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The problem

In this work we analyze the problem{
−∆pu = λr(x)α|u|α−2u|v |β

−∆qv = λr(x)β|u|α|v |β−2v

In Ω ⊂ RN smooth and bounded, with homogeneous Dirichlet
boundary conditions.

r ∈ L∞ and bounded away from 0.

λ ∈ R is the eigenvalue parameter.
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History of the problem

[Boccardo - de Figueiredo, NoDEA 2002],
[Fleckinger et al., Adv. Diff. Eq. 1997],
[Manasevich - Mawhin, Adv. Diff. Eq. 2000],
[Allegretto - Huang, Nonlinear Anal. 1996],
.... (many others)

Known results:

I Existence of a principal eigenvalue.

I Simplicity of the principal eigenvalue.

I Positivity of associated eigenfunction.

I Isolation of principal eigenvalue.



History of the problem

[Boccardo - de Figueiredo, NoDEA 2002],
[Fleckinger et al., Adv. Diff. Eq. 1997],
[Manasevich - Mawhin, Adv. Diff. Eq. 2000],
[Allegretto - Huang, Nonlinear Anal. 1996],
.... (many others)

Known results:

I Existence of a principal eigenvalue.

I Simplicity of the principal eigenvalue.

I Positivity of associated eigenfunction.

I Isolation of principal eigenvalue.



History of the problem
(cont.)

I Existence of a sequence of eigenvalues {λk} −→ [De Napoli -
Mariani, AAA 2002]

I Existence of generalized eigenvalues −→ [De Napoli -
Pinasco, JDE 2006].

I Upper bounds for eigenvalues−→ [De Napoli - Pinasco, JDE
2006].

λk ≤
Λp,k

p
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[(inf r)Λp,k ](q−p)/p

]
where Λp,k is the kth (variational) eigenvalue of the p−laplacian

with Dirichlet BC.
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History of the problem
(cont.)

Moreover, in 1D, using the asymptotic bound

Λp,k ∼
(

πp∫
Ω r1/p

)p

kp

One can obtain

λk ≤
(

πp∫
Ω r1/p

)p kp

p
.

for large enough k.



Objective of the work

Our objective is

Find explicit and asymptotic lower bounds for the
k th (variational) eigenvalue of the system in RN .

Applications:

I Bifurcation problems

I anti-maximum principles

I existence / non-existence results

([Azizieh - Clément, JDE 2002], [Drabek et al., Diff. Int. Eq.
2003], [Stavrakakis - Zographopoulos, EJDE 1999], etc.)
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The Spectral Counting Function

We introduce the Spectral Counting Function as

N(λ) = #{k : λk ≤ λ}

Lower and upper bounds on eigenvalues can be translated in lower
and upper bounds on N(λ). For instance:

ckb ≤ λk ≤ Cka � (C−1λ)1/a ≤ N(λ) ≤ (c−1λ)1/b
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The 1D case

Theorem
Let Ω = (0, 1) and N(λ) be the Spectral Counting Function.
Then, as λ →∞,

1. If q < p,

c1λ
1/p ≤ N(λ) ≤ C1λ

1/q + C2λ
1/p.

2. If q = p,
c1λ

1/p ≤ N(λ) ≤ (C1 + C2)λ
1/p.

3. If q = p and α = β,

N(λ) ∼ c2λ
1/p.



The 1D case
(cont.)

Remarks:

I In the 1D case, the variational eigenvalues exhaust the hole
spectrum (see, for instance, [JFB - Pinasco, Ark. Math.
2003])

I The constants c1, c2,C1 and C2 are given explicitly in terms of
p, q, α, β and the weight r(x).

I A more precise lower bound can be given. In fact, let
Sp = {Λp,k/α}, Sq = {Λq,k/β} and

S = Sp ∪ Sq = {µk}

Then µk ≤ λk .
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The N-dimensional case

Theorem
Let Ω ⊂ RN open and bdd. Then, as λ →∞,

1. If q ≤ p,

c̄1λ
N/p ≤ N(λ) ≤ C̄1λ

N/q + C̄2λ
N/p.

2. If q = p,
c̄1λ

N/p ≤ N(λ) ≤ (C̄1 + C̄2)λ
N/p.



The N-dimensional case
(cont.)

Remarks:

I Again, the constants c̄1, c̄2, C̄1 and C2 can be given explicitly
in terms of p, q, α, β and r(x).

I In the N-dimensional case, it os not known (even for a single
equation) that the variational eigenvalues exhaust the hole
spectrum.

I The analogous item 3. of the previous Theorem (i.e. p = q
and α = β) we can only prove it for the linear system
p = q = 2 and α = β = 1, that correspond to the eigenvalues
of the bi-laplacian with Navier BC.{

∆2u = λu in Ω

u = ∆u = 0 on ∂Ω.



Auxiliary Results
Estimation of Λp,k

Lemma
Let Λp,k be the kth eigenvalue of the p−laplacian. Then there
exists cp,Cp such that

cpk
p/N ≤ Λp,k ≤ Cpk

p/N .

Proof: (case r(x) ≡ 1)
Let Q1 ⊂ Ω ⊂ Q2 be two cubes. Then,

Λp,k(Q1) ≤ Λp,k(Ω) ≤ Λp,k(Q2)

So we need to bound the eigenvalues of a cube.
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Auxiliary Results
Estimation of Λp,k cont.

We now define νp,k(Q) the eigenvalues of the pseudo p−laplacian
in the cube Q,{

−
∑N

i=1 ∂xi

(
|∂xi u|p−2∂xi u

)
= ν|u|p−2u on Q

u = 0 on ∂Q

and observe that this eigenvalues νp,k can be computed by
separation of variables.
In fact

up,1(x) = sinp(πpx1/L) · · · sinp(πpxN/L), νp,1 =
πp

pN

Lp

L being the length of Q
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Auxiliary Results
Estimation of Λp,k cont.

Now, the result follows from comparison of the Rayleigh quotients,
since

νp,k = minmax
‖|∇u|p‖p

p

‖u‖p
p

Λp,k = minmax
‖|∇u|2‖p

p

‖u‖p
p

and the norms in RN , | · |p and | · |2 being equivalent. �



Auxiliary Results
Related problem

Lemma
Let Sp = {Λp,k/α}, Sq = {Λq,k/β} and S = Sp ∪ Sq = {µk}.
Then, S consists exactly of the variational eigenvalues of the
(uncoupled) system{

−∆pu = λr(x)|u|p−2u on Ω

−∆qv = λr(x)|v |q−2v on Ω

with Dirichlet BC.

Proof.
Easy.
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Proof of the main results
Upper bound

We will show the upper bound for N(λ) which corresponds to the
lower bound for λk . Also we consider the case r(x) ≡ 1.

First, by Young’s inequality,∫
Ω
|u|α|v |β dx ≤ α

p

∫
Ω
|u|p dx +

β

q

∫
Ω
|v |q dx

Therefore

1
p

∫
Ω |∇u|p dx + 1

q

∫
Ω |∇v |q dx∫

Ω |u|α|v |β dx
≥

1
p

∫
Ω |∇u|p dx + 1

q

∫
Ω |∇v |q dx

α
p

∫
Ω |u|p dx + β

q

∫
Ω |v |q dx

So λk ≥ µk
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Proof of the main results
Upper bound (cont.)

Then
N(λ) = #{k : λk ≤ λ}≤#{k : µk ≤ λ}

= #{k : Λp,k/α ≤ λ}+ #{k : Λq,k/β ≤ λ}

= Np(αλ) + Nq(βλ)

On the other hand,
Λp,k ≥ cpk

p/N

Therefore

Np(αλ) ≤
(αλ

cp

)N/p
= c̄pλ

N/p.

So
N(λ) ≤ c̄pλ

N/p + c̄qλ
N/q.
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Proof of the main results
Lower bound

Now we show how to obtain the lower bound for N(λ), which gives
upper bounds for the eigenvalues λk .

First, we cover Ω by a union of non-overlapping cubes Qi with
sides of length L

Ω ⊂
J⋃

i=1

Qi `(Qi ) = L.

Now, it is easy to see that

N(λ) ≥
J∑

i=1

N(λ, Qi )
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Proof of the main results
Lower bound (cont.)

Then we need to estimate N(λ, Q) for any cube Q with `(Q) = L

We recall the following result:

λ1 ≤
Λp,1

p

[
1 +

(p

q

)q+1
Λ

(p−q)/p
p,1

]
[de Napoli - Pinasco, JDE 2006]

But now, we observe that

Λp,1(Q) ≤ νp,1 =
πp

pN

Lp
.

Combining these, we can choose L = L(λ) such that

N(λ, Q) = 1.

In fact L = πp(N/λ)1/p.
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Proof of the main results
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