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Sobolev inequalities:
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The best constants for these inequalities are
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One of the main differences between these two quantities is the
fact that the first one is not homogeneous under dilations of the
domain while the second one is:
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For 1 < g < px and 1 < r < p* the inclusions are compact, so
extremals exists. These extremals are weak solutions of

Apu = |ulP~?u in
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and
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respectively, where Apu = div(|VulP~2Vu) is the p—Laplacian.

3



Problem: To study the dependance of the best Sobolev trace
constant and extremals with respect to the domain.

Consider the family of domains

Qu=pQ = {uz | z € Q)

Flores — del Pino proved (Comm. PDEs, 2001) that for expand-
ing domains (u — 00)

Sg)Q(QM) —> SQ,q(RJ_K) as u — oo, q > 2.

For contracting domains (u — 0), FB — Rossi (CPAA, 2002)
showed
Sp,q(Q,u) . 2|
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Behavior of extremals:

Flores - del Pino: for expanding domains the extremals develop
a single peak near a point where the mean curvature of the

boundary maximizes (g > p = 2).

FB - Rossi: for contracting domains the extremals, when rescaled
to the original domain as v(z) = u(ux) and properly normalized,
converge to a constant in W1P(Q).



Consider now a different family of domains. Let Q ¢ RN = Rtk
and set

Qu = {(pz,y) | (z,y) € Q, R, yecRF}.

Now look for the dependance for Sy ¢(£2,) on p.
We are specially interested in the case y© — 0 (thin domains).

LLet us define the projection

pP:R"F L RF P(z,y) =y
and consider the immersion

WHP(P(R),a) — LU(P(R), 8)

with best constant S, ,(P(2),«,3), where a,3 € L>®°(P(2)) are
nonnegative weight functions.



We have

Theorem 1 (FB — Martinez — Rossi) There exists two non-
negative weights a, 3 € L*°(P(£2)) such that

lirm Sp,q(S2)
u—0+ p(ng—np+p)/q

— SP,Q(P(Q)7 a, 6)

and the extremals uy ofSp,q(Q), properly rescaled and normalized
converges strongly in W1P(Q), to an extremal for Sp o(P(2), o, ).

Remark: The weights a and 3 are given “explicitly” in terms of
the geometry of Q2.



Case p = ¢q. The eigenvalue problem.

—Dpu—+ [uPPu=0 inQ

[Vu|P=29% = \|uP~2u  on 82

For p = 2 (linear case) this problem is known as the Steklov
problem.

We will call this problem as the nonlinear Steklov problem.

Observation: The first eigenvalue A1 agrees with the best Sobolev
trace constant (and the extremals with the respective eigenfunc-

tions).




This problem presents some similar facts with the following
—Dpu = AulP™2%u  in Q
u=20 on 0X2

that was studied by many authors (Anane - Cuesta - de Figueiredo
- Gossez - Lindqvist - etc.)



When applying the Ljusternik—Schnirelman theory on the non-
linear Steklov problem, we obtain:

e There exists a sequence of variational eigenvalues {\;} with
A /oo (FB — Rossi, JMAA '01).

e The first eigenvalue )\ is isolated and simple (Martinez —
Rossi, Abst. Appl. Anal. '02).

e The second eigenvalue Ay = inf{\A > A1} agrees with the
second variational eigenvalue (FB — Rossi, Pub. Mat. '02).

10



We are interested in the behavior of the eigenvalues and eigen-

functions of the nonlinear Steklov problem for thin domains. We
have:

Theorem 2 (FB — Martinez — Rossi) Every eigenvalue (vari-
ational or not) and eigenfunction of the nonlinear Steklov prob-

lem converges (when properly “normalized”) to an eigenvalue
and an eigenfunction of

—div(a|VulP72Vu) 4+ alulP7%u = X BlulP~%u  in P(2)

ou

5 =
where P(S2) is the projection of Q2 over the y variable and o, (3
are the same weights as before.

0 on OP(2)
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Behavior of Extremals.
Another big difference between the Sobolev trace Theorem and
the Sobolev immersion Theorem arises in the behavior of the

extremals:

Assume p = 2 and that Q is a ball, Q = B(0, ).
- Extremals for S .(B(0, u)) are radial functions.

- Extremals for Sy ,(B(0,u)) are not radial, at least for large
values of u (this fact is a consequence of Flores — del Pino)
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Question: Is it true that for small balls the extremals for Sy ,(B(0, 1))
are radial functions?

Answer: Yes! This is a corollary of

Theorem 3 (FB — Lami-Dozo — Rossi) There exists ug > 0
such that for every u < ug there exists a unique positive extremal
u for the embedding H($2,) — L9(0R2,) (after normalization).

Proof: The proof is based on the fact that the extremals are
nearly constant for u small (FB — Rossi) and the Implicit Function
Theorem. $
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As a consequence of this result we have

Theorem 4 (FB — Lami-Dozo — Rossi) There exists ug > 0
such that, for any u < ug there exists a radial extremal for the
immersion

HY(B(0,p)) < L?*(8B(0, u)).

T he existence of extremals in the critical Sobolev case, for gen-
eral domains 2 (under very mild geometric assumptions) has
been proved by Adimurthi — Yadava (Comm. PDEs, 1991).

Question: There exists extremals for the Sobolev trace immer-
sion in the case p #= 2, g = 247
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Answer: yes! but we do not have a result as general as Adimurthi
— Yadava for p = 2.

Theorem 5 (FB — Rossi) Let 2 be a bounded smooth domain
in RN such that

€2
|8Q|p/p*

< K(N,p),
where

/ | Vwl|P dx
R

N
K(N,p)P = inf T

VweLP(RY), weLr+(ORY) p/p+’
/ N lw|P* da’
ORY

Then there exists an extremal for the immersion W1P(Q) —
LP+(0%2).
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Remark: Let € be a bounded smooth domain in RY and let

QM:MQ:{Nx | 3369},
where u > 0. Then, if u is small,
62| L/
/P

then €2, verifies the hypotheses of the Theorem and hence there
is an extremal for the immersion W1P(Q,) — LP+(02,).

uw< K(N,p)t/P

Remark: Observe that from the proof of the Theorem, we obtain
the existence of extremals for every domain €2 that satisfies

Sp,p«(§2) < K(N,p). (1)

The condition in the Theorem is the simplest geometric condition
that ensures (1).
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