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Abstract. We study the asymptotic behavior for the best constant and ex-

tremals of the Sobolev trace embedding W 1,p(Ω) ↪→ Lq(∂Ω) on expanding and

contracting domains. We find that the behavior strongly depends on p and q.
For contracting domains we prove that the behavior of the best Sobolev trace

constant depends on the sign of qN − pN + p while for expanding domains

it depends on the sign of q − p. We also give some results regarding the be-
havior of the extremals, for contracting domains we prove that they converge

to a constant when rescaled in a suitable way and for expanding domains we

observe when a concentration phenomena takes place.

1. Introduction. Let Ω be a smooth bounded domain in RN , N ≥ 2. Of impor-
tance in the study of boundary value problems for differential operators in Ω are the
Sobolev trace inequalities. For any 1 < p < N , and 1 < q ≤ p∗ = p(N − 1)/(N − p)
we have that W 1,p(Ω) ↪→ Lq(∂Ω) and hence the following inequality holds:

Sq‖u‖p
Lq(∂Ω) ≤ ‖u‖p

W 1,p(Ω),

for all u ∈ W 1,p(Ω). This is known as the Sobolev trace embedding Theorem. The
best constant for this embedding is the largest Sq such that the above inequality
holds, that is,

Sq(Ω) = inf
u∈W 1,p(Ω)\{0}

∫
Ω

|∇u|p + |u|p dx(∫
∂Ω

|u|q dσ

)p/q
. (1)

Moreover, if 1 < q < p∗ the embedding is compact and as a consequence we
have the existence of extremals, i.e. functions where the infimum is attained, see
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[8]. These extremals are weak solutions of the following problem
∆pu = |u|p−2u in Ω,

|∇u|p−2 ∂u
∂ν = λ|u|q−2u on ∂Ω,

(2)

where ∆pu = div(|∇u|p−2∇u) is the p-Laplacian and ∂
∂ν is the outer unit normal

derivative.
Standard regularity theory and the strong maximum principle, [16], show that

any extremal u belongs to the class C1,α
loc (Ω)∩Cα(Ω) and that is strictly one signed

in Ω, so we can assume that u > 0 in Ω. Let us fix p, q with 1 < q < p∗ and Ω a
bounded smooth domain in RN , C1 is enough for our calculations. For µ > 0 we
consider the family of domains

Ωµ = µΩ = {µx ; x ∈ Ω}.

The purpose of this work is to describe the asymptotic behavior of the best
Sobolev trace constants Sq(Ωµ) as µ → 0+ and µ → +∞.

As a precedent, see [4] for a detailed analysis of the behavior of extremals and
best Sobolev constants in expanding domains for p = 2 and q > 2. In that paper
it is proved that the extremals develop a peak near the point where the curvature
of the boundary attains a maximum. In [5] and [13] a related problem in the half-
space RN

+ for the critical exponent is studied. See also [6], [7] for other geometric
problems that leads to nonlinear boundary conditions.

Let us call uµ an extremal corresponding to Ωµ. Making a change of variables,
we go back to the original domain Ω. If we define vµ(x) = uµ(µx), we have that
vµ ∈ W 1,p(Ω) and

Sq(Ωµ) = µ(Nq−Np+p)/q

∫
Ω

µ−p|∇vµ|p + |vµ|p dx(∫
∂Ω

|vµ|q dσ

)p/q
. (3)

We can assume, and we do so, that the functions uµ are chosen so that∫
∂Ω

|vµ|q dσ = 1.

We remark that the quantity (1) is not homogeneous under dilations or contrac-
tions of the domain. This is a remarkable difference with the study of the Sobolev
embedding W 1,p

0 (Ω) ↪→ Lq(Ω). First, we deal with the case µ → 0+. As we will
see the behavior of the Sobolev constant and extremals is very different when the
domain is contracted than when it is expanded. Our first result is the following:

Theorem 1.1. Let 1 < q < p∗, then

lim
µ→0+

Sq(Ωµ)
µ(Nq−Np+p)/q

=
|Ω|

|∂Ω|p/q
(4)

and if we scale the extremals uµ to the original domain Ω as vµ(x) = uµ(µx), x ∈ Ω,
with ‖vµ‖Lq(∂Ω) = 1, then vµ is nearly constant in the sense that vµ → |∂Ω|−1/q in
W 1,p(Ω).
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Observe that the behavior of the Sobolev trace constant, strongly depends on p
and q. If we call βpq = (Nq −Np + p)/q then we have that, as µ → 0+,

Sq → 0 if βpq > 0,
Sq → +∞ if βpq < 0,
Sq → C 6= 0 if βpq = 0.

Let us remark that the influence of the geometry of the domain appears in (4).
In the special case p = q, problem (2) becomes a nonlinear eigenvalue problem.

For p = 2, this eigenvalue problem is known as the Steklov problem, [2]. In [8] it is
proved, applying the Ljusternik-Schnirelman critical point Theory on C1 manifolds,
that there exists a sequence of variational eigenvalues λk ↗ +∞ and it is easy to
see that the first eigenvalue λ1(Ω) verifies λ1(Ω) = Sp(Ω). So Theorem 1.1 shows a
difference in the behavior of the first eigenvalue of (2) with respect to the domain
with the behavior of the first eigenvalue of the following Dirichlet problem −∆pu = λ|u|p−2u in Ω,

u = 0 on ∂Ω,

where it is a well known fact that λ1 increases as the domain decreases, see [1], [10].
The variational eigenvalues λk of (2) are characterized by

1
λk

= sup
C∈Ck

min
u∈C

‖u||pLp(∂Ω)

‖u‖p
W 1,p(Ω)

, (5)

where Ck = {C ⊂ W 1,p(Ω); C is compact, symmetric and γ(C) ≥ k} and γ is the
Krasnoselski genus (see [11]). It is shown in [9] that there exists a second eigenvalue
for (2) and that it coincides with the second variational eigenvalue λ2. Moreover,
the following characterization of the second eigenvalue λ2 holds

λ2 = inf
u∈A

{∫
Ω

|∇u|p + |u|p dx

}
, (6)

where A = {u ∈ W 1,p(Ω); ‖u‖Lp(∂Ω) = 1 and |∂Ω±| ≥ c}, ∂Ω+ = {x ∈ ∂Ω; u(x) >

0} and ∂Ω− is defined analogously. Concerning the eigenvalue problem, we have
the following result.

Theorem 1.2. There exists a constant λ̃2 such that

lim
µ→0+

µp−1λ2(Ωµ) = λ̃2.

This constant λ̃2 is the first nonzero eigenvalue of the following problem
∆pu = 0 in Ω,

|∇u|p−2 ∂u
∂ν = λ̃|u|p−2u on ∂Ω.

(7)

Moreover, if we take an eigenfunction u2,µ associated to λ2(Ωµ) and scale it to Ω as
in Theorem 1.1, we obtain that v2,µ → ṽ2 in W 1,p(Ω), where ṽ2 is an eigenfunction
of (7) associated to λ̃2. Also, every eigenvalue λ2(Ωµ) ≤ λ(Ωµ) ≤ λk(Ωµ) of (2)
(variational or not) behaves as λ(Ωµ) ∼ µ1−p as µ → 0+. Finally, if µj → 0 and
λj = λ(Ωµj

) is a sequence of eigenvalues such that there exists λ with

lim
j→∞

µp−1
j λj = λ,
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let (vj) be the sequence of associated eigenfunctions rescaled as in Theorem 1.1,
then (vj) has a convergent subsequence (vjk

) and a limit v, that is an eigenfunction
of (7) with eigenvalue λ.

Observe that the first eigenvalue of (7) is zero with associated eigenfunction a
constant. Hence Theorem 1.1 says that the first eigenvalue and the first eigen-
function of our problem (2) converges to the ones of (7). Theorem 1.2 says that
λ(Ωµ) → +∞ as µ → 0+ for the remaining eigenvalues and that problem (7) is
a limit problem for (2) when µ → 0+. We believe that Theorem 1.2 is our main
result.

Now, we deal with the case µ → +∞. In this case we find, as before, that the
behavior strongly depends on p and q. We prove,

Theorem 1.3. Let βpq = (qN − pN + p)/q. It holds
1. If 1 < q < p, 0 < c1µ

βpq−1 ≤ Sq(Ωµ) ≤ c2µ
βpq−1.

2. If p ≤ q < p∗, 0 < c1 ≤ Sq(Ωµ) ≤ c2 < ∞.

For the lower bound in (2) in the case p < q < p∗ we have to assume that the
corresponding extremals vµ rescaled such that maxΩ vµ = 1 verify |∇vµ| ≤ Cµ.
Moreover, for all cases, we have that the corresponding extremals uµ rescaled as in
Theorem 1.1 concentrates at the boundary, in the sense that∫

Ω

|vµ|p dx ≤ Cµ−βpq → 0 as µ → +∞, if q ≥ p,∫
Ω

|vµ|p dx ≤ Cµ−1 → 0 as µ → +∞, if q < p,

with ∫
∂Ω

|vµ|q dσ = 1.

As before the behavior of the Sobolev trace constant depends on p and q. We
have that, as µ → +∞,

Sq → 0 if βpq − 1 < 0, i.e. q < p,
0 < c1 ≤ Sq ≤ c2 < ∞ if βpq − 1 ≥ 0, i.e. q ≥ p.

The hypothesis |∇vµ| ≤ Cµ is a regularity assumption, see [15] for C1,α
loc regularity

results. As a consequence of our arguments we have that the extremals do not
develop a peak if 1 < q < p as in this case we have that

c1 ≤
∫

∂Ω

|vµ|p dσ ≤ c2,

and ∫
∂Ω

|vµ|q dσ = 1.

For p = q it is proved in [12] that the first eigenvalue λ1(Ωµ) = Sp(Ωµ) is isolated
and simple. As a consequence of this if Ω is a ball the extremal vµ is radial and
hence it does not develop a peak. Finally, for q > p the extremals develop peaking
concentration phenomena in the sense that, for every a > 0,

ap|∂Ω ∩ {vµ > a}| → 0, as µ → +∞,

with maxΩ vµ = 1. This is in concordance with the results of [4] where for p = 2,
q > 2 they find that the extremals concentrates, with the formation of a peak,
near a point of the boundary where the curvature maximizes. We believe that for
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q > p, extremals develop a single peak as in the case p = 2. Nevertheless that kind
of analysis needs some fine knowledge of the limit problem in RN

+ that is not yet
available for the p−Laplacian.

Let us give an idea of the proof of the lower bounds. In the case p = q we can
obtain the lower bound by an approximation procedure. We replace W 1,p(Ω) by
an increasing sequence of subspaces in the minimization problem. Then we prove
a convergence result and find a uniform bound from below for the approximating
problems. We believe that this idea can be used in other contexts. For the case
q > p we use our assumption |∇vµ| ≤ Cµ to prove a reverse Hölder inequality for
the extremals on the boundary that allows us to reduce to the case p = q.

Finally, for large µ, in the case p = q we can prove that every eigenvalue is
bounded.

Theorem 1.4. Let λ1(Ωµ) ≤ λ(Ωµ) ≤ λk(Ωµ) be an eigenvalue of (2) in Ωµ

(variational or not). Then there exists two constants, C1, C2 > 0, independent of
µ such that 0 < C1 ≤ λ(Ωµ) ≤ C2 < +∞, for every µ large.

The rest of the paper is organized as follows. In Section 2, we deal with the case
µ → 0 and in Section 3, we study the case µ → +∞. Throughout the paper, by
C we mean a constant that may vary from line to line but remains independent of
the relevant quantities.

2. Behavior as µ → 0+. In this section we focus on the case µ → 0+. First we
prove Theorem 1.1 and then study the case where q = p (the eigenvalue problem).

Let us begin with the following Lemma.

Lemma 2.1. Under the assumptions of Theorem 1.1, it follows that

Sq(Ωµ) ≤ µ(Nq−Np+p)/q |Ω|
|∂Ω|p/q

.

Proof. Let us recall that

Sq(Ωµ) = inf
u∈W 1,p(Ωµ)\{0}

∫
Ωµ

|∇u|p + |u|p dx(∫
∂Ωµ

|u|q dσ

)p/q
.

Then, taking u ≡ 1 it follows that

Sq(Ωµ) ≤ µ(Nq−Np+p)/q |Ω|
|∂Ω|p/q

,

as we wanted to see.

This Lemma shows that the ratio Sq(Ωµ)/µ(Nq−Np+p)/q is bounded. So a natural
question will be to determine if it converges to some value. This is answered in
Theorem 1.1 that we prove next.

Proof of Theorem 1.1. Let uµ ∈ W 1,p(Ωµ) be a extremal for Sq(Ωµ) and define
vµ(x) = uµ(µx), we have that vµ ∈ W 1,p(Ω). We can assume that the functions uµ

are chosen so that ∫
∂Ω

|vµ|q dσ = 1.
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Equation (3) and Lemma 2.1 give, for µ < 1,

‖vµ‖p
W 1,p(Ω) ≤

∫
Ω

µ−p|∇vµ|p + |vµ|p dx ≤ |Ω|
|∂Ω|p/q

,

so there exists a function v ∈ W 1,p(Ω) and a sequence µj → 0+ such that

vµj ⇀ v weakly in W 1,p(Ω),

vµj
→ v in Lp(Ω),

vµj
→ v in Lq(∂Ω).

Moreover, ∫
Ω

|∇vµ|p dx ≤ |Ω|
|∂Ω|p/q

µp.

Hence ∇vµ → 0 in Lp(Ω). It follows that the limit v is a constant and must verify∫
∂Ω
|v|q = 1, hence v = constant = |∂Ω|−1/q and so the full sequence vµ converges

weakly in W 1,p(Ω) to v. From our previous bounds we have

vµ →
1

|∂Ω|1/q
in Lp(Ω) and

∫
Ω

|∇vµ|p dx → 0.

Therefore, we have strong convergence, vµ → |∂Ω|−1/qin W 1,p(Ω). The proof is
finished.

Now we turn our attention to the case p = q which is a nonlinear eigenvalue
problem. We recall that Theorem 1.1 says that λ1(Ωµ) = Sp(Ωµ) ∼ µ → 0. First
we focus on the behavior of the second eigenvalue λ2. For the proof of Theorem
1.2 we need the following Lemmas. We believe that these results have independent
interest.

Lemma 2.2. Let h ∈ Lp′
(∂Ω). Then, problem

∆pw = 0 in Ω,

|∇w|p−2 ∂w
∂ν = h(x) on ∂Ω,

(8)

has a weak solution if and only if
∫

∂Ω
h(x) dσ = 0. Moreover, the solution is unique

up to an additive constant.

Proof. It is straightforward to check that if there exists a weak solution to (8) then∫
∂Ω

h(x) dσ = 0.
Now, let X = {w ∈ W 1,p(Ω);

∫
Ω

w dx = 0}. By a standard compactness argu-
ment, one can verify that the following Poincare inequality holds,

‖w‖Lp(Ω) ≤ C‖∇w‖Lp(Ω), (9)

for every w ∈ X and some constant C. Let us now define

Φ(w) =
∫

Ω

|∇w|p dx−
∫

∂Ω

h(x)w dσ. (10)

Critical points of Φ in W 1,p(Ω) are weak solutions of (8). By (9), Φ is a strictly
convex, bounded below functional on X, and so there exists a unique function w ∈
X such that Φ′(w)(v) = 0 for every v ∈ X. Now, using the fact that

∫
∂Ω

h(x) dσ =
0, it is easy to see that Φ′(w)(v) = 0 for every v ∈ W 1,p(Ω) and the proof is now
complete.
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Now we find a variational characterization of the first non-zero eigenvalue of the
limit problem (7).

Lemma 2.3. Let λ̃2 be defined by

λ̃2 = inf
u∈Y−{0}

∫
Ω

|∇u|p dx∫
∂Ω

|u|p dσ

, (11)

where Y = {u ∈ W 1,p(Ω);
∫

∂Ω
|u|p−2u dσ = 0}. Then the infimum is attained.

Proof. Let un be a minimizing sequence with ‖un‖Lp(∂Ω) = 1. By a compactness
argument we can extract a subsequence, that we still call un, such that

un ⇀ u weakly in W 1,p(Ω),

un → u in Lp(Ω),

un → u in Lp(∂Ω).

Hence u ∈ Y − {0}, ‖u‖Lp(∂Ω) = 1. Moreover, we have that∫
Ω

|∇u|p dx ≤ lim inf
∫

Ω

|∇un|p dx = λ̃2.

Therefore u is a minimizer.

Now we are ready to deal with the proof of Theorem 1.2 which is the main result
of the paper.

Proof of Theorem 1.2. We can assume that 0 ∈ Ω and then we can take u(x) = x1

in the characterization of λ2 given by (6) to obtain

λ2(Ωµ) ≤
|Ωµ|+

∫
Ωµ

|x1|p dx∫
∂Ωµ

|x1|p dσ

= µ1−p

|Ω|+ µp

∫
Ω

|y1|p dy∫
∂Ω

|y1|p dσ

≤ Cµ1−p.

Hence if we consider v2,µ any eigenfunction associated to λ2(Ωµ) normalized with
‖v2,µ‖Lp(∂Ω) = 1 we get

Cµ1−p ≥ λ2(Ωµ) = µ1−p

(∫
Ω

|∇v2,µ|p dx + µp

∫
Ω

|v2,µ|p dx

)
.

Therefore ‖∇v2,µ‖Lp(Ω) ≤ C. As we have that ‖v2,µ‖Lp(∂Ω) = 1, it follows that
‖v2,µ‖W 1,p(Ω) ≤ C, hence we can extract a subsequence µj → 0+ such that

v2,µj
⇀ ṽ2 weakly in W 1,p(Ω),

v2,µj
→ ṽ2 in Lp(Ω),

v2,µj → ṽ2 in Lp(∂Ω).

Therefore we have that ∫
∂Ω

|ṽ2|p dσ = 1.

As it is proved in [9], |{v2,µj > 0} ∩ ∂Ω|, |{v2,µj < 0} ∩ ∂Ω| > c independent of µj ,
then ṽ2 changes sign. Hence, we get∫

Ω

|∇ṽ2|p dx 6= 0.
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Taking a subsequence, if necessary, we can assume that
λ2(Ωµ)
µ1−p

→ λ̄ as µ → 0+

and, as
λ2(Ωµ)
µ1−p

=
∫

Ω

|∇v2,µ|p dx + µp

∫
Ω

|v2,µ|p dx,

passing to the limit

0 6=
∫

Ω

|∇ṽ2|p dx ≤ lim inf
∫

Ω

|∇v2,µ|p dx = λ̄,

hence we obtain that λ̄ 6= 0.
Taking ϕ ≡ 1 in the weak form of the equation satisfied by v2,µ we get that

µp

∫
Ω

|v2,µ|p−2v2,µ dx =
λ2(Ωµ)
µ1−p

∫
∂Ω

|v2,µ|p−2v2,µ dσ.

Passing again to the limit we have that

ṽ2 ∈ Y =
{

u ∈ W 1,p(Ω);
∫

∂Ω

|u|p−2u dσ = 0
}

.

Let w be a function where the infimum (11) is attained with ‖w‖Lp(∂Ω) = 1. As
w ∈ A (see (6)), we have∫

Ω

|∇w|p + µp|w|p dx ≥ λ2(Ωµ)
µ1−p

=
∫

Ω

|∇v2,µ|p + µp|v2,µ|p dx.

Taking the limit as µ → 0+ we get

λ̃2 =
∫

Ω

|∇w|p dx ≥ lim
µ→0

λ2(Ωµ)
µ1−p

≥
∫

Ω

|∇ṽ2|p dx ≥ inf
‖z‖Lp(∂Ω)=1,z∈Y

∫
Ω

|∇z|p = λ̃2.

Therefore

lim
µ→0

λ2(Ωµ)
µ1−p

= λ̃2

and ∫
Ω

|∇v2,µ|p dx →
∫

Ω

|∇ṽ2|p dx,

from where it follows that v2,µ → ṽ2 strongly in W 1,p(Ω). Once again, we pass to
the limit as µ → 0+ in the weak formulation satisfied by v2,µ to get that ṽ2 is an
eigenfunction associated to λ̃2. By the characterization of λ̃2 given in Lemma 11
we get that this is the first non-zero eigenvalue for problem (7).

Now we find the behavior of the remaining eigenvalues. Let λ(Ωµ) be an eigen-
value (variational or not). Then, as the variational eigenvalues λk(Ωµ) form an
unbounded sequence, there exists k such that λ2(Ωµ) ≤ λ(Ωµ) ≤ λk(Ωµ). Now, let
x1, . . . , xk ∈ ∂Ω and r = r(k) be such that dist(xi, xj) > 2r. Let φ ∈ C∞(Ω) be a
nonnegative function with support B(0, r) and let φj(x) = φ(x− xj).

Now, let us define Sk = span{φ1, . . . , φk} ∩ {v ∈ W 1,p(Ω); ‖v‖W 1,p(Ω) = 1} and
Sk,µ = {v(x/µ); v ∈ Sk}, then γ(Sk) = γ(Sk,µ) = k. Hence

1
λk(Ωµ)

= sup
γ(S)≥k

inf
u∈S

∫
∂Ωµ

|u|p dσ∫
Ωµ

|∇u|p + |u|p dx

≥ inf
u∈Sk,µ

∫
∂Ωµ

|u|p dσ∫
Ωµ

|∇u|p + |u|p dx

.
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Changing variables we get,

1
λk(Ωµ)

≥ µp−1 inf
v∈Sk

∫
∂Ω

|v|p dσ∫
Ω

|∇v|p + µp|v|p dx

. (12)

As φi have disjoint support,

‖v‖p
Lp(Ω) =

∥∥∥∥∥
k∑

i=1

aiφi

∥∥∥∥∥
p

Lp(Ω)

=
k∑

i=1

|ai|p‖φi‖p
Lp(Ω) ≤

k∑
i=1

|ai|p‖φ‖p
Lp(B(0,r))

and

‖∇v‖p
Lp(Ω) =

∥∥∥∥∥
k∑

i=1

ai∇φi

∥∥∥∥∥
p

Lp(Ω)

=
k∑

i=1

|ai|p‖∇φi‖p
Lp(Ω) ≤

k∑
i=1

|ai|p‖∇φ‖p
Lp(B(0,r)).

As the boundary of Ω is regular we have that there exists a constant Ck such that

‖v‖p
Lp(∂Ω) =

∥∥∥∥∥
k∑

i=1

aiφi

∥∥∥∥∥
p

Lp(∂Ω)

=
k∑

i=1

|ai|p‖φi‖p
Lp(∂Ω) ≥ Ck

k∑
i=1

|ai|p.

Using these estimates in (12) we obtain

0 < c ≤ λ2(Ωµ)
µ1−p

≤ λ(Ωµ)
µ1−p

≤ λk(Ωµ)
µ1−p

≤ Ck < +∞

and the result follows.
Finally we study the convergence of the eigenvalues and eigenfunctions corre-

sponding to the rest of the spectrum. By our hypotheses we have that

lim
j→∞

λj

µ1−p
j

= λ.

As vj is bounded in W 1,p(Ω) we can extract a subsequence (that we still call vj)
such that

vj ⇀ v weakly in W 1,p(Ω),

vj → v in Lp(Ω),

vj → v in Lp(∂Ω).

Using that vj are solutions of (2), we obtain∫
Ω

|∇vj |p−2∇vj∇φ + µp
j |vj |p−2vjφdx =

λj

µ1−p
j

∫
∂Ω

|vj |p−2vjφdσ. (13)

Taking φ ≡ 1 we get∫
Ω

µp
j |vj |p−2vj dx =

λj

µ1−p
j

∫
∂Ω

|vj |p−2vj dσ.

The limit as j →∞ gives us

0 = λ

∫
∂Ω

|v|p−2v dσ
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and, as λ 6= 0, we obtain that

0 =
∫

∂Ω

|v|p−2v dσ. (14)

By Lemma 2.2 and (14), there exists a unique w ∈ W 1,p(Ω) with∫
∂Ω

|w|p−2w dσ = 0

that satisfies 
∆pw = 0 in Ω,

|∇w|p−2 ∂w
∂ν = λ|v|p−2v on ∂Ω.

(15)

Combining (13), the variational formulation of (15) with φ = vj − w and the fact
that we are dealing with a strongly monotone operator (see [3]), we get

α ‖∇vj −∇w‖p
Lp(Ω) ≤

∫
Ω

(|∇vj |p−2∇vj − |∇w|p−2∇w)(∇vj −∇w) dx

= −µp
j

∫
Ω

|vj |p−2vj(vj − w) dx +
λj

µ1−p
j

∫
∂Ω

|vj |p−2vj(vj − w) dσ

−λ

∫
∂Ω

|v|p−2v(vj − w) dσ

≤ Cµp
j +

(
λj

µ1−p
j

− λ

)∫
∂Ω

|vj |p−2vj(vj − w) dσ

+λ

∫
∂Ω

(|vj |p−2vj − |v|p−2v)(vj − w) dσ.

The first two terms go to zero as j →∞. Concerning the last one, we have that it
is bounded by

(‖vj‖Lp(∂Ω) + ‖v‖Lp(∂Ω))p−2‖vj − v‖Lp(∂Ω)‖vj − w‖Lp(∂Ω) if p ≥ 2,

M‖vj − v‖p−1
Lp(∂Ω)‖vj − w‖Lp(∂Ω) if p < 2.

Therefore, taking the limit j →∞, we get ∇vj → ∇w in Lp(Ω) and as ∇vj ⇀ ∇v
weakly in Lp(Ω) we conclude that ∇v = ∇w and so v = w and vj → v strongly in
W 1,p(Ω). Finally, taking limits in (13) we obtain that v is a weak solution of (7)
as we wanted to prove.

3. Behavior as µ → +∞. In this section we study the behavior of the Sobolev
constant in expanding domains, that is when µ → +∞. To clarify the exposition
we divide the proof of Theorem 1.3 in several Lemmas. Let us begin by the upper
bounds.

Lemma 3.1. Let p = q, then there exists a constant C > 0 such that Sp(Ωµ) =
λ1(Ωµ) ≤ C, for every µ large.
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Proof. We have p = q and look for a bound on the first eigenvalue λ1(Ωµ). Changing
variables as before we have that

λ1(Ωµ) = inf
v∈W 1,p(Ω)

µ

(∫
Ω

µ−p|∇v|p + |v|p dx

)
∫

∂Ω

|v|pdσ

.

We choose v(x) such that v = a = constant on ∂Ω and v = 0 in Ωr = {x ∈
Ω ; dist(x, ∂Ω) ≥ r} with |∇v| ≤ C/r. We fix a such that∫

∂Ω

|v|p dσ = 1,

that is a = |∂Ω|−1/p. As for r small we have that |Ω \ Ωr| ∼ r|∂Ω| we get∫
Ω

|v|p dσ ≤ Cr.

Using that |∇v| ≤ C/r we obtain∫
Ω

|∇v|p dσ ≤ C

rp−1
,

therefore

λ1(Ωµ) ≤ Cµ

(
C

µ−p

rp−1
+ Cr

)
.

Finally, choose r = µ−1 to obtain the desired result.

Lemma 3.2. Let p < q < p∗, then there exists a constant C > 0 such that Sq(Ωµ) ≤
C, for every µ large.

Proof. As we mentioned in the introduction, we have that

Sq(Ωµ) = µ(Nq−Np+p)/q inf
v∈W 1,p(Ω)

∫
Ω

µ−p|∇v|p + |v|p dx(∫
∂Ω

|v|q dσ

)p/q
. (16)

Now, let us choose a point x0 ∈ ∂Ω and let φ ∈ C∞(Ω) with support B(x0, µ
−1),

and ‖φ‖q
Lq(∂Ω) = 1.

Arguing as in Section 2, we have that

µ(Nq−Np+p)/q

∫
Ω

|φ|p dx ≤ C,

and

µ(Nq−Np+p)/qµ−p

∫
Ω

|∇φ|p dx ≤ C.

Therefore, taking φ = v in (16), we get Sq(Ωµ) ≤ C, and this ends the proof.

Lemma 3.3. Let 1 < q < p, then we have Sq(Ωµ) ≤ Cµ(N−1)(q−p)/q, for some
constant C > 0. Remark that this says that limµ→∞ Sq(Ωµ) = 0.
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Proof. We observe that the same calculations of Lemma 3.2 show that Sq is bounded
independently of µ for 1 < q < p. Now, as in the case p = q (Lemma 3.1), let us take
v(x) such that v = a = constant on ∂Ω and v = 0 in Ωr = {x ∈ Ω ; dist(x, ∂Ω) ≥
r}. We fix a such that ∫

∂Ω

|v|q dσ = 1.

Using the same arguments as in Lemma 3.1 we get

Sq(Ωµ) ≤ Cµ(Nq−Np+p)/q

(
C

µ−p

rp−1
+ Cr

)
and choosing r = µ−1 we obtain Sq(Ωµ) ≤ Cµ(Nq−Np+p−q)/q.

Now let us prove that the extremals concentrates at the boundary.

Lemma 3.4. Let 1 < q < p∗. The extremals concentrate at the boundary in the
sense that ∫

Ω

|vµ|p dx → 0 as µ → +∞,

while ∫
∂Ω

|vµ|q dσ = 1.

Proof. Let vµ be an extremal such that ‖vµ‖Lq(∂Ω) = 1. From our previous bound
we get, for p = q,

µ1−p

∫
Ω

|∇vµ|p dx + µ

∫
Ω

|vµ|p dx ≤ C

Hence ∫
Ω

|vµ|p dx ≤ C

µ
→ 0 as µ → +∞.

Now we turn back to the case 1 < q < p. We have, from our previous calculations,

Sq(Ωµ) ≤ Cµ(Nq−Np+p−q)/q.

Hence ∫
Ω

|vµ|p dx ≤ Cµ(N−1)(q−p)/q → 0 µ → +∞.

Finally, for p < q < p∗ we get that

µ(Nq−Np+p)/q

∫
Ω

|vµ|p dx ≤ C

and therefore, as we are in the case q > p and so Nq > p(N − 1), we get∫
Ω

|vµ|p dx ≤ C

µ(Nq−Np+p)/q
→ 0 as µ → +∞.

The proof is now complete.

To get the bound from below for λ1 in the case p = q we use the following idea,
first we replace the minimization problem in W 1,p(Ω) with a minimization problem
in a sequence of increasing subspaces and next we find that for an adequate choice
of the subspaces we get a uniform lower bound for the approximate problems. This
idea combined with a convergence result for the approximations gives the desired
result. So, let us first state and prove the convergence result. Since this procedure
works for every 1 < q < p∗ we prove it in full generality.
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Now we want to describe a general approximation procedure for Sq. These results
are essentially contained in [14] but we reproduce the main arguments here in order
to make the paper self-contained.

The Sobolev trace constant Sq can be characterized as

Sq = inf
v∈W 1,p(Ω)

{∫
Ω

|∇v|p + |v|p dx;
∫

∂Ω

|v|q dσ = 1.

}
. (17)

As we have already mentioned, the idea is to replace the space W 1,p(Ω) with a
subspace Vh in the minimization problem (17). To this end, let Vh be an increasing
sequence of closed subspaces of W 1,p(Ω), such that{

uh ∈ Vh;
∫

∂Ω

|uh|q dσ = 1
}
6= ∅

and
lim
h→0

inf
uh∈Vh

‖v − uh‖W 1,p(Ω) = 0, ∀‖v‖W 1,p(Ω) = 1.

(18)

We observe that the only requirement on the subspaces Vh is (18). This allows
us to choose Vh as the usual finite elements spaces, for example.

With this sequence of subspaces Vh we define our approximation of Sq by

Sq,h = inf
uh∈Vh

{∫
Ω

|∇uh|p + |uh|p dx;
∫

∂Ω

|uh|q dσ = 1
}

. (19)

We have that, under hypothesis (18), Sq,h approximates Sq when h → 0.

Theorem 3.1. Let v be an extremal for (17). Then, there exists a constant C
independent of h such that,

|Sq − Sq,h| ≤ C inf
uh∈Vh

‖uh − v‖W 1,p(Ω),

for every h small enough.

Proof. As Vh ⊂ W 1,p(Ω) we have that

Sq ≤ Sq,h. (20)

Let us choose w ∈ Vh such that ‖w − v‖W 1,p(Ω) ≤ infVh
‖v − uh‖W 1,p(Ω) + ε. We

have

S
1/p
q,h = ‖uh‖W 1,p(Ω) ≤

‖w‖W 1,p(Ω)

‖w‖Lq(∂Ω)

≤
‖w − v‖W 1,p(Ω) + ‖v‖W 1,p(Ω)

‖w‖Lq(∂Ω)

=

(
‖w − v‖W 1,p(Ω) + S

1/p
q

‖w‖Lq(∂Ω)

)
.

Now we use that

|‖w‖Lq(∂Ω) − 1| ≤ |‖w‖Lq(∂Ω) − ‖v‖Lq(∂Ω)| ≤ ‖w − v‖Lq(∂Ω) ≤ C‖w − v‖W 1,p(Ω)

and hypothesis (18) to obtain that for every h small enough,

Sq,h ≤

(
‖w − v‖W 1,p(Ω) + S

1/p
q

1− C‖w − v‖W 1,p(Ω)

)p

≤ Sq + C‖w − v‖W 1,p(Ω). (21)

The result follows from (20) and (21).



88 J. FERNANDEZ BONDER & J.D. ROSSI

Now we prove a result regarding the convergence of the approximate extremals.
We will not use it but it completes the analysis of the approximations.

Theorem 3.2. Let uh be a function in Vh where the infimum (19) is archived.
Then from any sequence h → 0 we can extract a subsequence hj → 0 such that uhj

converges strongly to an extremal in W 1,p(Ω). That is, there exists an extremal of
(17), v, with

lim
hj→0

‖uhj − v‖W 1,p(Ω) = 0.

Proof. Theorem 3.1 and hypothesis (18) gives that

lim
h→0

‖uh‖p
W 1,p(Ω) = lim

h→0
Sq,h = Sq.

Hence there exists a constant C such that for every h small enough, ‖uh‖W 1,p(Ω) ≤
C. Therefore we can extract a subsequence, that we denote by uhj , such that

uhj
⇀ w weakly in W 1,p(Ω),

uhj
→ w strongly in Lp(Ω),

uhj → w strongly in Lq(∂Ω).

(22)

Hence, from the Lq(∂Ω) convergence we have,

1 = lim
hj→0

∫
∂Ω

|uhj
|q dσ =

∫
∂Ω

|w|q dσ.

Therefore w is an admissible function in the minimization problem (17). Now we
observe that, if v is an extremal,

‖v‖p
W 1,p(Ω) ≤ ‖w‖p

W 1,p(Ω) ≤ lim inf
hj→0

‖uhj
‖p

W 1,p(Ω)

≤ lim
hj→0

‖uhj
‖p

W 1,p(Ω) = lim
hj→0

Sq,h = Sq = ‖v‖p
W 1,p(Ω),

and therefore,
lim

hj→0
‖uhj

‖W 1,p(Ω) = ‖w‖W 1,p(Ω) = S1/p
q . (23)

The space W 1,p(Ω) being uniformly convex, the weak convergence, (22), and the
convergence of the norms, (23), imply the convergence in norm. Therefore uhj → w

in W 1,p(Ω). This limit w verifies ‖w‖p
W 1,p(Ω) = Sq and ‖w‖Lq(∂Ω) = 1. Hence it is

an extremal and we have that limhj→0 ‖uhj
− w‖W 1,p(Ω) = 0.

With these convergence results we can prove the lower bound in the case p = q.

Lemma 3.5. Let p = q, then Sp(Ωµ) = λ1(Ωµ) ≥ C, for every µ large.

Proof. Let us choose a particular subspace Vh of W 1,p(Ω). As the boundary of Ω is
smooth, we can define new coordinates near the boundary as follows. As before we
denote by Ωr = {x ∈ Ω; dist(x, ∂Ω) ≥ r} and by ∂Ωr = {x ∈ Ω; dist(x, ∂Ω) = r}
and we use the following construction. We define Φ(ξ, r) = ξ − rν(ξ), where ν(ξ)
is the exterior normal vector at ξ ∈ ∂Ω. Φ : ∂Ω × (0, R) 7→ Ω \ ΩR. We recall
that Φ is a difeomorphism if R is small enough. With this application Φ we can
define a triangulation as follows. First, choose a uniform regular triangulation of
size h of the set ∂Ω× (0, R). Now, by the application Φ we can get a triangulation
of the strip Ω \ ΩR. In fact, we can select as nodes xij the points Φ(ξi, rj), where



SOBOLEV TRACE CONSTANTS 89

(ξi, rj) is a node of the uniform mesh of ∂Ω × (0, R). Our space Vh is defined
by all the continuous functions in W 1,p(Ω) that are linear over each triangle of
the strip Ω \ ΩR. This space is the usual space of linear finite elements in special
triangulations defined using the mapping Φ, see [3] for detailed information on the
finite elements method.

Let us call uh the functions in Vh. We have indexed the nodes xij in a way such
that xi1 ∈ ∂Ω and xij is at distance j − 1 (in nodes) from the boundary, ∂Ω. We
denote by uij the value of uh at the node xij and by aij the value of the gradient
of uh on the triangle Tij . We assume that the index i runs from 1 to l and j from
1 to k0. Remark that k0 ∼ R/h and l ∼ |∂Ω|/hN−1.

We want to find a lower bound (independent of h and µ) on the approximation
of the first eigenvalue,

λ1,h(Ωµ) = inf
uh∈Vh

{
µ1−p

∫
Ω

|∇uh|p dx + µ

∫
Ω

|uh|p dx;
∫

∂Ω

|uh|p dσ = 1
}

.

To this end we consider a function uh ∈ Vh such that∫
∂Ω

|uh|p dσ = 1,

that is
l∑

i=1

|ui1|phN−1 ≥ C1

Let k be the first integer in [1, k0] such that

l∑
i=1

|uik|phN−1 ≤ C1

2

First, let us observe that if k = k0 (there are k0 triangles between the two
boundaries of Ω \ Ωr), then we have

µ

∫
Ω

|uh|p dx ≥ µ

k0∑
j=2

l∑
i=1

∫
Tij

|uh|p dx ≥ Cµ

k0∑
j=2

l∑
i=1

|uij |phN

= Chµ

k0∑
j=2

l∑
i=1

|uij |phN−1 ≥ Chµk0
C1

2
.

As k0 ∼ R/h we get that

λ1,h(Ωµ) = inf
uh∈Vh

{
µ1−p

∫
Ω

|∇uh|p dx + µ

∫
Ω

|uh|p dx;
∫

∂Ω

|uh|p dσ = 1
}

≥ inf
uh∈Vh

{
µ

∫
Ω

|uh|p dx;
∫

∂Ω

|uh|p dσ = 1
}
≥ Cµ > 1

and we are done. Hence let us assume that k < k0. As before we can bound the
term µ

∫
Ω
|uh|p by

µ

∫
Ω

|uh|p dx ≥ Cµ
k∑

j=2

l∑
i=1

|uij |phN = Chµ
k∑

j=2

l∑
i=1

|uij |phN−1 ≥ Chµk
C1

2
. (24)
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Now we observe that

ui1 − uik =
k∑

j=1

aijh.

Using this fact we get,

C ≤

∣∣∣∣∣∣
(

1
l

l∑
i=1

|ui1|p
)1/p

−

(
1
l

l∑
i=1

|uik|p
)1/p

∣∣∣∣∣∣
≤

(
1
l

l∑
i=1

|ui1 − uik|p
)1/p

=

kp

l

l∑
i=1

∣∣∣∣∣∣1k
k∑

j=1

aijh

∣∣∣∣∣∣
p1/p

.

Hence we get

Cl

kp−1hp
≤

l∑
i=1

1
k

k∑
j=1

|aij |p

and finally,

µ1−p

∫
Ω

|∇uh|p dx ≥ Cµ1−plhN−1

kp−1hp−1
≥ Cµ1−p

kp−1hp−1
. (25)

Using (24) and (25) we obtain

λ1,h(Ωµ) = inf
uh∈Vh

{
µ1−p

∫
Ω

|∇uh|p dx + µ

∫
Ω

|uh|p dx;
∫

∂Ω

|uh|p dσ = 1
}

≥ C(µhk) +
C

(µhk)p−1
.

Hence, if we call τ = µhk we get that

λ1,h(Ωµ) ≥ F (τ) ≡ Cτ +
C

τp−1
≥ C.

Since the subspaces that we have chosen verify hypotheses (18), we can use the
convergence result, Theorem 3.1, to get that λ1(Ωµ) = limh→0 λ1,h(Ωµ) ≥ C.

Let us look at the case 1 < q < p more carefully, and obtain a bound from below
using the lower bound obtained for λ1(Ωµ).

Lemma 3.6. Let 1 < q < p. Then, for every µ large, Sq(Ωµ) ≥ Cµβpq−1. Moreover
this shows that, if v is an extremal,

c1

(∫
∂Ω

|v|q dσ

)1/q

≥
(∫

∂Ω

|v|p dσ

)1/p

≥ c2

(∫
∂Ω

|v|q dσ

)1/q

.

Hence there is no peaking formation in this case.
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Proof. As we mentioned in the introduction, we have that

Sq(Ωµ) = µ(Nq−Np+p)/q inf
v∈W 1,p(Ω)

∫
Ω

µ−p|∇v|p + |v|p dx(∫
∂Ω

|v|q dσ

)p/q

= µβpq−1 inf
v∈W 1,p(Ω)

∫
Ω

µ1−p|∇v|p + µ|v|p dx(∫
∂Ω

|v|q dσ

)p/q

= µβpq−1 inf
v∈W 1,p(Ω)

∫
Ω

µ1−p|∇v|p + µ|v|p dx∫
∂Ω

|v|p dσ

∫
∂Ω

|v|p dx(∫
∂Ω

|v|q dσ

)p/q
.

Using that 1 < q < p we get that, by Holder’s inequality∫
∂Ω

|v|p dx(∫
∂Ω

|v|q dσ

)p/q
≥ C.

Hence, using our previous lower bound for λ1(Ωµ) we get that there exists a constant
C such that Sq(Ωµ) ≥ Cµβpq−1. The upper bound proved in Lemma 3.3, Sq(Ωµ) ≤
Cµβpq−1, gives that

Cµβpq−1 ≥ Sq(Ωµ) = µβpq−1

∫
Ω

µ1−p|∇vµ|p + µ|vµ|p dx∫
∂Ω

|vµ|p dσ

∫
∂Ω

|vµ|p dx(∫
∂Ω

|vµ|q dσ

)p/q

≥ Cµβpq−1

∫
∂Ω

|vµ|p dx(∫
∂Ω

|vµ|q dσ

)p/q
.

Hence ∫
∂Ω

|vµ|p dx ≤ C

(∫
∂Ω

|vµ|q dσ

)p/q

.

This ends the proof.

To finish the proof of Theorem 1.3 we need the following Lemma.

Lemma 3.7. Let p < q < p∗. Then, for large µ, Sq(Ωµ) ≥ C. Moreover, the
extremals concentrates in the sense that ap|∂Ω ∩ {vµ > a}| → 0, as µ → +∞, with
maxΩ vµ = 1.

Proof. First we prove that there exists a constant C such that Sq(Ωµ) ≥ C. Let
vµ be an extremal in Ω. By rescaling vµ we can obtain an extremal ṽµ such that
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maxΩ ṽµ = 1. That is, 0 < ṽµ ≤ 1 and there exits a point x0 ∈ ∂Ω with ṽµ(x0) = 1.
Arguing as in Lemma 3.6 we have

Sq(Ωµ) = µβpq−1

∫
Ω

µ1−p|∇ṽµ|p + µ|ṽµ|p dx∫
∂Ω

|ṽµ|p dσ

∫
∂Ω

|ṽµ|p dx(∫
∂Ω

|ṽµ|q dσ

)p/q
. (26)

As ṽµ satisfies (2), by our hypothesis, we have that |∇ṽµ| ≤ Cµ. Hence

{x ∈ ∂Ω; ṽµ(x) ≥ 1/2} ⊇ B(x0, c/µ) ∩ ∂Ω.

As q > p and 0 < ṽµ ≤ 1 we have that∫
∂Ω

|ṽµ|p dσ ≥
∫

∂Ω

|ṽµ|q dσ.

Therefore

µβpq−1

∫
∂Ω

|ṽµ|p dx(∫
∂Ω

|ṽµ|q dσ

)p/q
≥ µβpq−1

(∫
∂Ω

|ṽµ|p dx

)(q−p)/q

≥ Cµβpq−1

(∫
∂Ω∩B(x0,c/µ)

1
2p

dx

)(q−p)/q

≥ C.

Using this bound and the lower bound for Sp(Ωµ) in (26) we get the desired lower
bound. Next, we prove the concentration property for the extremals. Using the
same arguments as before, we get

ap|∂Ω ∩ {ṽµ > a}| ≤
∫

∂Ω

|ṽµ|p dσ ≤ C

µN−1
→ 0, as µ → +∞,

with maxΩ ṽµ = 1. This proves the concentration phenomena.

We end the article proving that every eigenvalue is bounded as µ → +∞.

Proof of Theorem 1.4. The idea is similar as the one used in the proof of Theo-
rem 1.2, see Section 2. Let x1, . . . , xk ∈ ∂Ω such that dist(xi, xj) > 2µ and let
φj ∈ C∞(Ω) with support B(xj , µ) and max φj = 1. Now, let us define Sk =
span{φ1, . . . , φk} ∩ {u ∈ W 1,p(Ω); ‖u‖W 1,p(Ω) = 1} and Sk,µ = {v(x/µ); v ∈ Sk}.
Then, γ(Sk) = γ(Sk,µ) = k. Hence

1
λk(Ωµ)

= sup
γ(S)≥k

inf
u∈S

∫
∂Ωµ

|u|p dσ∫
Ωµ

|∇u|p + |u|p dx

≥ inf
u∈Sk,µ

∫
∂Ωµ

|u|p dσ∫
Ωµ

|∇u|p + |u|p dx

.

Changing variables we get,

1
λk(Ωµ)

≥ µp−1 inf
v∈Sk

∫
∂Ω

|v|p dσ∫
Ω

|∇v|p + µp|v|p dx

. (27)
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As φi have disjoint support,

‖v‖p
Lp(Ω) =

∥∥∥∥∥
k∑

i=1

aiφi

∥∥∥∥∥
p

Lp(Ω)

=
k∑

i=1

|ai|p‖φi‖p
Lp(Ω) ≤ C

k∑
i=1

|ai|pµ−N

and

‖∇v‖p
Lp(Ω) =

∥∥∥∥∥
k∑

i=1

ai∇φi

∥∥∥∥∥
p

Lp(Ω)

=
k∑

i=1

|ai|p‖∇φi‖p
Lp(Ω) ≤ C

k∑
i=1

|ai|pµ−N+p.

As the boundary of Ω is regular we have that there exists a constant C such that

‖v‖p
Lp(∂Ω) =

∥∥∥∥∥
k∑

i=1

aiφi

∥∥∥∥∥
p

Lp(∂Ω)

=
k∑

i=1

|ai|p‖φi‖p
Lp(∂Ω) ≥ C

k∑
i=1

|ai|pµ1−N .

Using these estimates we get 0 < c ≤ λ1(Ωµ) ≤ λ(Ωµ) ≤ λk(Ωµ) ≤ Ck < +∞.
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