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Apu = div(|VulP2Vu).

Used to model Non-Newtonian Fluids

» 1 < p <2 — pseudo-plastic fluids.

» p > 2 — dilatant fluids.

» p =2 — Newtonian fluids (Ay = A).
Mathematical point of view: Is a quasilinear non uniformly elliptic
operator when p # 2

> 1< p<2—>singular.

» p > 2 — degenerated.
Important feature: HOMOGENEITY

Dp(tu) = tPrApu, YV t>0.
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We define —
Moe i delVvPax
vewl? (@) JolvIPdx

Then Ay is the first (lowest) eigenvalue and is a principal eigenvalue
(i.e. every eigenfunction associated to \; has constant sign).
[Anane| - [Lidqvist] — A1 is simple and isolated.

That means:

> A1 is simple < if u and v are eigenfunctions associated to A1
then

u=cv for some ¢ € R.

> )1 is isolated < there exists § > 0 such that

()\1,>\1+5)QZ:®.



Introduction - Eigenvalues

What about other eigenvalues? — Many constructions



Introduction - Eigenvalues

What about other eigenvalues? — Many constructions

C:={Cc W,P(Q): Cis compact, C = —C}
7(C) := inf{k € N: 3¢: C — R¥\ {0} odd and continuous}
Ck ={CeC:~(C) >k}



Introduction - Eigenvalues

What about other eigenvalues? — Many constructions

C:={Cc W,P(Q): Cis compact, C = —C}
7(C) := inf{k € N: 3¢: C — R¥\ {0} odd and continuous}
Ck ={CeC:~(C) >k}

(7 is the Krasnoslskii genus)



Introduction - Eigenvalues

What about other eigenvalues? — Many constructions

C:={Cc W,P(Q): Cis compact, C = —C}
7(C) := inf{k € N: 3¢: C — R¥\ {0} odd and continuous}
Ck ={CeC:~(C) >k}

(7 is the Krasnoslskii genus)

Vv|Pd
~ cec kveC fQ v|Pdx



Introduction - Eigenvalues

What about other eigenvalues? — Many constructions

C:={Cc W,P(Q): Cis compact, C = —C}
7(C) := inf{k € N: 3¢: C — R¥\ {0} odd and continuous}
Ck ={CeC:~(C) >k}

(7 is the Krasnoslskii genus)

Vv|Pd
~ cec kveC fQ v|Pdx

[Garcia Azorero-Peral, 1988] — {Ak}keny C X
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In dimension > 1 is known:

> > is closed.
> Ao :=min{\ € Z: A > \;} then

A2 = A2 — [Anane]-[Cuesta-De Figueiredo-Gossez, 1999]

We denote
2o 1= {)\k}kEN-



Variational Eigenvalues

What can be said about the variational eigenvalues?

» dimension 1 — [Drabek-Manasevich, 1999]

ok

Q=01 M=(p-1(™

)”, u(x) = sinp(mpAix /L),

where 7, and sin, are suitable generalizations of 7 and sin
respectively.



Variational Eigenvalues

What can be said about the variational eigenvalues?

» dimension 1 — [Drabek-Manasevich, 1999]

Q=(0,L), )\k:(p—l)<llk)p, u(x) = sinp(mpAix /L),

where 7, and sin, are suitable generalizations of 7 and sin
respectively.

» dimension > 1 — [Garcia Azorero-Peral, 1988]—[Friedlander,

1989] .
Ak~ (@)
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Systems

We consider the following elliptic systems

—Apu = M(x,u,v)
—Agv = Ag(x, u,v)
In Q c RN smooth and bounded, with homogeneous Dirichlet

boundary conditions.
We want to recover homogeneity.

Since A, is (p — 1)-homogeneous and Aq is (g — 1)-homogeneous
is natural tu assume that the system must have the following
homogeneity:

(u,v) is a solution « (t/Pu, t*/9v) is a solution Vt > 0.
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Moreover, we want our system to be variational. That is
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Moreover, we want our system to be variational. That is

oF oF

f(x,u,v)= E(x, u,v) and g(x,u,v)= a(x7 u,v)

so that solutions to the system are critical points of

p q
d(u,v) ::/ |v:| + ]V(\]/| dx/ AF(x, u, v) dx.
Q Q

So the potential function F must be
F(x, u,v) = a(x)[u” + b(x)|v|? + c(x)|u|*|v|’

with
g+§:1
p q



Systems

For simplicity

So the system reads

—Apu = Aa|ul*2ulv|?
gy = Mul*BIvI* 2y

In Q ¢ RY smooth and bounded, with homogeneous Dirichlet
boundary conditions.



Results for Systems
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[Allegretto - Huang, 1996],
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[De Napoli - Mariani, 2002],

[De Napoli - Pinasco, 2006],

[FP - Pinasco, 2008],

.. (many others)
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Results for Systems

Results on the first eigenvalue

» Existence of a principal eigenvalue.
The first eigenvalue is given by

. - Ja 3 IVulP + 3[Vv|7 dx
1=

(uv) EWEP(Q) x WE(Q) Jo lul|v]? dx

» Simplicity of the principal eigenvalue.
Up to the observation that (u, v) is an eigenfunction =
(u, —v) is an eigenfunction.

» Positivity of associated eigenfunction.

» lIsolation of principal eigenvalue.
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Results for Systems

Results on higher eigenvalues

» Existence of a sequence of eigenvalues {\x}xen
Eigenvalues are defined as

1 p 1 q
Ak = inf  sup fQ P‘VU‘ :‘q[’ng dx
CeC (u,v)eC fQ ’U’ |V| dx

What about the asymptotic behavior of these eigenvalues?



Asymptotic behavior

Previous results

[De Napoli - Pinasco, 2006] — dimension 1

+1
Mo < ek [y (PYTUAG AR (g < p)
p q p7
where A,  is the kth (variational) eigenvalue of the p—laplacian

with Dirichlet BC.
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Asymptotic behavior

Previous results

[De Napoli - Pinasco, 2006] — dimension 1

Ak S /\Zk {1 + (Z)qﬂ’\ffk_p)/p}, (q<p)

where A,  is the kth (variational) eigenvalue of the p—laplacian
with Dirichlet BC.

[FB - Pinasco, 2008] — dimension > 1
Consider the spectral counting function

N(X) == #{k € N: A, < A}

ckP < A < Ck* = (CTIN)Y2 < N < (c7IA)YP
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Asymptotic behavior

Previous results

[FB - Pinasco, 2008] obtained

AP < N(A) < QAT+ GAYP, (g < p)

(In dimension n = 1 one can get sharper constants)

In terms of eigenvalues:

ck/m < X\, < CkP/"

Remark: The coupling parameters o and 3 are not reflected in
these bounds.
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Objective of our work

Improve the existing bounds looking for

» obtain the same exponent in both the upper and the lower
bound for N(\).

» analyze the influence in the coupling parameters « and § in
the asymptotic behavior of N(\).

Theorem
There exists ¢, C > 0 depending on p, q,«, 8 and €2 such that

eA(@H8) < N(X) < CAn/(etB),

Equivalently,
ck(atB)/n <A\ < CklotB)/n



Remarks and Applications

» Observe that when p = g, we have that  + 5 = gq.
» This is the case for semilinear systems (p = g = 2).

» In these cases the coupling plays no role in the asymptotic
behaviour of the N(\) and we believe that is why this
phenomenum was not observe before.

[Protter, 1979] — [Cantrell, 1984, 1986] — [Cantrell-Cosner, 1987]
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» Observe that when p = g, we have that  + 5 = gq.
» This is the case for semilinear systems (p = g = 2).

» In these cases the coupling plays no role in the asymptotic
behaviour of the N(\) and we believe that is why this
phenomenum was not observe before.

[Protter, 1979] — [Cantrell, 1984, 1986] — [Cantrell-Cosner, 1987]

Applications:
» Bifurcation problems
» anti-maximum principles
> existence / non-existence results

[Azizieh-Clément, 2002] — [Drabek et al., 2003],
[Stavrakakis-Zographopoulos, 1999], etc.



Proof of the Theorem

Lemma 1

Let Q; be the cube of side t centered at the origin.
Lemma
Let )\i be the first eigenvalue of the system in Q;, i.e.
1 1
A= " thE\Vu|P+5]Vv|‘7 dx
(u,0) EWEP(Q) x WE9(Qr) Jo, lulo|v]? dx

Then
A
tat+p8’

A =
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ue(x) = %u(tx), ve(x) = %v(tx)

verify that (ut, v¢) € Wol’p(Qt) X W&’q(Qt)
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Proof of the Theorem

Lemma 1

Proof. The proof is just a scaling argument.
If (u,v) € Wy P(Q1) x Wy 9(Q1), then

1 1
ur(x) = ?u(tx), ve(x) = ?v(tx)
verify that (ug, vi) € Wy P(Qr) x Wy (Q:)
Now changing variables, we get that

th%\Vut|p+%|Vvt|q dx 1 f01%|Vu|p—|—%|Vv|q dx

Jo luelolvelPdx et [ Jule|v] dx

From where it follows



Proof of the Theorem

Lemma 2
Analogously, we have

Lemma
Let pb be the first non-zero eigenvalue of the system with
homogeneous Neumann boundary condition, i.e.

1 1
S, LIV ulP + L[V v]9 dx

t Ve
ty = inf  sup
CEC2 (y,v)eC th |ul*|v|B dx
Then .
t M
Mo = ta+ﬁ
Remark

In this case, since is a Neumann problem, the spaces Wol’p and
WO1 "9 are replaced with WYP and W19 respectively



Proof of the Theorem

Dirichlet-Neumann bracketing

The following is a generalization of the Dirichlet-Neumann
bracketing of Courant made in [FB-Pinasco, 2003]

Theorem (Dirichlet-Neumann bracketing)
Let Uy, U C Q be open disjoint sets such that (U; U Uz)° = Q

and |Q\ (U1 U Up)| = 0. Then,
NP(X, Ur) + NP(X, Us) = NP (X, UL U Us)
< NP(X\, Q) < NV(A, Q)
< NV, Uy U Uo) = NV(X, Ur) + NV (X, Us)
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» Lower bound for N(X) (i.e. upper bound for \x)
Take t such that A\l =, i.e.
1

t= (/\)\%)_W (Lemma 1)

Hence, ND()\, Q) = 1.
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Proof of the Theorem

By the Dirichlet-Neumann bracketing

K

=) NP0 Q) =

i=1

where K is the number of cubes of the lattice contained in €.
Now
t"K — |Q| as t — 0+

Then, as A\ — >

Q| A 2
b > NL: Z)ets
NPOL9) > K~ S = 19155




Proof of the Theorem
» Upper bound for N(\) (i.e. lower bound for A)

Now take t such that p5 = X, i.e.

)\ _a-]f.—ﬁ
t= (—1> (Lemma 2)
H3



Proof of the Theorem
» Upper bound for N(\) (i.e. lower bound for A)

Now take t such that p5 = X, i.e.

)\ _&_}_ﬁ
t= (—1> (Lemma 2)
H3

Hence, NN(\, Q;) = 2.



Proof of the Theorem
» Upper bound for N(\) (i.e. lower bound for A)

Now take t such that p5 = X, i.e.
A\ ~ats
t= (—1> +ﬁ (Lemma 2)
H2

Hence, NN()\, Q:) = 2.Again, by the Dirichlet-Neumann
bracketing

K
NP(A, Q) < NY(A, Q) <> NV, Q) = 2K
i=1



Proof of the Theorem
» Upper bound for N(\) (i.e. lower bound for A)

Now take t such that p5 = X, i.e.
A\ ~ats
t= (—1> +ﬁ (Lemma 2)
H2

Hence, NN()\, Q:) = 2.Again, by the Dirichlet-Neumann
bracketing

K
NP Q) < NVOLQ) < STV, Q)) =
i=1

and as t"K — [Q] as t — 0+

Ie] A\a
NP(A, Q) <207 = 2]Q|(%) 2

E]



Improvements

We wuould like to have more explicit constants for the above
inequalities.

This require an explicit upper bound for Al and an explicit lower
bound for 3.

Using the results of [Drabek-Manasevich, 1999] on the one

dimensional problem it is posible to find an explicit upper bound
for /\{.



Improvements

We wuould like to have more explicit constants for the above
inequalities.

This require an explicit upper bound for Al and an explicit lower
bound for 3.

Using the results of [Drabek-Manasevich, 1999] on the one

dimensional problem it is posible to find an explicit upper bound
for /\{.
In order to do this, we introduce the pseudo p—laplace operator

n

APu = Z(‘Ux,' |p72uXi)Xi

i=i



Improvements

Consider the eigenvalue problem associated to Ap

. Jo, 51V ulp + 51V vIG dx
v = i
(u,v)GWOI’p(Ql)xWOI’q(Ch) le \U\QMB dx

where |x|b = > |xi|P.
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Improvements

Consider the eigenvalue problem associated to Ap

B ) Jo, 5IVulp + 2|Vv[§dx
V] = inf TG
(uv)EW,P(Q1)x Wy (Q1) le |ul*|v[” dx
where |x|b = > |xi|P.
Therefore )\% < np/2V1. So we need to bound 1.
Advantadge. The first eigenfunction of
—Agu = pluls2u in Q1

with Dirichlet BC can be computed explicitly by separation of
variables!



Improvements

Let ¢s(x) = sing(msx) be the first eigenfunction of the one
dimensional s—laplacian, in the interval (0,1) then

ws(x) = H bs(xi)
i=1

is the first eigenfunction of the n dimensional pseudo s—laplacian
in the cube Q;.



Improvements

Let ¢s(x) = sing(msx) be the first eigenfunction of the one
dimensional s—laplacian, in the interval (0,1) then

- H ¢5(Xi)
i=1

is the first eigenfunction of the n dimensional pseudo s—laplacian
in the cube Q;.

Now, we use (ws, ws), with s = ac+ (3 as a test function for 14 to
get
2(Jo les(0)Pdt)™" [ 16L(2)IP dt
(Jo los()ls dt)"”
2(Jy los(0)|7de)"" [ 164(2)]7 dt
(Jo les(D)l* dt)"

v <
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Improvements

Now, we make use of the Pytagorian-like identity
|sing(t)|° + | sink(t)]° =1
to conclude that |sing(t)], |sins(t)] < 1.

Also, as g < s < p we get |¢s(t)|P < |ps(t)|* and

|6()[P < w7 g(1)]°

So

(Jo los(8)]7dt)"" J5 164(1)|7 dit
(Jo [9s(0)l=dt)"

_n(s=1) , , §Uo l0:(017d)" fy loi(e))" o
P (Jo l6s(0)l° dt)"

n
v < ol (s~ 1wl 4




Improvements

To bound the other term, we use Holder's inequality to get

/\@ )|7 dt)" /\@Ufm(_)/

Ly q Y s g\
AI%MIms(A|%m|T)
— (= [ josteyrae)”



Improvements

To bound the other term, we use Holder's inequality to get

/\¢s )|7 dt)" /\¢s(t * o) (_”
Lo L e NS
/Olcés(t)l"dts(/0 16.(t)] dt)

S ! S q/
= (5= [ losto)e o)
So

_ 1 —n(1—
n <MD s [loopar)
P 0

which is an explicit bound for v;.



Thanks for your attention
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