Precise asymtotic of eigenvalues of resonant quasilinear systems.

Julián Fernández Bonder

Universidad de Buenos Aires

http://mate.dm.uba.ar/~jfbonder

Joint work with Juan Pablo Pinasco

VIII Americas Conference on Differential Equations October 2009, Veracruz – Mexico

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Introduction

Recall the p-Laplacian

$$\Delta_p u := \operatorname{div}(|\nabla u|^{p-2} \nabla u).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Used to model Non-Newtonian Fluids

- 1 pseudo-plastic fluids.
- $p > 2 \longrightarrow$ dilatant fluids.

•
$$p = 2 \longrightarrow$$
 Newtonian fluids $(\Delta_2 = \Delta)$.

Introduction

Recall the p-Laplacian

$$\Delta_p u := \operatorname{div}(|\nabla u|^{p-2} \nabla u).$$

Used to model Non-Newtonian Fluids

- ▶ 1 pseudo-plastic fluids.
- $p > 2 \longrightarrow$ dilatant fluids.
- $p = 2 \longrightarrow$ Newtonian fluids ($\Delta_2 = \Delta$).

Mathematical point of view: Is a quasilinear non uniformly elliptic operator when $p \neq 2$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ 1
- $p > 2 \longrightarrow$ degenerated.

Introduction

Recall the p-Laplacian

$$\Delta_p u := \operatorname{div}(|\nabla u|^{p-2} \nabla u).$$

Used to model Non-Newtonian Fluids

- ▶ 1 pseudo-plastic fluids.
- $p > 2 \longrightarrow$ dilatant fluids.
- $p = 2 \longrightarrow$ Newtonian fluids ($\Delta_2 = \Delta$).

Mathematical point of view: Is a quasilinear non uniformly elliptic operator when $p \neq 2$

- 1
- $p > 2 \longrightarrow$ degenerated.

Important feature: HOMOGENEITY

$$\Delta_p(tu) = t^{p-1} \Delta_p u, \qquad \forall \ t > 0$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

The eigenvalue problem for the p-Laplacian:

$$\begin{cases} -\Delta_p u = \lambda |u|^{p-2} u & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where $\Omega \subset \mathbb{R}^N$ smooth and bounded. We denote

 $\Sigma := \{\lambda \in \mathbb{R} : \text{ there exists a nontrivial solution}\}$

・ロト・日本・モト・モート ヨー うへぐ

The eigenvalue problem for the p-Laplacian:

$$\begin{cases} -\Delta_p u = \lambda |u|^{p-2} u & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where $\Omega \subset \mathbb{R}^N$ smooth and bounded. We denote

 $\Sigma := \{\lambda \in \mathbb{R} : \text{ there exists a nontrivial solution}\}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

What can be said about the set Σ ?

We define

$$\lambda_1 := \inf_{v \in W_0^{1,p}(\Omega)} \frac{\int_{\Omega} |\nabla v|^p \, dx}{\int_{\Omega} |v|^p \, dx}.$$

Then λ_1 is the first (lowest) eigenvalue and is a principal eigenvalue (i.e. every eigenfunction associated to λ_1 has constant sign).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

We define

$$\lambda_1 := \inf_{v \in W_0^{1,p}(\Omega)} \frac{\int_{\Omega} |\nabla v|^p \, dx}{\int_{\Omega} |v|^p \, dx}.$$

Then λ_1 is the first (lowest) eigenvalue and is a principal eigenvalue (i.e. every eigenfunction associated to λ_1 has constant sign). [Anane] - [Lidqvist] $\longrightarrow \lambda_1$ is simple and isolated.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We define

$$\lambda_1 := \inf_{\mathbf{v} \in W_0^{1,p}(\Omega)} \frac{\int_{\Omega} |\nabla \mathbf{v}|^p \, dx}{\int_{\Omega} |\mathbf{v}|^p \, dx}.$$

Then λ_1 is the first (lowest) eigenvalue and is a principal eigenvalue (i.e. every eigenfunction associated to λ_1 has constant sign). [Anane] - [Lidqvist] $\longrightarrow \lambda_1$ is simple and isolated. That means:

▶ λ_1 is simple \leftrightarrow if u and v are eigenfunctions associated to λ_1 then

u = cv for some $c \in \mathbb{R}$.

• λ_1 is isolated \leftrightarrow there exists $\delta > 0$ such that

 $(\lambda_1, \lambda_1 + \delta) \cap \Sigma = \emptyset.$

What about other eigenvalues? \longrightarrow Many constructions

What about other eigenvalues? \longrightarrow Many constructions

 $\mathcal{C} := \{ C \subset W_0^{1,p}(\Omega) \colon C \text{ is compact}, C = -C \}$ $\gamma(C) := \inf\{ k \in \mathbb{N} \colon \exists \phi \colon C \to \mathbb{R}^k \setminus \{0\} \text{ odd and continuous} \}$ $\mathcal{C}_k := \{ C \in \mathcal{C} \colon \gamma(C) \ge k \}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What about other eigenvalues? \longrightarrow Many constructions

 $C := \{ C \subset W_0^{1,p}(\Omega) \colon C \text{ is compact}, C = -C \}$ $\gamma(C) := \inf\{ k \in \mathbb{N} \colon \exists \phi \colon C \to \mathbb{R}^k \setminus \{0\} \text{ odd and continuous} \}$ $C_k := \{ C \in C \colon \gamma(C) \ge k \}$

(γ is the Krasnoslskii genus)

What about other eigenvalues? \longrightarrow Many constructions

 $\mathcal{C} := \{ C \subset W_0^{1,p}(\Omega) \colon C \text{ is compact}, C = -C \}$ $\gamma(C) := \inf\{ k \in \mathbb{N} \colon \exists \phi \colon C \to \mathbb{R}^k \setminus \{0\} \text{ odd and continuous} \}$ $\mathcal{C}_k := \{ C \in \mathcal{C} \colon \gamma(C) \ge k \}$

(γ is the Krasnoslskii genus)

$$\lambda_k = \inf_{C \in \mathcal{C}_k} \sup_{v \in C} \frac{\int_{\Omega} |\nabla v|^p \, dx}{\int_{\Omega} |v|^p \, dx}.$$

What about other eigenvalues? \longrightarrow Many constructions

 $C := \{ C \subset W_0^{1,p}(\Omega) \colon C \text{ is compact}, C = -C \}$ $\gamma(C) := \inf\{ k \in \mathbb{N} \colon \exists \phi \colon C \to \mathbb{R}^k \setminus \{0\} \text{ odd and continuous} \}$ $C_k := \{ C \in C \colon \gamma(C) \ge k \}$

(γ is the Krasnoslskii genus)

$$\lambda_k = \inf_{C \in \mathcal{C}_k} \sup_{v \in C} \frac{\int_{\Omega} |\nabla v|^p \, dx}{\int_{\Omega} |v|^p \, dx}.$$

[Garcia Azorero-Peral, 1988] $\longrightarrow \{\lambda_k\}_{k \in \mathbb{N}} \subset \Sigma$

Big open question: Is $\Sigma = {\lambda_k}_{k \in \mathbb{N}}$?

Big open question: Is $\Sigma = {\lambda_k}_{k \in \mathbb{N}}$?

(Positive) Answer only in dimension $1 \longrightarrow$ [Walter, 1988] – [FB-Pinasco, 2003]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Big open question: Is $\Sigma = {\lambda_k}_{k \in \mathbb{N}}$?

(Positive) Answer only in dimension $1 \longrightarrow$ [Walter, 1988] – [FB-Pinasco, 2003]

In dimension > 1 is known:

Σ is closed.

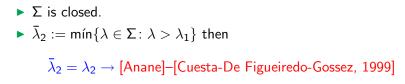
•
$$\bar{\lambda}_2 := \min\{\lambda \in \Sigma \colon \lambda > \lambda_1\}$$
 then

 $\bar{\lambda}_2 = \lambda_2 \rightarrow$ [Anane]–[Cuesta-De Figueiredo-Gossez, 1999]

Big open question: Is $\Sigma = {\lambda_k}_{k \in \mathbb{N}}$?

(Positive) Answer only in dimension $1 \longrightarrow$ [Walter, 1988] – [FB-Pinasco, 2003]

In dimension > 1 is known:



We denote

$$\Sigma_{var} := \{\lambda_k\}_{k \in \mathbb{N}}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Variational Eigenvalues

What can be said about the variational eigenvalues?

• dimension $1 \longrightarrow [Drabek-Manasevich, 1999]$

$$\Omega = (0, L), \quad \lambda_k = (p-1) \left(\frac{\pi_p k}{L}\right)^p, \quad u_k(x) = \sin_p(\pi_p \lambda_k x/L),$$

where π_p and \sin_p are suitable generalizations of π and sin respectively.

・ロト・日本・モト・モート ヨー うへぐ

Variational Eigenvalues

What can be said about the variational eigenvalues?

• dimension $1 \longrightarrow [Drabek-Manasevich, 1999]$

$$\Omega = (0, L), \quad \lambda_k = (p-1) \left(\frac{\pi_p k}{L}\right)^p, \quad u_k(x) = \sin_p(\pi_p \lambda_k x/L),$$

where π_p and \sin_p are suitable generalizations of π and sin respectively.

▶ dimension > 1 \rightarrow [Garcia Azorero-Peral, 1988]–[Friedlander, 1989]

$$\lambda_k \sim \left(\frac{k}{|\Omega|}\right)^{p/N}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We consider the following elliptic systems

$$\begin{cases} -\Delta_{p}u = \lambda f(x, u, v) \\ -\Delta_{q}v = \lambda g(x, u, v) \end{cases}$$

In $\Omega \subset \mathbb{R}^N$ smooth and bounded, with homogeneous Dirichlet boundary conditions.

・ロト・日本・モト・モート ヨー うへぐ

We consider the following elliptic systems

 $\begin{cases} -\Delta_{\rho} u = \lambda f(x, u, v) \\ -\Delta_{q} v = \lambda g(x, u, v) \end{cases}$

In $\Omega \subset \mathbb{R}^N$ smooth and bounded, with homogeneous Dirichlet boundary conditions.

We want to recover *homogeneity*.

Since Δ_p is (p-1)-homogeneous and Δ_q is (q-1)-homogeneous is natural tu assume that the system must have the following homogeneity:

(u, v) is a solution $\leftrightarrow (t^{1/p}u, t^{1/q}v)$ is a solution $\forall t > 0$.

Moreover, we want our system to be variational. That is

$$f(x, u, v) = \frac{\partial F}{\partial u}(x, u, v)$$
 and $g(x, u, v) = \frac{\partial F}{\partial v}(x, u, v)$

so that solutions to the system are critical points of

$$\Phi(u,v) := \int_{\Omega} \frac{|\nabla u|^p}{p} + \frac{|\nabla v|^q}{q} \, dx - \int_{\Omega} \lambda F(x,u,v) \, dx.$$

(ロ)、(型)、(E)、(E)、(E)、(D)、(O)、(O)

with

Moreover, we want our system to be variational. That is

$$f(x, u, v) = \frac{\partial F}{\partial u}(x, u, v)$$
 and $g(x, u, v) = \frac{\partial F}{\partial v}(x, u, v)$

so that solutions to the system are critical points of

$$\Phi(u,v) := \int_{\Omega} \frac{|\nabla u|^p}{p} + \frac{|\nabla v|^q}{q} \, dx - \int_{\Omega} \lambda F(x,u,v) \, dx.$$

So the potential function F must be

$$F(x, u, v) = a(x)|u|^{p} + b(x)|v|^{q} + c(x)|u|^{\alpha}|v|^{\beta}$$

$$\alpha \quad \beta$$

$$\frac{\alpha}{p} + \frac{\beta}{q} = 1$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

For simplicity

$$a(x) = b(x) = 0,$$
 $c(x) = 1$

So the system reads

$$\begin{cases} -\Delta_{p}u = \lambda \alpha |u|^{\alpha-2}u|v|^{\beta} \\ -\Delta_{q}v = \lambda |u|^{\alpha}\beta |v|^{\beta-2}v \end{cases}$$

In $\Omega \subset \mathbb{R}^N$ smooth and bounded, with homogeneous Dirichlet boundary conditions.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

```
[Boccardo - de Figueiredo, 2002],
[Fleckinger et al., 1997],
[Manasevich - Mawhin, 2000],
[Allegretto - Huang, 1996],
[Stavrakakis - Zographopoulos, 2003],
[De Napoli - Mariani, 2002],
[De Napoli - Pinasco, 2006],
[FP - Pinasco, 2008],
... (many others)
```

Results on the first eigenvalue

 Existence of a principal eigenvalue. The first eigenvalue is given by

$$\lambda_1 := \inf_{(u,v) \in W_0^{1,p}(\Omega) \times W_0^{1,q}(\Omega)} \frac{\int_\Omega \frac{1}{p} |\nabla u|^p + \frac{1}{q} |\nabla v|^q \, dx}{\int_\Omega |u|^\alpha |v|^\beta \, dx}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Results on the first eigenvalue

 Existence of a principal eigenvalue. The first eigenvalue is given by

$$\lambda_1 := \inf_{(u,v)\in W_0^{1,p}(\Omega)\times W_0^{1,q}(\Omega)} \frac{\int_{\Omega} \frac{1}{p} |\nabla u|^p + \frac{1}{q} |\nabla v|^q \, dx}{\int_{\Omega} |u|^{\alpha} |v|^{\beta} \, dx}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Simplicity of the principal eigenvalue. Up to the observation that (u, v) is an eigenfunction \Rightarrow (u, -v) is an eigenfunction.

Results on the first eigenvalue

 Existence of a principal eigenvalue. The first eigenvalue is given by

$$\lambda_1 := \inf_{(u,v)\in W_0^{1,p}(\Omega)\times W_0^{1,q}(\Omega)} \frac{\int_{\Omega} \frac{1}{p} |\nabla u|^p + \frac{1}{q} |\nabla v|^q \, dx}{\int_{\Omega} |u|^{\alpha} |v|^{\beta} \, dx}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- Simplicity of the principal eigenvalue. Up to the observation that (u, v) is an eigenfunction \Rightarrow (u, -v) is an eigenfunction.
- Positivity of associated eigenfunction.

Results on the first eigenvalue

 Existence of a principal eigenvalue. The first eigenvalue is given by

$$\lambda_1 := \inf_{(u,v)\in W_0^{1,p}(\Omega)\times W_0^{1,q}(\Omega)} \frac{\int_{\Omega} \frac{1}{p} |\nabla u|^p + \frac{1}{q} |\nabla v|^q \, dx}{\int_{\Omega} |u|^{\alpha} |v|^{\beta} \, dx}$$

- Simplicity of the principal eigenvalue. Up to the observation that (u, v) is an eigenfunction \Rightarrow (u, -v) is an eigenfunction.
- Positivity of associated eigenfunction.
- Isolation of principal eigenvalue.

Results on higher eigenvalues

► Existence of a sequence of eigenvalues {λ_k}_{k∈ℕ} Eigenvalues are defined as

$$\lambda_k := \inf_{C \in \mathcal{C}_k} \sup_{(u,v) \in C} \frac{\int_{\Omega} \frac{1}{p} |\nabla u|^p + \frac{1}{q} |\nabla v|^q \, dx}{\int_{\Omega} |u|^{\alpha} |v|^{\beta} \, dx}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Results on higher eigenvalues

► Existence of a sequence of eigenvalues {λ_k}_{k∈ℕ} Eigenvalues are defined as

$$\lambda_k := \inf_{C \in \mathcal{C}_k} \sup_{(u,v) \in C} \frac{\int_{\Omega} \frac{1}{p} |\nabla u|^p + \frac{1}{q} |\nabla v|^q \, dx}{\int_{\Omega} |u|^{\alpha} |v|^{\beta} \, dx}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

What about the asymptotic behavior of these eigenvalues?

Previous results

[De Napoli - Pinasco, 2006] \longrightarrow dimension 1

$$\lambda_k \leq rac{\Lambda_{p,k}}{p} \Big[1 + \Big(rac{p}{q}\Big)^{q+1} \Lambda_{p,k}^{(q-p)/p} \Big], \quad (q \leq p)$$

where $\Lambda_{p,k}$ is the k^{th} (variational) eigenvalue of the *p*-laplacian with Dirichlet BC.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Previous results

[De Napoli - Pinasco, 2006] \longrightarrow dimension 1

$$\lambda_k \leq rac{\Lambda_{p,k}}{p} \Big[1 + \Big(rac{p}{q}\Big)^{q+1} \Lambda_{p,k}^{(q-p)/p} \Big], \quad (q \leq p)$$

where $\Lambda_{p,k}$ is the k^{th} (variational) eigenvalue of the *p*-laplacian with Dirichlet BC.

 $\begin{array}{l} [\mathsf{FB} \text{ - } \mathsf{Pinasco, 2008}] \longrightarrow \mathsf{dimension} \geq 1 \\ \mathsf{Consider \ the \ spectral \ counting \ function} \end{array}$

 $N(\lambda) := \#\{k \in \mathbb{N} \colon \lambda_k \leq \lambda\}$

Previous results

[De Napoli - Pinasco, 2006] \longrightarrow dimension 1

$$\lambda_k \leq rac{\Lambda_{p,k}}{p} \Big[1 + \Big(rac{p}{q}\Big)^{q+1} \Lambda_{p,k}^{(q-p)/p} \Big], \quad (q \leq p)$$

where $\Lambda_{p,k}$ is the k^{th} (variational) eigenvalue of the *p*-laplacian with Dirichlet BC.

 $\begin{array}{l} [\mathsf{FB} \text{ - Pinasco, 2008}] \longrightarrow \mathsf{dimension} \geq 1 \\ \mathsf{Consider the } \textit{spectral counting function} \end{array}$

 $N(\lambda) := \#\{k \in \mathbb{N} \colon \lambda_k \leq \lambda\}$

 $ck^b \leq \lambda_k \leq Ck^a \iff (C^{-1}\lambda)^{1/a} \leq N(\lambda) \leq (c^{-1}\lambda)^{1/b}$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Previous results

[FB - Pinasco, 2008] obtained

 $c\lambda^{n/p} \leq N(\lambda) \leq C_1\lambda^{n/q} + C_2\lambda^{n/p}, \quad (q \leq p)$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

(In dimension n = 1 one can get sharper constants)

Asymptotic behavior

Previous results

[FB - Pinasco, 2008] obtained

 $c\lambda^{n/p} \leq N(\lambda) \leq C_1\lambda^{n/q} + C_2\lambda^{n/p}, \quad (q \leq p)$

(In dimension n = 1 one can get sharper constants)

In terms of eigenvalues:

 $ck^{q/n} \leq \lambda_k \leq Ck^{p/n}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Asymptotic behavior

Previous results

[FB - Pinasco, 2008] obtained

 $c\lambda^{n/p} \leq N(\lambda) \leq C_1 \lambda^{n/q} + C_2 \lambda^{n/p}, \quad (q \leq p)$

(In dimension n = 1 one can get sharper constants)

In terms of eigenvalues:

 $ck^{q/n} \leq \lambda_k \leq Ck^{p/n}$

<u>Remark</u>: The coupling parameters α and β are not reflected in these bounds.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Objective of our work

Improve the existing bounds looking for

- obtain the same exponent in both the upper and the lower bound for N(λ).
- ▶ analyze the influence in the coupling parameters α and β in the asymptotic behavior of $N(\lambda)$.

Objective of our work

Improve the existing bounds looking for

- obtain the same exponent in both the upper and the lower bound for N(λ).
- ▶ analyze the influence in the coupling parameters α and β in the asymptotic behavior of $N(\lambda)$.

Theorem

There exists c, C > 0 depending on p, q, α , β and Ω such that

 $c\lambda^{n/(\alpha+\beta)} \leq N(\lambda) \leq C\lambda^{n/(\alpha+\beta)}.$

Objective of our work

Improve the existing bounds looking for

- obtain the same exponent in both the upper and the lower bound for N(λ).
- ▶ analyze the influence in the coupling parameters α and β in the asymptotic behavior of $N(\lambda)$.

Theorem

There exists c, C > 0 depending on p, q, α , β and Ω such that

 $c\lambda^{n/(\alpha+\beta)} \leq N(\lambda) \leq C\lambda^{n/(\alpha+\beta)}.$

Equivalently,

$$ck^{(\alpha+\beta)/n} \leq \lambda_k \leq Ck^{(\alpha+\beta)/n}$$

Remarks and Applications

- Observe that when p = q, we have that $\alpha + \beta = q$.
- This is the case for semilinear systems (p = q = 2).
- ▶ In these cases the coupling plays no role in the asymptotic behaviour of the $N(\lambda)$ and we believe that is why this phenomenum was not observe before.

[Protter, 1979] – [Cantrell, 1984, 1986] – [Cantrell-Cosner, 1987]

Remarks and Applications

- Observe that when p = q, we have that $\alpha + \beta = q$.
- This is the case for semilinear systems (p = q = 2).
- ▶ In these cases the coupling plays no role in the asymptotic behaviour of the $N(\lambda)$ and we believe that is why this phenomenum was not observe before.

[Protter, 1979] - [Cantrell, 1984, 1986] - [Cantrell-Cosner, 1987]

Applications:

- Bifurcation problems
- anti-maximum principles
- existence / non-existence results

[Azizieh-Clément, 2002] – [Drabek et al., 2003], [Stavrakakis-Zographopoulos, 1999], etc.

Let Q_t be the cube of side t centered at the origin.

Lemma

Let λ_1^t be the first eigenvalue of the system in Q_t , i.e.

$$\lambda_{1}^{t} = \inf_{(u,v)\in W_{0}^{1,p}(Q_{t})\times W_{0}^{1,q}(Q_{t})} \frac{\int_{Q_{t}} \frac{1}{p} |\nabla u|^{p} + \frac{1}{q} |\nabla v|^{q} dx}{\int_{Q_{t}} |u|^{\alpha} |v|^{\beta} dx}$$

Then

$$\lambda_1^t = \frac{\lambda_1^1}{t^{\alpha+\beta}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Lemma 1

Proof. The proof is just a scaling argument. If $(u, v) \in W_0^{1,p}(Q_1) \times W_0^{1,q}(Q_1)$, then

$$u_t(x) = \frac{1}{t}u(tx), \qquad v_t(x) = \frac{1}{t}v(tx)$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

verify that $(u_t, v_t) \in W^{1,p}_0(Q_t) \times W^{1,q}_0(Q_t)$

Lemma 1

Proof. The proof is just a scaling argument. If $(u, v) \in W_0^{1,p}(Q_1) \times W_0^{1,q}(Q_1)$, then

$$u_t(x) = \frac{1}{t}u(tx), \qquad v_t(x) = \frac{1}{t}v(tx)$$

verify that $(u_t, v_t) \in W_0^{1,p}(Q_t) \times W_0^{1,q}(Q_t)$ Now changing variables, we get that

 $\frac{\int_{Q_t} \frac{1}{p} |\nabla u_t|^p + \frac{1}{q} |\nabla v_t|^q \, dx}{\int_{Q_t} |u_t|^\alpha |v_t|^\beta \, dx} = \frac{1}{t^{\alpha+\beta}} \frac{\int_{Q_1} \frac{1}{p} |\nabla u|^p + \frac{1}{q} |\nabla v|^q \, dx}{\int_{Q_1} |u|^\alpha |v|^\beta \, dx}$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Lemma 1

Proof. The proof is just a scaling argument. If $(u, v) \in W_0^{1,p}(Q_1) \times W_0^{1,q}(Q_1)$, then

$$u_t(x) = \frac{1}{t}u(tx), \qquad v_t(x) = \frac{1}{t}v(tx)$$

verify that $(u_t, v_t) \in W_0^{1,p}(Q_t) \times W_0^{1,q}(Q_t)$ Now changing variables, we get that

$$\frac{\int_{Q_t} \frac{1}{p} |\nabla u_t|^p + \frac{1}{q} |\nabla v_t|^q \, dx}{\int_{Q_t} |u_t|^\alpha |v_t|^\beta \, dx} = \frac{1}{t^{\alpha+\beta}} \frac{\int_{Q_1} \frac{1}{p} |\nabla u|^p + \frac{1}{q} |\nabla v|^q \, dx}{\int_{Q_1} |u|^\alpha |v|^\beta \, dx}$$

From where it follows

$$\lambda_1^t = \frac{1}{t^{\alpha+\beta}}\lambda_1^1.$$

イロト 不得 トイヨト イヨト

= 900

Lemma 2

Analogously, we have

Lemma

Let μ_2^t be the first non-zero eigenvalue of the system with homogeneous Neumann boundary condition, i.e.

$$\mu_2^t = \inf_{C \in \mathcal{C}_2} \sup_{(u,v) \in C} \frac{\int_{Q_t} \frac{1}{p} |\nabla u|^p + \frac{1}{q} |\nabla v|^q \, dx}{\int_{Q_t} |u|^\alpha |v|^\beta \, dx}$$
$$\mu_2^t = \frac{\mu_2^1}{t^{\alpha+\beta}}$$

Remark

Then

In this case, since is a Neumann problem, the spaces $W_0^{1,p}$ and $W_0^{1,q}$ are replaced with $W^{1,p}$ and $W^{1,q}$ respectively

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ つへぐ

Dirichlet-Neumann bracketing

The following is a generalization of the Dirichlet-Neumann bracketing of Courant made in [FB-Pinasco, 2003]

Theorem (Dirichlet-Neumann bracketing)

Let $U_1, U_2 \subset \Omega$ be open disjoint sets such that $(\overline{U_1 \cup U_2})^\circ = \Omega$ and $|\Omega \setminus (U_1 \cup U_2)| = 0$. Then,

$$\begin{split} N^{D}(\lambda, U_{1}) + N^{D}(\lambda, U_{2}) &= N^{D}(\lambda, U_{1} \cup U_{2}) \\ &\leq N^{D}(\lambda, \Omega) \leq N^{N}(\lambda, \Omega) \\ &\leq N^{N}(\lambda, U_{1} \cup U_{2}) = N^{N}(\lambda, U_{1}) + N^{N}(\lambda, U_{2}) \end{split}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Fix $\lambda\gg 1$ and take a lattice of cubes of side length $t\ll 1$ in \mathbb{R}^n with t depending on λ

Fix $\lambda \gg 1$ and take a lattice of cubes of side length $t \ll 1$ in \mathbb{R}^n with t depending on λ

• Lower bound for $N(\lambda)$ (i.e. upper bound for λ_k)

Take t such that $\lambda_1^t = \lambda$, i.e.

$$t = \left(rac{\lambda}{\lambda_1^1}
ight)^{-rac{1}{lpha+eta}}$$
 (Lemma 1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Fix $\lambda \gg 1$ and take a lattice of cubes of side length $t \ll 1$ in \mathbb{R}^n with t depending on λ

• Lower bound for $N(\lambda)$ (i.e. upper bound for λ_k)

Take t such that $\lambda_1^t = \lambda$, i.e.

$$t=\left(rac{\lambda}{\lambda_1^1}
ight)^{-rac{1}{lpha+eta}}$$
 (Lemma 1)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hence, $N^D(\lambda, Q_t) = 1$.

By the Dirichlet-Neumann bracketing

$$N^D(\lambda,\Omega) \geq \sum_{i=1}^{K} N^D(\lambda,Q_t^i) = K$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where K is the number of cubes of the lattice contained in Ω .

By the Dirichlet-Neumann bracketing

$$N^D(\lambda,\Omega) \geq \sum_{i=1}^{K} N^D(\lambda,Q_t^i) = K$$

where K is the number of cubes of the lattice contained in Ω . Now

$$t^n K o |\Omega|$$
 as $t o 0+$

Then, as $\lambda \to \infty$

$$\mathsf{N}^{\mathsf{D}}(\lambda,\Omega) \geq \mathsf{K} \sim rac{|\Omega|}{t^n} = |\Omega| \Big(rac{\lambda}{\lambda_1^1}\Big)^{rac{n}{lpha+eta}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Upper bound for $N(\lambda)$ (i.e. lower bound for λ_k)

Now take t such that $\mu_2^t = \lambda$, i.e.

$$t = \left(rac{\lambda}{\mu_2^1}
ight)^{-rac{1}{lpha+eta}}$$
 (Lemma 2)

・ロト・日本・モト・モート ヨー うへぐ

• Upper bound for $N(\lambda)$ (i.e. lower bound for λ_k)

Now take t such that $\mu_2^t = \lambda$, i.e.

$$t = \left(rac{\lambda}{\mu_2^1}
ight)^{-rac{1}{lpha+eta}}$$
 (Lemma 2)

・ロト・日本・モト・モート ヨー うへぐ

Hence, $N^N(\lambda, Q_t) = 2$.

• Upper bound for $N(\lambda)$ (i.e. lower bound for λ_k)

Now take t such that $\mu_2^t = \lambda$, i.e.

$$t = \left(rac{\lambda}{\mu_2^1}
ight)^{-rac{1}{lpha+eta}}$$
 (Lemma 2)

Hence, $N^N(\lambda, Q_t) = 2$. Again, by the Dirichlet-Neumann bracketing

$$N^{D}(\lambda,\Omega) \leq N^{N}(\lambda,\Omega) \leq \sum_{i=1}^{K} N^{N}(\lambda,Q_{t}^{i}) = 2K$$

• Upper bound for $N(\lambda)$ (i.e. lower bound for λ_k)

Now take t such that $\mu_2^t = \lambda$, i.e.

$$t = \left(rac{\lambda}{\mu_2^1}
ight)^{-rac{1}{lpha+eta}}$$
 (Lemma 2)

Hence, $N^N(\lambda, Q_t) = 2$. Again, by the Dirichlet-Neumann bracketing

$$N^{D}(\lambda,\Omega) \leq N^{N}(\lambda,\Omega) \leq \sum_{i=1}^{K} N^{N}(\lambda,Q_{t}^{i}) = 2K$$

and as $t^n K
ightarrow |\Omega|$ as t
ightarrow 0+

$$N^{D}(\lambda,\Omega) \leq 2 rac{|\Omega|}{t^{n}} = 2|\Omega| \Big(rac{\lambda}{\mu_{2}^{1}}\Big)^{rac{n}{lpha+eta}}$$

We wuould like to have more explicit constants for the above inequalities.

This require an explicit upper bound for λ_1^1 and an explicit lower bound for μ_2^1 .

Using the results of [Drabek-Manasevich, 1999] on the one dimensional problem it is posible to find an explicit upper bound for λ_1^1 .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We wuould like to have more explicit constants for the above inequalities.

This require an explicit upper bound for λ_1^1 and an explicit lower bound for μ_2^1 .

Using the results of [Drabek-Manasevich, 1999] on the one dimensional problem it is posible to find an explicit upper bound for λ_1^1 .

In order to do this, we introduce the pseudo p-laplace operator

$$\hat{\Delta}_p u = \sum_{i=i}^n (|u_{x_i}|^{p-2} u_{x_i})_{x_i}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Consider the eigenvalue problem associated to $\hat{\Delta}_p$

 $\nu_{1} = \inf_{(u,v) \in W_{0}^{1,p}(Q_{1}) \times W_{0}^{1,q}(Q_{1})} \frac{\int_{Q_{1}} \frac{1}{p} |\nabla u|_{p}^{p} + \frac{1}{q} |\nabla v|_{q}^{q} dx}{\int_{Q_{1}} |u|^{\alpha} |v|^{\beta} dx}$ where $|x|_{p}^{p} = \sum |x_{i}|^{p}$.

Consider the eigenvalue problem associated to $\hat{\Delta}_p$

$$\nu_{1} = \inf_{\substack{(u,v) \in W_{0}^{1,p}(Q_{1}) \times W_{0}^{1,q}(Q_{1})}} \frac{\int_{Q_{1}} \frac{1}{p} |\nabla u|_{p}^{p} + \frac{1}{q} |\nabla v|_{q}^{q} dx}{\int_{Q_{1}} |u|^{\alpha} |v|^{\beta} dx}$$

where $|x|_{p}^{p} = \sum |x_{i}|^{p}$.

・ロト・日本・モト・モート ヨー うへぐ

Therefore $\lambda_1^1 \leq n^{p/2}\nu_1$. So we need to bound ν_1 .

Consider the eigenvalue problem associated to $\hat{\Delta}_p$

$$\nu_{1} = \inf_{(u,v)\in W_{0}^{1,p}(Q_{1})\times W_{0}^{1,q}(Q_{1})} \frac{\int_{Q_{1}} \frac{1}{p} |\nabla u|_{p}^{p} + \frac{1}{q} |\nabla v|_{q}^{q} dx}{\int_{Q_{1}} |u|^{\alpha} |v|^{\beta} dx}$$

where
$$|x|_{p}^{p} = \sum |x_{i}|^{p}$$
.

Therefore $\lambda_1^1 \leq n^{p/2}\nu_1$. So we need to bound ν_1 .

Advantadge. The first eigenfunction of

$$-\hat{\Delta}_s u = \rho |u|^{s-2} u$$
 in Q_1

with Dirichlet BC can be computed explicitly by separation of variables!

Let $\phi_s(x) = \sin_s(\pi_s x)$ be the first eigenfunction of the one dimensional *s*-laplacian, in the interval (0, 1) then

$$w_s(x) = \prod_{i=1}^n \phi_s(x_i)$$

is the first eigenfunction of the *n* dimensional pseudo s-laplacian in the cube Q_1 .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Let $\phi_s(x) = \sin_s(\pi_s x)$ be the first eigenfunction of the one dimensional *s*-laplacian, in the interval (0, 1) then

$$w_s(x) = \prod_{i=1}^n \phi_s(x_i)$$

is the first eigenfunction of the *n* dimensional pseudo s-laplacian in the cube Q_1 .

Now, we use (w_s, w_s) , with $s = \alpha + \beta$ as a test function for ν_1 to get

$$\nu_{1} \leq \frac{\frac{n}{p} \left(\int_{0}^{1} |\phi_{s}(t)|^{p} dt\right)^{n-1} \int_{0}^{1} |\phi'_{s}(t)|^{p} dt}{\left(\int_{0}^{1} |\phi_{s}(t)|^{s} dt\right)^{n}} + \frac{\frac{n}{q} \left(\int_{0}^{1} |\phi_{s}(t)|^{q} dt\right)^{n-1} \int_{0}^{1} |\phi'_{s}(t)|^{q} dt}{\left(\int_{0}^{1} |\phi_{s}(t)|^{s} dt\right)^{n}}$$

Now, we make use of the Pytagorian-like identity

```
|\sin_s(t)|^s + |\sin'_s(t)|^s = 1
```

・ロト・日本・モト・モート ヨー うへぐ

to conclude that $|\sin_s(t)|, |\sin'_s(t)| \le 1$.

Now, we make use of the Pytagorian-like identity

```
|\sin_s(t)|^s + |\sin'_s(t)|^s = 1
```

to conclude that $|\sin_s(t)|, |\sin'_s(t)| \le 1$.

Also, as q < s < p we get $|\phi_s(t)|^p \le |\phi_s(t)|^s$ and $|\phi'_s(t)|^p \le \pi_s^{p-s} |\phi'_s(t)|^s$

Now, we make use of the Pytagorian-like identity

```
|\sin_s(t)|^s + |\sin'_s(t)|^s = 1
```

to conclude that $|\sin_s(t)|, |\sin'_s(t)| \le 1$.

Also, as q < s < p we get $|\phi_s(t)|^p \le |\phi_s(t)|^s$ and $|\phi'_s(t)|^p \le \pi_s^{p-s} |\phi'_s(t)|^s$ So

$$\begin{split} \nu_1 &\leq \frac{n}{p} \pi_s^{p-s} (s-1) \pi_s^s + \frac{\frac{n}{q} \big(\int_0^1 |\phi_s(t)|^q \, dt \big)^{n-1} \int_0^1 |\phi_s'(t)|^q \, dt}{\big(\int_0^1 |\phi_s(t)|^s \, dt \big)^n} \\ &= \frac{n(s-1)}{p} \pi_s^p + \frac{\frac{n}{q} \big(\int_0^1 |\phi_s(t)|^q \, dt \big)^{n-1} \int_0^1 |\phi_s'(t)|^q \, dt}{\big(\int_0^1 |\phi_s(t)|^s \, dt \big)^n} \end{split}$$

To bound the other term, we use Hölder's inequality to get

$$\left(\int_0^1 |\phi_s(t)|^q dt
ight)^{n-1} \leq \left(\int_0^1 |\phi_s(t)|^s dt
ight)^{(n-1)q/s}$$

$$egin{aligned} &\int_{0}^{1} |\phi_{s}'(t)|^{q} \, dt \leq \Big(\int_{0}^{1} |\phi_{s}'(t)|^{s} \, dt\Big)^{q/s} \ &= \Big((s-1)\pi_{s}^{s} \int_{0}^{1} |\phi_{s}(t)|^{s} \, dt\Big)^{q/s} \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

To bound the other term, we use Hölder's inequality to get

$$\left(\int_0^1 |\phi_s(t)|^q dt\right)^{n-1} \leq \left(\int_0^1 |\phi_s(t)|^s dt\right)^{(n-1)q/s}$$

$$egin{aligned} &\int_{0}^{1} |\phi_{s}'(t)|^{q} \, dt \leq \Big(\int_{0}^{1} |\phi_{s}'(t)|^{s} \, dt\Big)^{q/s} \ &= \Big((s-1)\pi_{s}^{s}\int_{0}^{1} |\phi_{s}(t)|^{s} \, dt\Big)^{q/s} \end{aligned}$$

So

$$u_1 \leq rac{n(s-1)}{p} \pi_s^p + (s-1)^{q/s} \pi_s^q \Big(\int_0^1 |\phi_s(t)|^s \, dt \Big)^{-n(1-q/s)}$$

・ロト・日本・モト・モート ヨー うへぐ

which is an explicit bound for ν_1 .

Thanks for your attention