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Introduction
Recall the p−Laplacian

∆pu := div(|∇u|p−2∇u).

Used to model Non-Newtonian Fluids

I 1 < p < 2 −→ pseudo-plastic fluids.

I p > 2 −→ dilatant fluids.

I p = 2 −→ Newtonian fluids (∆2 = ∆).

Mathematical point of view: Is a quasilinear non uniformly elliptic
operator when p 6= 2

I 1 < p < 2 −→ singular.

I p > 2 −→ degenerated.

Important feature: HOMOGENEITY

∆p(tu) = tp−1∆pu, ∀ t > 0.
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Introduction - Eigenvalues

The eigenvalue problem for the p−Laplacian:{
−∆pu = λ|u|p−2u in Ω

u = 0 on ∂Ω

where Ω ⊂ RN smooth and bounded.
We denote

Σ := {λ ∈ R : there exists a nontrivial solution}

What can be said about the set Σ?
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Introduction - Eigenvalues

We define

λ1 := ı́nf
v∈W 1,p

0 (Ω)

∫
Ω |∇v |p dx∫

Ω |v |p dx
.

Then λ1 is the first (lowest) eigenvalue and is a principal eigenvalue
(i.e. every eigenfunction associated to λ1 has constant sign).

[Anane] - [Lidqvist] −→ λ1 is simple and isolated.
That means:

I λ1 is simple ↔ if u and v are eigenfunctions associated to λ1

then
u = cv for some c ∈ R.

I λ1 is isolated ↔ there exists δ > 0 such that

(λ1, λ1 + δ) ∩ Σ = ∅.
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Introduction - Eigenvalues

What about other eigenvalues? −→ Many constructions

C := {C ⊂W 1,p
0 (Ω): C is compact,C = −C}

γ(C ) := ı́nf{k ∈ N : ∃φ : C → Rk \ {0} odd and continuous}
Ck := {C ∈ C : γ(C ) ≥ k}

(γ is the Krasnoslskii genus)

λk = ı́nf
C∈Ck

sup
v∈C

∫
Ω |∇v |p dx∫

Ω |v |p dx
.

[Garcia Azorero-Peral, 1988] −→ {λk}k∈N ⊂ Σ
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Introduction - Eigenvalues

Big open question: Is Σ = {λk}k∈N?

(Positive) Answer only in dimension 1−→ [Walter, 1988] –
[FB-Pinasco, 2003]

In dimension > 1 is known:

I Σ is closed.

I λ̄2 := ḿın{λ ∈ Σ: λ > λ1} then

λ̄2 = λ2 → [Anane]–[Cuesta-De Figueiredo-Gossez, 1999]

We denote
Σvar := {λk}k∈N.
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Variational Eigenvalues

What can be said about the variational eigenvalues?

I dimension 1 −→ [Drabek-Manasevich, 1999]

Ω = (0, L), λk = (p−1)
(πpk

L

)p
, uk(x) = sinp(πpλkx/L),

where πp and sinp are suitable generalizations of π and sin
respectively.

I dimension > 1 −→ [Garcia Azorero-Peral, 1988]–[Friedlander,
1989]

λk ∼
( k

|Ω|

)p/N
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Systems

We consider the following elliptic systems{
−∆pu = λf (x , u, v)

−∆qv = λg(x , u, v)

In Ω ⊂ RN smooth and bounded, with homogeneous Dirichlet
boundary conditions.

We want to recover homogeneity.

Since ∆p is (p − 1)-homogeneous and ∆q is (q − 1)-homogeneous
is natural tu assume that the system must have the following
homogeneity:

(u, v) is a solution ↔ (t1/pu, t1/qv) is a solution ∀t > 0.
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Systems

Moreover, we want our system to be variational. That is

f (x , u, v) =
∂F

∂u
(x , u, v) and g(x , u, v) =

∂F

∂v
(x , u, v)

so that solutions to the system are critical points of

Φ(u, v) :=

∫
Ω

|∇u|p

p
+
|∇v |q

q
dx −

∫
Ω
λF (x , u, v) dx .

So the potential function F must be

F (x , u, v) = a(x)|u|p + b(x)|v |q + c(x)|u|α|v |β

with
α

p
+
β

q
= 1
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Systems

For simplicity

a(x) = b(x) = 0, c(x) = 1

So the system reads{
−∆pu = λα|u|α−2u|v |β

−∆qv = λ|u|αβ|v |β−2v

In Ω ⊂ RN smooth and bounded, with homogeneous Dirichlet
boundary conditions.



Results for Systems

[Boccardo - de Figueiredo, 2002],
[Fleckinger et al., 1997],
[Manasevich - Mawhin, 2000],
[Allegretto - Huang, 1996],
[Stavrakakis - Zographopoulos, 2003],
[De Napoli - Mariani, 2002],
[De Napoli - Pinasco, 2006],
[FP - Pinasco, 2008],
... (many others)



Results for Systems
Results on the first eigenvalue

I Existence of a principal eigenvalue.
The first eigenvalue is given by

λ1 := ı́nf
(u,v)∈W 1,p

0 (Ω)×W 1,q
0 (Ω)

∫
Ω

1
p |∇u|p + 1

q |∇v |q dx∫
Ω |u|α|v |β dx

I Simplicity of the principal eigenvalue.
Up to the observation that (u, v) is an eigenfunction ⇒
(u,−v) is an eigenfunction.

I Positivity of associated eigenfunction.

I Isolation of principal eigenvalue.
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Asymptotic behavior
Previous results

[De Napoli - Pinasco, 2006] −→ dimension 1

λk ≤
Λp,k

p

[
1 +

(p

q

)q+1
Λ

(q−p)/p
p,k

]
, (q ≤ p)

where Λp,k is the kth (variational) eigenvalue of the p−laplacian
with Dirichlet BC.

[FB - Pinasco, 2008] −→ dimension ≥ 1
Consider the spectral counting function

N(λ) := #{k ∈ N : λk ≤ λ}

ckb ≤ λk ≤ Cka ⇐⇒ (C−1λ)1/a ≤ N(λ) ≤ (c−1λ)1/b
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Asymptotic behavior
Previous results

[FB - Pinasco, 2008] obtained

cλn/p ≤ N(λ) ≤ C1λ
n/q + C2λ

n/p, (q ≤ p)

(In dimension n = 1 one can get sharper constants)

In terms of eigenvalues:

ckq/n ≤ λk ≤ Ckp/n

Remark: The coupling parameters α and β are not reflected in
these bounds.
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Objective of our work

Improve the existing bounds looking for

I obtain the same exponent in both the upper and the lower
bound for N(λ).

I analyze the influence in the coupling parameters α and β in
the asymptotic behavior of N(λ).

Theorem
There exists c,C > 0 depending on p, q, α, β and Ω such that

cλn/(α+β) ≤ N(λ) ≤ Cλn/(α+β).

Equivalently,
ck(α+β)/n ≤ λk ≤ Ck(α+β)/n.
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Remarks and Applications

I Observe that when p = q, we have that α + β = q.

I This is the case for semilinear systems (p = q = 2).

I In these cases the coupling plays no role in the asymptotic
behaviour of the N(λ) and we believe that is why this
phenomenum was not observe before.

[Protter, 1979] – [Cantrell, 1984, 1986] – [Cantrell-Cosner, 1987]

Applications:

I Bifurcation problems

I anti-maximum principles

I existence / non-existence results

[Azizieh-Clément, 2002] – [Drabek et al., 2003],
[Stavrakakis-Zographopoulos, 1999], etc.
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Proof of the Theorem
Lemma 1

Let Qt be the cube of side t centered at the origin.

Lemma
Let λt

1 be the first eigenvalue of the system in Qt , i.e.

λt
1 = ı́nf

(u,v)∈W 1,p
0 (Qt)×W 1,q

0 (Qt)

∫
Qt

1
p |∇u|p + 1

q |∇v |q dx∫
Qt
|u|α|v |β dx

Then

λt
1 =

λ1
1

tα+β
.



Proof of the Theorem
Lemma 1

Proof. The proof is just a scaling argument.
If (u, v) ∈W 1,p

0 (Q1)×W 1,q
0 (Q1), then

ut(x) =
1

t
u(tx), vt(x) =

1

t
v(tx)

verify that (ut , vt) ∈W 1,p
0 (Qt)×W 1,q

0 (Qt)

Now changing variables, we get that∫
Qt

1
p |∇ut |p + 1

q |∇vt |q dx∫
Qt
|ut |α|vt |β dx

=
1

tα+β

∫
Q1

1
p |∇u|p + 1

q |∇v |q dx∫
Q1
|u|α|v |β dx

From where it follows

λt
1 =

1

tα+β
λ1
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Proof of the Theorem
Lemma 2

Analogously, we have

Lemma
Let µt

2 be the first non-zero eigenvalue of the system with
homogeneous Neumann boundary condition, i.e.

µt
2 = ı́nf

C∈C2

sup
(u,v)∈C

∫
Qt

1
p |∇u|p + 1

q |∇v |q dx∫
Qt
|u|α|v |β dx

Then

µt
2 =

µ1
2

tα+β

Remark
In this case, since is a Neumann problem, the spaces W 1,p

0 and

W 1,q
0 are replaced with W 1,p and W 1,q respectively



Proof of the Theorem
Dirichlet-Neumann bracketing

The following is a generalization of the Dirichlet-Neumann
bracketing of Courant made in [FB-Pinasco, 2003]

Theorem (Dirichlet-Neumann bracketing)

Let U1,U2 ⊂ Ω be open disjoint sets such that (U1 ∪ U2)◦ = Ω
and |Ω \ (U1 ∪ U2)| = 0. Then,

ND(λ,U1) + ND(λ,U2) = ND(λ,U1 ∪ U2)

≤ ND(λ,Ω) ≤ NN(λ,Ω)

≤ NN(λ,U1 ∪ U2) = NN(λ,U1) + NN(λ,U2)



Proof of the Theorem

Fix λ� 1 and take a lattice of cubes of side length t � 1 in Rn

with t depending on λ

I Lower bound for N(λ) (i.e. upper bound for λk)

Take t such that λt
1 = λ, i.e.

t =
( λ
λ1

1

)− 1
α+β

(Lemma 1)

Hence, ND(λ,Qt) = 1.
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Improvements

We wuould like to have more explicit constants for the above
inequalities.

This require an explicit upper bound for λ1
1 and an explicit lower

bound for µ1
2.

Using the results of [Drabek-Manasevich, 1999] on the one
dimensional problem it is posible to find an explicit upper bound
for λ1

1.

In order to do this, we introduce the pseudo p−laplace operator

∆̂pu =
n∑

i=i

(|uxi |
p−2uxi )xi
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Consider the eigenvalue problem associated to ∆̂p
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where |x |pp =
∑
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Therefore λ1
1 ≤ np/2ν1. So we need to bound ν1.

Advantadge. The first eigenfunction of

−∆̂su = ρ|u|s−2u in Q1

with Dirichlet BC can be computed explicitly by separation of
variables!
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Improvements
Let φs(x) = sins(πsx) be the first eigenfunction of the one
dimensional s−laplacian, in the interval (0, 1) then

ws(x) =
n∏

i=1

φs(xi )

is the first eigenfunction of the n dimensional pseudo s−laplacian
in the cube Q1.

Now, we use (ws ,ws), with s = α + β as a test function for ν1 to
get
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n
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