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The problem

In this work we analyze the problem

J (f ) :=

∫
∂Ω

f (x)u dS −→ max

where

I f ∈ A admissible class

I u is the solution to{
−∆pu + |u|p−2u = 0 in Ω,

|∇u|p−2 ∂u
∂ν = f on ∂Ω.

Observe that u is given by∫
∂Ω

fu dS = sup
v∈W 1,p(Ω)

1

p − 1

{
p

∫
∂Ω

fv dS −
∫

Ω
|∇v |p + |v |p dx

}
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History of the problem

I Related problem p=2 → [Cherkaev - Cherkaeva, Adv. Math.
Appl. Sci. 1999],

I Dirichlet BC and particular class A → [Cuccu, Emamizadeh
and Porru, EJDE 2006],

.... (many others)

Known results:

I Existence of optimal load f∗.

I Euler-Lagrange type equation for f∗.
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Applications

I Quasi-regular and quasi-conformal mappings in Riemannian
manifolds with boundary

I Non-Newtonian fluids.

I Reaction–diffusion problems.

I Flow through porus media.

I Nonlinear elasticity.

I Glaciology.
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Our results are new even in the linear case p = 2.
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I The class of rearrangements of a given function f0.

I The (unit) ball in some Lq.

I The class of characteristic functions of (measurable) sets of
given surface measure.
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I The second case → EASY!

I The last case → more interesting...
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The class of rearrangements

Definition
We say that f is a rearrangement of f0 if

HN−1(f ≥ t) = HN−1(f0 ≥ t) t ≥ 0.

We consider

A := {f ∈ Lq(∂Ω): f is a rearrangement of f0}

Lemma (Burton - Mc Leod, Proc. Roy. Soc. Edin. 1991)

Let f0 ∈ Lq
+(∂Ω) and v ∈ Lq′

+ (∂Ω). Then there exists f̂ ∈ A such
that ∫

∂Ω
f̂ v dS = sup

f ∈A

∫
∂Ω

fv dS .
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The class of rearrangements

Theorem
Let q > p′

N′ . There exists f̂ ∈ A such that

J (f̂ ) =

∫
∂Ω

f̂ û dS = sup
f ∈A

J (f ),

where û is the solution to{
−∆pû + |û|p−2û = 0 in Ω,

|∇û|p−2 ∂û
∂ν = f̂ on ∂Ω.



The class of rearrangements
Proof.

Let

I = sup
f ∈A

∫
∂Ω

fuf dS ,

where uf is the solution associated to the load f .

First, it is easy to see that I is finite. Then we take a maximizing
sequence {fi}i≥1 and let ui = ufi .
Now, ui is bounded in W 1,p, fi is bounded in Lq(∂Ω) and so

ui ⇀ u weakly in W 1,p(Ω),

ui → u strongly in Lp(Ω),

ui → u strongly in Lr (∂Ω), r < p∗ =
(N − 1)p

N − p
,

fi ⇀ f weakly in Lq(∂Ω).
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The class of rearrangements
Proof.(cont.)

Then

I = lim
i→∞

∫
∂Ω

fiui dS

=
1

p − 1
lim

i→∞

{
p

∫
∂Ω

fiui dS −
∫

Ω
|∇ui |p + |ui |p dx

}
≤ 1

p − 1

{
p

∫
∂Ω

fu dS −
∫

Ω
|∇u|p + |u|p dx

}
.
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The class of rearrangements
Proof.(the end)

Finally, denoting û := uf̂ , we get

I ≤ 1

p − 1

{
p

∫
∂Ω

fu dS −
∫

Ω
|∇u|p + |u|p dx

}
≤ 1

p − 1

{
p

∫
∂Ω

f̂ u dS −
∫

Ω
|∇u|p + |u|p dx

}
≤ 1

p − 1

{
p

∫
∂Ω

f̂ û dS −
∫

Ω
|∇û|p + |û|p dx

}
=

∫
∂Ω

f̂ û dS

≤ I .

This completes the proof.



The unit ball of Lq

In this section, we consider the class

A := {f ∈ Lq(∂Ω): ‖f ‖Lq(∂Ω) = 1}.

Again, in order for J to make sense, we need q > p′

N′ .

This is the easiest case. The optimal load is given in terms of the
extremal of the Sobolev trace constant

Sq′ = min
v∈W 1,p(Ω)

∫
Ω |∇v |p + |v |p dx( ∫

∂Ω |v |q
′ dS

)p/q′

Observe that the condition

q >
p′

N ′ ↔ q′ < p∗ =
(N − 1)p

N − p
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The unit ball of Lq

More precisely,

f̂ = vq′−1
q′ , û = uf̂ =

1

S
1/p−1
q′

vq′ ,

where vq′ is a nonnegative, normalized extremal.

In the linear setting, p = q = 2, v2 is the first Steklov
eigenfunction {

−∆v + v = 0 in Ω
∂v
∂ν = λv on ∂Ω.
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Characteristic functions

We consider the class

A = {χD : D ⊂ ∂Ω, HN−1(D) = A}

with 0 < A < HN−1(∂Ω) fixed.

For technical reasons, it is better to work in the relaxed class

B = {φ ∈ L∞(∂Ω): 0 ≤ φ(x) ≤ 1,

∫
∂Ω
φ dS = A}.

It is well known that B is the closure of A with respect to the
weak* convergence in L∞.
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Characteristic functions

Lemma
There exists φ̂ ∈ B such that

J (φ̂) = sup
φ∈B

J (φ).

Proof.
Very similar to the rearrangement case (compactness
argument).

We like now to show that φ̂ belongs to the class A, i.e.

φ̂ = χD̂ , HN−1(D̂) = A.
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Characteristic functions

We need this result

Lemma (Bathtub principle)

For any u ∈ Lp(∂Ω), the maximization problem

I = sup
φ∈B

∫
∂Ω

u(x)φ(x) dS

is solved by

φ̂(x) = χD̂(x), {u > s} ⊂ D̂ ⊂ {u ≥ s}

where
s = inf{t : HN−1({u ≥ t}) ≤ A}.

The maximizer given is unique (HN−1−a.e.) if
HN−1({u = s}) = 0.



Characteristic functions

Now it is easy to finish the existence proof:

sup
A
J (φ) ≤ sup

B
J (φ) = J (φ̂)

=
1

p − 1

{
p

∫
∂Ω
φ̂uφ̂ dS −

∫
Ω
|∇uφ̂|

p + |uφ̂|
p dx

}
≤ 1

p − 1

{
p

∫
∂Ω
χD̂uφ̂ dS −

∫
Ω
|∇uφ̂|

p + |uφ̂|
p dx

}
≤ 1

p − 1

{
p

∫
∂Ω
χD̂uD̂ dS −

∫
Ω
|∇uD̂ |

p + |uD̂ |
p dx

}
≤ sup

A
J (φ).

This completes the proof of existence.
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I Geometry – Topology
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I Computation

We can say very little!!

First step: Shape derivative approach.
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Shape Derivative

Assume that we fix a set D ⊂ ∂Ω that is an open subset with
regular boundary (i.e. its boundary relative to ∂Ω is a smooth
N − 2 dimensional surface).

We perturb D as follows:

I Take V : RN → RN smooth, globally Lipschitz, with support
in a neighborhood of ∂Ω such that
〈V (x), ν(x)〉 = 0, ∀x ∈ ∂Ω.

I Define the flow

d

dt
ψt(x) = V (ψt(x)), ψ0(x) = x .

I Define the perturbed domain Dt along the field V as

Dt = ψt(D)

(Observe that ψt(Ω) = Ω and ψt(∂Ω) = ∂Ω)
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Shape Derivative

We denote by ut the state of the system associated to the set Dt ,
i.e. {

−∆put + |ut |p−2ut = 0 in Ω

|∇ut |p−2 ∂ut
∂ν = χDt on ∂Ω

and define

j(t) = J (χDt ) =

∫
∂Ω

utχDt dS

We want to compute

j ′(0) =
∂J
∂V

(D)
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Shape Derivative

Theorem
j(t) is differentiable at t = 0 and we have

j ′(0) =
p

p − 1

∫
∂D

uD〈V , ντ 〉 dHN−2

where ντ stands for the exterior unit normal vector to D along ∂Ω.



Shape Derivative
Proof.

The proof follows from lengthy computations and adequate use of

I The tangential Changes of Variables Formula.∫
Φ(Γ)

f dS =

∫
Γ
(f ◦ Φ)Jτ (Φ) dS

(Jτ (Φ) being the tangential Jacobian of Φ)

I The tangential Divergence Theorem.∫
D

divτW dS =

∫
∂D
〈W , ντ 〉 dHN−2 +

∫
D

H〈W , ν〉 dS

(divτ (W ) being the tangential divergence of W , H is the
mean curvature of D)
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Shape Derivative
Proof. (cont.)

Main technical problem

I Functions ut are NOT C 2 (nor W 2,p)

I This is needed in the course of the proof in a crucial way.

To overcome this problem, we work with the solutions to a
regularized problem and then pass to the limit{

−div((|∇uε
t |2 + ε2)(p−2)/2∇uε

t ) + |uε
t |p−2uε

t = 0 in Ω

(|∇uε
t |2 + ε2)(p−2)/2 ∂uε

t
∂ν = χDt on ∂Ω.

Standard Elliptic Regularity Theory gives uε
t ∈ C 2,δ and, moreover

uε
t → ut in C 1 (ε→ 0)
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Shape Derivative

By (much easier) similar computations we also get

Lemma

d

dt
HN−1(Dt) |t=0=

∫
D

divV dS .

Observe that, as V is tangential to ∂D, we can get∫
D

divV dS =

∫
D

divτV dS =

∫
∂D
〈V , ντ 〉 dHN−2.

Combining these formulas with the Lagrange Multipliers Rule, we
finally obtain...
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Shape Derivative

Corollary

Let D be a maximizing set and assume that it has smooth N − 2
dimensional boundary. Then uD is constant along ∂D.

Proof.
By our assumptions, we have that D maximizes j(t) along the
constrain HN−1(Dt) = A.
So, by the Lagrange Multipliers Rule, there exists a constant c
such that

j ′(0) = c
d

dt
HN−1(Dt) |t=0

This is

p

p − 1

∫
∂D

uD〈V , ντ 〉 dHN−2 = c

∫
∂D
〈V , ντ 〉 dHN−2

for every tangential vector field V . So the result follows.
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Applications and open problems

I This type of sufficient conditions and shape derivatives have
been used by many authors in developing numerical
algorithms for computing optimal shapes. cf. E. Oudet,
ESAIM COCV (2004) – Survey, JFB, P. Groisman and J.D.
Rossi, Ann. Mat. Pura Appl. (2007), the book of O.
Pironeau, Springer (1984), etc.

I What is the Topology of an optimal set? We do not know.

I Where are these optimal sets located? We do not know.

I Are optimal sets smooth? We do not know.

We only have answers to these questions when Ω is a ball, where,
by means of the spherical symmetrization, it is easy to prove that
optimal sets are spherical cups.

THANK YOU
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