MULTIPLE SOLUTIONS FOR THE p—LAPLACE EQUATION
WITH NONLINEAR BOUNDARY CONDITIONS

JULIAN FERNANDEZ BONDER

ABSTRACT. In this note we show the existence of at least three nontrivial so-
lutions to the following quasilinear elliptic equation —Apu+ |u|P~2u = f(x,u)
in a smooth bounded domain © of RY with nonlinear boundary conditions
|Vu|p_2% = g(z,u) on 9. The proof is based on variational arguments.

1. INTRODUCTION.

Let us consider the following nonlinear elliptic problem:

P) —Apu+ |ulP~2u = f(z,u) in

|Vu|p’23—;‘ = g(z,u) on 012,
where 2 is a bounded smooth domain in RY, A,u = div(|Vu[P=2Vu) is the
p—laplacian and 9/9v is the outer unit normal derivative.

Problems like (P) appears naturally in several branches of pure and applied
mathematics, such as the study of optimal constants for the Sobolev trace embed-
ding (see [5, 10, 12, 11]); the theory of quasiregular and quasiconformal mappings in
Riemannian manifolds with boundary (see [7, 16]), non-Newtonian fluids, reaction
diffusion problems, flow through porus media, nonlinear elasticity, glaciology, etc.
(see [1, 2, 3, 6]).

The purpose of this note, is to prove the existence of at least three nontrivial
solutions for (P) under adequate assumptions on the sources terms f and g. This
result extends previous work by the author [8, 9].

Here, no oddness condition is imposed in f or g and a positive, a negative and
a sign-changing solution are found. The proof relies on the Lusternik—Schnirelman
method for non-compact manifolds (see [14]).

For a related result with Dirichlet boundary conditions, see [15] and more re-
cently [4, 17]. The approach in this note follows the one in [15].

Throughout this work, by (weak) solutions of (P) we understand critical points
of the associated energy functional acting on the Sobolev space WP (Q):

1
(1) O(v)=— [ |Vu|P + |v]Pde — / F(x,v)dx — G(z,v)dS,
pJa Q o0
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where F(x,u) fo (z,2)dz, G(x,u) fo x,2)dz and dS is the surface mea-
sure.
We will denote

(2) F(v) = / F(z,v)dx and G(v) = G(z,v)dS,
Q
so the functional ® can be rewritten as

B0) = [0l @) — F(0) = GL0).

2. ASSUMPTIONS AND STATEMENT OF THE RESULTS.

The precise assumptions on the source terms f and g are as follows:

(F1) f: QxR — R, is a measurable function with respect to the first argument
and continuously differentiable with respect to the second argument for
almost every = € ). Moreover, f(x,0) = 0 for every = € Q.

(F2) There exist constants p < ¢ < p* = Np/(N —p), s > p*/(p* —q), t =
5q/(2+ (g —2)s) > p*/(p* — 2) and functions a € L5(Q2), b € L'(Q), such
that for z € Q, u,v € R,

| fulz,w)| < a()|ul™™? + b(z),
|(fula,u) = fulz,v))ul < (a(@)(jul "2 + [v|772) + b)) u — v].

(F3) There exist constants ¢; € (0,1/(p — 1)), c2 > p, 0 < ¢35 < ¢4, such that for
any u € LI(Q)

03||u||%q(m < 02/ F(z,u)dz < / flz,w)udr <
Q Q

cl/ fu(x,u)u2 dx < C4||u||qu(Q).
Q

(G1) ¢g: 90 xR — R is a measurable function with respect to the first argument
and continuously differentiable with respect to the second argument for
almost every y € 99Q). Moreover, g(y,0) = 0 for every y € 9.

(G2) There exist constants p < r < p, = (N — )p/(N —p), 0 > p./(ps — 1),
T=o0r/(2+(r—2)o) > p./(p. —2) and functions o € L°(99), 8 € L™(99),
such that for y € 9Q, u,v € R,

|9u(y w)| < aly)lul""* + Bly),
[(gu(y, w) = guly, v))ul < (aly)(Jul" +[o]"72) + B(y))|u — vl.

(G3) There exist constants k1 € (0,1/(p — 1)), k2 > p, 0 < k3 < k4, such that
for any u € L™(99)

ksllull7ra0) < k2 /89 G(z,u)dS < /BQ g(z,u)udS <

méﬁmemswwhm.

Remark 1. Assumptions (F1)—(F3) implies, since the immersion W1?(Q) — L%(Q)
with 1 < ¢ < p* is compact, that F is C' with compact derivative. Analo-
gously, (G1)—(G3) implies the same facts for G by the compactness of the immersion
WLP(Q) — L"(0Q) for 1 < r < p..
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So the main result of the paper reads:

Theorem 1. Under assumptions (F1)—(F3), (G1)—(G3), there exist three different,
nontrivial, (weak) solutions of problem (P). Moreover these solutions are, one
positive, one negative and the other one has non-constant sign.

3. PROOF OF THEOREM 1.

The proof uses the same approach as in [15]. That is, we will construct three
disjoint sets K; # () not containing 0 such that ® has a critical point in K;. These
sets will be subsets of smooth manifolds M; C WP(Q) that will be constructed by
imposing a sign restriction and a normalizing condition.

In fact, let

My ={ueW'(Q)| [,quydS>0and
s By = (F (), + (G (), us ),

My ={ueW'(Q)| [,qu_dS>0and
0 10y = ('), ) + (G, ),
Ms = My N M,

where u4 = max{u,0}, u_ = max{—wu,0} are the positive and negative parts of u,
and (-, -) is the duality pairing of W1P(Q).
Finally we define
K1:{UEM1 |’LL20},
Ky ={u€ My | u<0},
Ky = M.

For the proof of the Theorem, we need the following Lemmas.

Lemma 1. There exist c; > 0 such that, for everyu € K;, i =1,2,3,

[ullTy10 0y < €1 (/Q flz,u)ude + /89 g(xm)udS) < e2®(u) < csllullfn )

Proof. As u € K;, we have that

[y = [ fawpudot [ glowuds
Q o0

This proves the first inequality.
Now, by (F3) and (G3)

/F(m,u) dx < i/ f(z,v)udz, / G(z,u)dS < l/ g(x,u)uds.
Q ka2 Jo 0 €2 Joa
1.1

1
So, for €' =max{;-; -} < 5> we have

1
2(w) < (= O)lulfyrsqe

This proves the third inequality.
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To prove the middle inequality we proceed as follows:

1
D) = Sl e —/F(x,u)da:—/ G(x,u) dS
p Q o0

_ % (/Q f(x,u)ud:nJr/an(x,u)udS> - </QF(:c,u) der/mG(x,u) dS)

1
>(=-0) </ f(sc,u)ud:z:—F/ g(m,u)udS) .
p Q N
This finishes the proof. O

Lemma 2. There exists ¢ > 0 such that
luyllwir) >c for ue K,
lu_|lwir) >c for uwe Ky and
lusllwire@), lu—llwie) >c for ue Ks.

Proof. By the definition of K;, by (F3) and (G3), we have that

S /Qf(ac,u)uﬂE dx + /BQ 9(@, u)ug dS < c(uslFa gy + lutllzr@oa)-

Now the proof follows by the Sobolev immersion Theorem and by the Sobolev trace
Theorem, as p < g, r. (]

Lemma 3. There exists ¢ > 0 such that ®(u) > c||uH€V1,,,(Q) for every u € WHP(Q)
such that ||ullw1.r Q) < c.

Proof. By (F3), (G3) and the Sobolev immersions we have

1 1 .
D(u) = ];||U||€V1,p(g) — F(u) = G(u) 2 ];HUH@VLP(Q) = c([[ullTagqy + lullzro0)
1 T
> 2;||u||€w,p(g) = c(l[ullfyrm ) + Nullivre ) = cllulliym g,
if ||ullw1.p(q) is small enough, as p < ¢,7. O
The following lemma describes the properties of the manifolds M;.

Lemma 4. M; is a C*' sub-manifold of WYP(Q) of co-dimension 1 (i = 1,2), 2
(i = 3) respectively. The sets K; are complete. Moreover, for every uw € M; we have
the direct decomposition

TWP(Q) = T, M; & span{uy,u_},

where T, M is the tangent space at u of the Banach manifold M. Finally, the
projection onto the first component in this decomposition is uniformly continuous
on bounded sets of M.

Proof. Let us denote

My = {u ew(Q) | | uydS> 0}

o0

My = {u ew(Q)| [ wu_dS> 0}
B s B o
Ms = M, N M.

Observe that M; C M,;.



p—LAPLACIAN WITH NONLINEAR BOUNDARY CONDITIONS 5

By the Sobolev trace Theorem, the set M; is open in W1P(Q), therefore it is
enough to prove that M; is a smooth sub-manifold of M;. In order to do this, we
will construct a C1! function ¢; : M; — R? with d =1 (i = 1,2),d = 2 (i = 3)
respectively and M; will be the inverse image of a regular value of ;.

In fact, we define: For u € My,

e1(u) = lus 100y = (F' (1), ugp) = (G (u), uy).
For u € My,

p2(u) = lu—lIfp10(0) = (F'(u),u) = (G (u),u_).
For u € Ms,

—1

pa(u) = (ki (u), ka(u)).
Obviously, we have M; = ¢; ~(0). We need to show that 0 is a regular value for ;.

To this end we compute, for u € M7,

(Fr(w). ) =plusllyrpoy = [ fuawyid + flauju da
- | oyt + gl upu as
(o9}
~0=1) [ e do= [ fuewd do

Jr(pfl)/ g(z,u)u_,_dsf/ gu(z, u)u? dSs.
19]9) o0

By (F3) and (G3) the last term is bounded by

p=1=c") [ ot =1-K") [ gwu s

Recall that ¢1,k1 < 1/(p —1). Now, by Lemma 1, this is bounded by

_C||u+||1{jvl.,p(9)
which is strictly negative by Lemma 2. Therefore, M is a smooth sub-manifold of
WLP(2). The exact same argument applies to Ma.
Since trivially
(Ver(u),u_) = (Vea(u),uq) =0
for u € M3, the same conclusion holds for Ms3.

To see that K; is complete, let u; be a Cauchy sequence in K;, then uy — u in
WLP(Q). Moreover, (u)+ — us+ in WHP(Q). Now it is easy to see, by Lemma 2
and by continuity that u € K.

Finally, by the first part of the proof we have the decomposition

T WP (Q) = T, M; @ span{u,u_}.
Now let v € TUWI’I’(Q) be a unit tangential vector, then v = vy 4+ vo where v; are
given by
vy = (Vgpi(u)|Span{U+’u7})_1(Vg0i(u),v) € span{uy,u_}, vy =v—uvy € T, M.

From these formulas and from the estimates given in the first part of the proof, the
uniform continuity follows. O

Now, we need to check the Palais-Smale condition for the functional ® restricted
to the manifold M;.
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Lemma 5. The functional ®|g, satisfies the Palais-Smale condition.

Proof. Let {ur} C K; be a Palais-Smale sequence, that is ®(uy) is uniformly
bounded and V®|g, (ux) — 0 strongly. We need to show that there exists a subse-
quence ug, that converges strongly in Kj.

Let v; € T,,,WP(Q) be a unit tangential vector such that

(VO (uy),v5) = [[VO(uz) [ wrr )y -

Now, by Lemma 4, v; = w; + z; with w; € T,,, M; and z; € span{(u;)y, (u;)-}.
Since ®(u;) is uniformly bounded, by Lemma 1, u; is uniformly bounded in
WP(Q) and hence w; is uniformly bounded in W?(Q). Therefore

@ (uj) | (wrr@)y = (VO(u)),v5) = (V|K, (u;),v;) — 0.

As uj is bounded in W1P(Q), there exists u € WHP(Q) such that u; — u,
weakly in W1P(Q). As it is well known that the unrestricted functional ® satisfies
the Palais-Smale condition (cf. [9] and [13]), the lemma follows.

See [15] for the details. O

We now immediately obtain

Lemma 6. Let u € K; be a critical point of the restricted functional ®|k,. Then
u 18 also a critical point of the unrestricted functional ® and hence a weak solution
to (P).

With all this preparatives, the proof of the Theorem follows easily.

Proof of Theorem 1. The proof now is a standard application of the Lusternik—
Schnirelman method for non-compact manifolds. See [14]. g
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