a bounded smooth domain

in RN such that

|Ω|
|∂Ω|p/p∗

< K(N, p),

where

K(N, p)p = inf
∇w∈Lp(RN

+), w∈Lp∗(∂RN
+)

∫
RN

+

|∇w|p dx

∫
∂RN

+

|w|p∗ dx′
p/p∗

.

Then there exists an extremal for the immersion W1,p(Ω) →
Lp∗(∂Ω).
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Remark: Let Ω be a bounded smooth domain in RN and let

Ωµ = µΩ = {µx | x ∈ Ω},

where µ > 0. Then, if µ is small,

µ < K(N, p)1/p|∂Ω|1/p∗

|Ω|1/p
,

then Ωµ verifies the hypotheses of the Theorem and hence there

is an extremal for the immersion W1,p(Ωµ) → Lp∗(∂Ωµ).

Remark: Observe that from the proof of the Theorem, we obtain

the existence of extremals for every domain Ω that satisfies

Sp,p∗(Ω) < K(N, p). (1)

The condition in the Theorem is the simplest geometric condition

that ensures (1).
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