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ABSTRACT. We study the asymptotic behavior for the best constant and ex-
tremals of the Sobolev trace embedding W1P(Q) — LI(99Q) on expanding and
contracting domains. We find that the behavior strongly depends on p and gq.
For contracting domains we prove that the behavior of the best Sobolev trace
constant depends on the sign of ¢N — pN + p while for expanding domains
it depends on the sign of ¢ — p. We also give some results regarding the be-
havior of the extremals, for contracting domains we prove that they converge
to a constant when rescaled in a suitable way and for expanding domains we
observe when a concentration phenomena takes place.

1. Introduction. Let Q be a smooth bounded domain in RY, N > 2. Of impor-
tance in the study of boundary value problems for differential operators in €) are the
Sobolev trace inequalities. For any 1 <p < N,and 1 < ¢ < p* =p(N—-1)/(N —p)
we have that W1P(Q) — L9(9€) and hence the following inequality holds:

Sq””“iq(ag) < ||u||€I/LTJ(Q)7

for all u € W1P(€2). This is known as the Sobolev trace embedding Theorem. The
best constant for this embedding is the largest S, such that the above inequality
holds, that is,

/ Val? + ul? da
5,(0) = inf 2 : (1)

weWp(Q)\{0} p/a
(/ K d0>
0

Moreover, if 1 < ¢ < p* the embedding is compact and as a consequence we
have the existence of extremals, i.e. functions where the infimum is attained, see
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[8]. These extremals are weak solutions of the following problem

Apu = |ufP~2u in Q,

(2)

|Vu[P~29% = \|u|92u on 09,

where Apu = div(|Vu[P~2Vu) is the p-Laplacian and a% is the outer unit normal
derivative.

Standard regularity theory and the strong maximum principle, [16], show that
any extremal u belongs to the class Cllof(Q) NC(Q) and that is strictly one signed
in €, so we can assume that u > 0 in €. Let us fix p, ¢ with 1 < g < p* and 2 a
bounded smooth domain in RY, C?! is enough for our calculations. For u > 0 we

consider the family of domains
Q, =puQ={px; ze}.

The purpose of this work is to describe the asymptotic behavior of the best
Sobolev trace constants Sy (£2,) as p — 0+ and p — +oc.

As a precedent, see [4] for a detailed analysis of the behavior of extremals and
best Sobolev constants in expanding domains for p = 2 and ¢ > 2. In that paper
it is proved that the extremals develop a peak near the point where the curvature
of the boundary attains a maximum. In [5] and [13] a related problem in the half-
space RY for the critical exponent is studied. See also [6], [7] for other geometric
problems that leads to nonlinear boundary conditions.

Let us call u, an extremal corresponding to €,. Making a change of variables,
we go back to the original domain Q. If we define v, (z) = u,(ux), we have that
v, € WHP(Q) and

1PV oulP 4 o ” d

r/q
(/ |vu|? dU)
o0

We can assume, and we do so, that the functions u, are chosen so that

/ lo|?do = 1.
o0

We remark that the quantity (1) is not homogeneous under dilations or contrac-
tions of the domain. This is a remarkable difference with the study of the Sobolev
embedding Wy (Q) — L4(Q). First, we deal with the case u — 04. As we will
see the behavior of the Sobolev constant and extremals is very different when the
domain is contracted than when it is expanded. Our first result is the following:

Sq(Qu) = M(Nq_Npﬂ))/q/Q (3)

THEOREM 1.1. Let 1 < q < p*, then

: Se(u) (9
Mli%l+ pNa=Np+p)/a |0Q|p/a (4)

and if we scale the extremals u,, to the original domain  as v, (x) = u,(ux), x € Q,
with ||v,||Laaq) = 1, then v, is nearly constant in the sense that v, — |09~/ in

Wir(Q).



SOBOLEV TRACE CONSTANTS 7

Observe that the behavior of the Sobolev trace constant, strongly depends on p
and ¢. If we call 8,y = (N¢— Np + p)/q then we have that, as yu — 0+,

S, — 0 if B,y > 0,
S, — +00 if Bpq < 0,
Sy — C#0 if Bpq = 0.

Let us remark that the influence of the geometry of the domain appears in (4).

In the special case p = ¢, problem (2) becomes a nonlinear eigenvalue problem.
For p = 2, this eigenvalue problem is known as the Steklov problem, [2]. In [8] it is
proved, applying the Ljusternik-Schnirelman critical point Theory on C'! manifolds,
that there exists a sequence of variational eigenvalues Ay ' +o0o and it is easy to
see that the first eigenvalue A1 () verifies A\ (Q2) = S,(€2). So Theorem 1.1 shows a
difference in the behavior of the first eigenvalue of (2) with respect to the domain
with the behavior of the first eigenvalue of the following Dirichlet problem

—Apu = AulP~2u in €,

u =0 on 012,

where it is a well known fact that A; increases as the domain decreases, see [1], [10].
The variational eigenvalues A, of (2) are characterized by
1 [l |1[7,p(aQ)

— = sup min
Ak cec, uel ||U||€V1,p(9)

; ()

where Cj, = {C Cc WP(Q); C is compact, symmetric and v(C) > k} and « is the
Krasnoselski genus (see [11]). It is shown in [9] that there exists a second eigenvalue
for (2) and that it coincides with the second variational eigenvalue Ay. Moreover,
the following characterization of the second eigenvalue Ay holds

Yo = inf {/Q VP + |u|de}, (6)

where A = {u € WHP(Q); [|[ul|pra0) = 1 and [0QF| > c}, 09T = {z € 0Q; u(z) >
0} and 02~ is defined analogously. Concerning the eigenvalue problem, we have
the following result.

THEOREM 1.2. There exists a constant Xg such that

. p—1 :"'
#Elgl+u A2(2,) = Aa.

This constant \s is the first nonzero eigenvalue of the following problem

Apu =10 in €,

. (7)

\Vu|p_2% = MNulP~2u on 0f).
Moreover, if we take an eigenfunction us , associated to X2(§2,) and scale it to Q as
in Theorem 1.1, we obtain that vy, — Vs in WP(Q), where Uy is an eigenfunction
of (7) associated to Xo. Also, every eigenvalue A2(2,) < A(2,) < Ae(Q) of (2)
(variational or not) behaves as A(Q,) ~ p*~? as p — 04. Finally, if p; — 0 and
Aj = MQy,) is a sequence of eigenvalues such that there exists X\ with

lim 771\ = A,

j—o0
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let (v;) be the sequence of associated eigenfunctions rescaled as in Theorem 1.1,
then (v;) has a convergent subsequence (v;,) and a limit v, that is an eigenfunction
of (7) with eigenvalue A.

Observe that the first eigenvalue of (7) is zero with associated eigenfunction a
constant. Hence Theorem 1.1 says that the first eigenvalue and the first eigen-
function of our problem (2) converges to the ones of (7). Theorem 1.2 says that
A(Q,) — 400 as p — 04 for the remaining eigenvalues and that problem (7) is
a limit problem for (2) when g — 04. We believe that Theorem 1.2 is our main
result.

Now, we deal with the case 4 — +4o00. In this case we find, as before, that the
behavior strongly depends on p and q. We prove,

THEOREM 1.3. Let B, = (¢N — pN + p)/q. It holds

1L.If 1<qg<p, 0<culrat < Sq(Q) < CcopPra—l,

2. If p<g<p*, 0<c1 <5(Q,) <eo <o0.
For the lower bound in (2) in the case p < q < p* we have to assume that the
corresponding extremals v, rescaled such that maxgv, = 1 verify |Vv,| < Cpu.
Moreover, for all cases, we have that the corresponding extremals u,, Tescaled as in
Theorem 1.1 concentrates at the boundary, in the sense that

/ [v,|Pde < Cpu=Pra — 0 as p— +oo, if ¢ > p,
Q

/|Uu|pdl‘§0,u_1—>0 as ph — +0o, if g <p,
Q

/ |o|?do = 1.
o0

As before the behavior of the Sobolev trace constant depends on p and q. We
have that, as p — +oo0,
Sq—0 if Bpg —1<0, ie. g <p,
0<cp <85, <ea<o0 if Bpg —12>0, ie. ¢ >p.

with

The hypothesis |Vv,| < Cp is a regularity assumption, see [15] for C’llo’f regularity
results. As a consequence of our arguments we have that the extremals do not

develop a peak if 1 < g < p as in this case we have that

clg/ loulP do < ca,
a0

/ lvg|?do = 1.
o9

For p = ¢ it is proved in [12] that the first eigenvalue A1(£,,) = Sp(£,) is isolated
and simple. As a consequence of this if {2 is a ball the extremal v, is radial and
hence it does not develop a peak. Finally, for ¢ > p the extremals develop peaking
concentration phenomena in the sense that, for every a > 0,

and

a?|0Q2 N {v, > a}| — 0, as p — +0o,

with maxg v, = 1. This is in concordance with the results of [4] where for p = 2,
q > 2 they find that the extremals concentrates, with the formation of a peak,
near a point of the boundary where the curvature maximizes. We believe that for
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q > p, extremals develop a single peak as in the case p = 2. Nevertheless that kind
of analysis needs some fine knowledge of the limit problem in Rf that is not yet
available for the p—Laplacian.

Let us give an idea of the proof of the lower bounds. In the case p = ¢ we can
obtain the lower bound by an approximation procedure. We replace W1P(Q) by
an increasing sequence of subspaces in the minimization problem. Then we prove
a convergence result and find a uniform bound from below for the approximating
problems. We believe that this idea can be used in other contexts. For the case
g > p we use our assumption |Vv,| < Cpu to prove a reverse Holder inequality for
the extremals on the boundary that allows us to reduce to the case p = q.

Finally, for large u, in the case p = ¢ we can prove that every eigenvalue is
bounded.

THEOREM 1.4. Let \1(R2,) < A(Q,) < M(Qu) be an eigenvalue of (2) in Q,
(variational or not). Then there exists two constants, C1,Cy > 0, independent of
w such that 0 < C1 < A(Q,) < Cs < +o0, for every p large.

The rest of the paper is organized as follows. In Section 2, we deal with the case
© — 0 and in Section 3, we study the case y — +o0. Throughout the paper, by
C we mean a constant that may vary from line to line but remains independent of
the relevant quantities.

2. Behavior as pu — 0+. In this section we focus on the case u — 0+. First we
prove Theorem 1.1 and then study the case where ¢ = p (the eigenvalue problem).
Let us begin with the following Lemma.
LEMMA 2.1. Under the assumptions of Theorem 1.1, it follows that
o
< ,(Na-Nptp)/a 19
S‘](QN> — /’L ‘aQ|p/q

Proof. Let us recall that

/ Val? + ul? de
. Q,
Sq(Qy) = f

uEWl)Iljr(lQ“)\{O} p/q’
/ |u|? do
o0,

Then, taking u = 1 it follows that

€|
\aQ|p/q ’

as we wanted to see. O

S,(9,) < pNa=Np+p)/a

This Lemma shows that the ratio S, (Q,,)/uN9~NP+P)/4 is hounded. So a natural
question will be to determine if it converges to some value. This is answered in
Theorem 1.1 that we prove next.

Proof of Theorem 1.1. Let u, € W'P(€,) be a extremal for S;(£,) and define
vu(z) = uy,(px), we have that v, € WHP(2). We can assume that the functions u,,

are chosen so that
/ lvg|?do = 1.
o0
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Equation (3) and Lemma 2.1 give, for p < 1,
lonllyrniay < [ 57719007+l d < L
Q |oQ|p/a’
so there exists a function v € WP(Q) and a sequence y; — 0+ such that
vy, = v weakly in W'P(Q),
vy, — v in LP(9),

vy, — v in LY(09Q).

Moreover,

€
p P
/ |V, |P de < | |p/q .

Hence Vv, — 0 in L?(Q2). It follows that the limit v is a constant and must verify
Joq Iv|* = 1, hence v = constant = 10|71/ and so the full sequence v,, converges
weakly in W1P(Q) to v. From our previous bounds we have

1
ERRE

vy —

in LP(Q) and / |Vv,|P dz — 0.
Q

Therefore, we have strong convergence, v, — |0Q|~/%in W?(Q). The proof is
finished. 0

Now we turn our attention to the case p = g which is a nonlinear eigenvalue
problem. We recall that Theorem 1.1 says that A1(2,) = S,(Q,) ~ ¢ — 0. First
we focus on the behavior of the second eigenvalue A5. For the proof of Theorem
1.2 we need the following Lemmas. We believe that these results have independent
interest.

LEMMA 2.2. Let h € LV (092). Then, problem
Apw =0 n Q,
(8)
|Vwl|P~ 26“’ = h(zx) on O£},

has a weak solution if and only if fBQ (z) do = 0. Moreover, the solution is unique
up to an additive constant.

Proof It is straightforward to check that if there exists a weak solution to (8) then

f x)do = 0.
oo !

Now let X = {w e WP(Q); Jowdxz = 0}. By a standard compactness argu-
ment, one can verify that the following Poincare inequality holds,

lwllzr ) < ClIVwl e ay, 9)

for every w € X and some constant C. Let us now define

/|Vw|pdzf/ h(z)w do. (10)

Critical points of ® in W1P(Q) are weak solutions of (8). By (9), ® is a strictly
convex, bounded below functlonal on X, and so there exists a unique function w E
X such that ®'(w)(v) = 0 for every v € X. Now, using the fact that [, h(z)do =
0, it is easy to see that ®'(w)(v) = 0 for every v € WHP(Q) and the proof is now
complete. O
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Now we find a variational characterization of the first non-zero eigenvalue of the
limit problem (7).
LEMMA 2.3. Let Ao be defined by

Moo= inf & (11)

where Y = {u € WHP(Q); [o, [ulP~?udo = 0}. Then the infimum is attained.

Proof. Let u, be a minimizing sequence with ||, | zrs0) = 1. By a compactness
argument we can extract a subsequence, that we still call u,, such that

U, —u weakly in W'P(Q),
u, — u in LP(Q2),
U, — u in LP(0Q).

Hence u € Y — {0}, |lu zra0) = 1. Moreover, we have that
/ |VaulP dz < liminf/ |V, |P do = Ay.
Q Q

Therefore v is a minimizer. O

Now we are ready to deal with the proof of Theorem 1.2 which is the main result
of the paper.

Proof of Theorem 1.2. We can assume that 0 € Q and then we can take u(z) = 24
in the characterization of Ao given by (6) to obtain

IQuH/ |z1[” da IQHMP/ ly|” dy
A2 () < s =p'? < < Cp'P.

| o | nlas
o o

I

Hence if we consider vz, any eigenfunction associated to A2(£2,) normalized with
lvz,ullLra0) = 1 we get

Cpu'™P > Xg(Q) = p' 7 </ [Vva,pul? dl’Jrup/ vz, ]” dfﬂ) ~
Q Q

Therefore [|[Vvg ey < C. As we have that |lva,|lzraq) = 1, it follows that
lv2,ullwir) < C, hence we can extract a subsequence p; — 0+ such that

Vg, — U2 weakly in whr(Q),

Vo, — Ua in LP(Q),

’Ugﬂu]. — 'l~)2 in Lp(ﬁﬂ)

/ |62‘p do = 1.
o0

As it is proved in [9], [{va,, > 0} N O, {vz,,, <0} NIQ| > c independent of y;,
then 95 changes sign. Hence, we get

Q

Therefore we have that
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Taking a subsequence, if necessary, we can assume that

)‘Q(Q#) 3
P — A as p — 0+

and, as
A2(9,)
7M1_z :/Q|Vv27#|pd:c+,up/g|v2#|pdx,

passing to the limit
0+# / |Vg|P drx < liminf/ Vg [P dz = A,
Q Q

hence we obtain that \ # 0.
Taking ¢ = 1 in the weak form of the equation satisfied by v, we get that

_ Ao (€2 _

Passing again to the limit we have that

Uy €Y = {u € Wl’p(Q); / |u|p_2udo = O} .
o0

Let w be a function where the infimum (11) is attained with |[w|zr(90) = 1. As
w € A (see (6)), we have

Q
[ 1vui+ ol ao > 22
Q K

-p

”=AW%N+MWMW£

Taking the limit as y — 04 we get

- Ao (0 -
Az :/ [Vw|” dz > lim @ 2/ |Vio|? da > inf / V2P = Xs.
Q =0 1 p Q Q

[lz]|Lp(a0)=1,2€Y

Therefore

lim 7)\2(19#) = 5\2
pn—0 M —-Pp

/|va7u|pdx—>/ |VUs|P da,
Q o

from where it follows that v ,, — ¥ strongly in WLP(€). Once again, we pass to
the limit as p — 04 in the weak formulation satisfied by v, to get that 05 is an
eigenfunction associated to Ao By the characterization of Ao given in Lemma 11
we get that this is the first non-zero eigenvalue for problem (7).

Now we find the behavior of the remaining eigenvalues. Let A(£2,) be an eigen-
value (variational or not). Then, as the variational eigenvalues A;(£2,) form an
unbounded sequence, there exists k such that A2(2,) < A(Q,) < Ap(Q4). Now, let
x1,...,x, € O and r = r(k) be such that dist(x;,z;) > 2r. Let ¢ € C(Q) be a
nonnegative function with support B(0,7) and let ¢;(z) = ¢(z — x;).

Now, let us define Sy = span{¢1,...,¢x} N {v € WHP(Q); |[v[lwre) =1} and
Skn = {v(z/p); v € Sk}, then v(Sk) = v(Sk,u) = k. Hence

/ |u|P do / |u|P do
1 a0 o,

———— = sup inf £ > inf :
/\k(Qu) W(S)Zk“es/ |Vu|p+|u|pd$ UESk,u/ |VU|P+|u|Pd$

W Q.

and
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Changing variables we get,

1 / [v|? do
> P~ inf 082 . (12)
/ [VolP + pPlvlP dz
Q

)\k(Q#) VES}

As ¢; have disjoint support,

P
HU”LP @ = = Z |al|p|‘¢z||Lp ) < Z |az|pH¢||Lp (B(0,r))
Lr(Q) =1
and
p k
HVUHL:D(Q ZGZV@ Z |a;|”| |v¢2HLp(Q < Z |a;|”| ‘vd)HLp(B 0,r)"
LP(Q) 1=1

As the boundary of 2 is regular we have that there exists a constant Cj such that

Zaz(bz = Z |a1|p”¢1” (82) > C, Z |ail”.
=1

L?(09) =1
Using these estimates in (12) we obtain

||v||1£p(ag) =

Aa() _ M) _ M)

O<C lj‘lp _,U/]-*P_ ulp

= <Ck < +00

and the result follows.
Finally we study the convergence of the eigenvalues and eigenfunctions corre-

sponding to the rest of the spectrum. By our hypotheses we have that

s

lim — L

Jj—0o0 N] p

=\

As v; is bounded in WP(Q) we can extract a subsequence (that we still call v;)
such that

v; = v weakly in W'P(Q),
v; — v in LP(Q),
v; — v in LP(09).

Using that v; are solutions of (2), we obtain

Aj -
[ P20 s sy Eode = vt [t 09

J
Taking ¢ = 1 we get

- Aj -
Lo de = < [ 2, do
Q " a0

J

The limit as j — oo gives us

0= A/ |v[P~2v do
on
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and, as A # 0, we obtain that

0:/ |v[P~2v do. (14)
o

By Lemma 2.2 and (14), there exists a unique w € W1P(Q) with

/ |wP~2wdo =0
o0

Apw =0 in Q,

that satisfies

(15)
[Vw[P=22% = \|v[P=2y on Of).
Combining (13), the variational formulation of (15) with ¢ = v; — w and the fact

that we are dealing with a strongly monotone operator (see [3]), we get

@ V05 = Vully o < [ (Vo290 - [9ul=290)(Ty; - Vu)da

_ A B
= —/f?/ 0[P~ %05 (v; — w) da + 111,/ v; P20 (v; — w) do
Q j o0

f)\/ [v|P~2v(v; — w) do
o0

A.
CM?*‘( 2 _/\>/ 0[P~ (v; — w) do
14 89

[ (o~ P - w) do
o0

IA

The first two terms go to zero as j — oo. Concerning the last one, we have that it
is bounded by

(1ol e o) + 1ol Leay)P2llv; — vllLe o) lv; — wllran)  if p > 2,

—1 .
Mjvj = vll7s a0 lvi — wllzro0) if p < 2.

Therefore, taking the limit j — oo, we get Vv; — Vw in LP(Q2) and as Vu; — Vv
weakly in LP(£2) we conclude that Vv = Vw and so v = w and v; — v strongly in
WLP(Q). Finally, taking limits in (13) we obtain that v is a weak solution of (7)
as we wanted to prove. O

3. Behavior as 1 — +o0o. In this section we study the behavior of the Sobolev
constant in expanding domains, that is when p — +o00. To clarify the exposition
we divide the proof of Theorem 1.3 in several Lemmas. Let us begin by the upper
bounds.

LEMMA 3.1. Let p = q, then there exists a constant C > 0 such that S,(Q,) =
() < C, for every p large.
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Proof. We have p = g and look for a bound on the first eigenvalue A1 (€2,,). Changing
variables as before we have that
n(([riwor + op o)
M(Q,) = inf Q ,

veWLP(Q) / |v[Pdo
o0

We choose v(z) such that v = a = constant on 9Q and v = 0 in Q, = {z €
O dist(z,00) > r} with |Vo| < C/r. We fix a such that

/ [v|P do =1,
o9
that is a = |0Q| /7. As for r small we have that [Q\ Q.| ~ 7|0Q| we get
/ [v|P do < C'r.
Q

Using that |Vv| < C'/r we obtain

C
/ |Vv|pdcr < e
Q L

therefore
wP
A () < Cu <0Tp_1 + C’r) .
Finally, choose 7 = =1 to obtain the desired result. O

LEMMA 3.2. Letp < g < p*, then there exists a constant C > 0 such that Sq(Q,) <
C, for every u large.

Proof. As we mentioned in the introduction, we have that

/ wPIVolP + |vP dx
S,(9,) = M(quNpH))/q inf Q

VEWLP(Q) 2
(/ lv|4 da)
o0

Now, let us choose a point xo € 92 and let ¢ € C>°(£2) with support B(zg, 1),

and ||¢H%q(agz) =1
Arguing as in Section 2, we have that

(16)

M(Nq—Np+p)/q/ |p|P dz < C,
Q

and

M(Nq—Np+p)/qu—p/ |Vo|P dz < C.
Q
Therefore, taking ¢ = v in (16), we get S4(£2,) < C, and this ends the proof. [

LEMMA 3.3. Let 1 < q < p, then we have S4(£2,) < CuWN=1=p)/4a_ for some
constant C > 0. Remark that this says that lim, . S4(2,) = 0.
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Proof. We observe that the same calculations of Lemma 3.2 show that S; is bounded
independently of u for 1 < ¢ < p. Now, as in the case p = ¢ (Lemma 3.1), let us take
v(x) such that v = a = constant on 9Q and v =0 in Q, = {z € Q ; dist(z,00) >

r}. We fix a such that
/ 0| do = 1.
a0

Using the same arguments as in Lemma 3.1 we get

-p
S, () < CpNa-Nete)/a (C’ ko C’r)

rp—1
and choosing r = u~! we obtain S,(Q,) < CuNa=Nr+p=a)/a, O
Now let us prove that the extremals concentrates at the boundary.

LEMMA 3.4. Let 1 < q < p*. The extremals concentrate at the boundary in the
sense that

/ |ou|P dz — 0 as p — +oo,
Q

/ lv,|?do = 1.
19}9)

Proof. Let v, be an extremal such that v, re90) = 1. From our previous bound
we get, for p = ¢,

while

ul_p/ [V, |P de + u/ log|Pde < C
Q Q
Hence c
/|v#|pdx§——>0 as pt — +o0.
Q H
Now we turn back to the case 1 < ¢ < p. We have, from our previous calculations,
S, () < CpNa=Nptp=a)/a,
Hence
/ vu|P da < CpN=Dla=pr)/a _, g [ — 400.
Q
Finally, for p < g < p* we get that
M(Nq—Np+p)/q/ [ |Pde < C
Q

and therefore, as we are in the case ¢ > p and so N¢ > p(N — 1), we get

C
P — — 400
/Q lvg|P de < N Nero/a 0 as p — +oo.
The proof is now complete. O

To get the bound from below for )\; in the case p = ¢ we use the following idea,
first we replace the minimization problem in W1 () with a minimization problem
in a sequence of increasing subspaces and next we find that for an adequate choice
of the subspaces we get a uniform lower bound for the approximate problems. This
idea combined with a convergence result for the approximations gives the desired
result. So, let us first state and prove the convergence result. Since this procedure
works for every 1 < ¢ < p* we prove it in full generality.
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Now we want to describe a general approximation procedure for S;. These results
are essentially contained in [14] but we reproduce the main arguments here in order
to make the paper self-contained.

The Sobolev trace constant S, can be characterized as

Sq= _ inf {/ |VolP + |v|P dx; / lv|?do = 1.} . (17)
veWwhr(Q) (Ja 9

As we have already mentioned, the idea is to replace the space W1P(Q) with a
subspace V}, in the minimization problem (17). To this end, let V}, be an increasing
sequence of closed subspaces of W1?(Q), such that

{Uh € Vs / |up|? do = 1} # 0
o0

lim ol o —wllwir@) =0, Vivlwine =1

and (18)

We observe that the only requirement on the subspaces V}, is (18). This allows
us to choose V}, as the usual finite elements spaces, for example.
With this sequence of subspaces V}, we define our approximation of S, by

Syn— inf {/ IVunl? + fun? da: / uh|qd0:1}. (19)
up€Vh Q o0

We have that, under hypothesis (18), S, ;, approximates S; when h — 0.

THEOREM 3.1. Let v be an extremal for (17). Then, there ezists a constant C
independent of h such that,

|Sq — Sq7h| < Cuilelf"/h ||uh - 'UHWl,P(Q)7

for every h small enough.
Proof. As Vi, C WP(€) we have that
Sq < Sqn- (20)

Let us choose w € V}, such that ||w —v|w1.rq) < infy, |[v — un|lwrro) +€. We
have

wllwr )

SYE = funllwesiey < Llw @

a,h [[unllwrr (o) [w]|za(a0)

|[w —vllwre) + [[v[lwir @)
||wHLq(aQ)

1
_ (Il = vllwin) + S5’
||w||Lq(aQ)

llwllLa@ey = 1 < Hlwllzaoe) = ([0l La@o)] < llw = vlLioe) < Cllw = vllwir@

Now we use that

and hypothesis (18) to obtain that for every h small enough,

1
s < (= vlwire + 5™
o= 1—C||w—v||wl,p(g)

P
) < Sy + Cllw — vl|wip(a)- (21)

The result follows from (20) and (21). O
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Now we prove a result regarding the convergence of the approximate extremals.
We will not use it but it completes the analysis of the approximations.

THEOREM 3.2. Let up, be a function in Vi, where the infimum (19) is archived.
Then from any sequence h — 0 we can extract a subsequence hj — 0 such that up,
converges strongly to an extremal in WHP(Q). That is, there exists an extremal of

(17), v, with
hljig}o [un; — vllwie@) = 0.
Proof. Theorem 3.1 and hypothesis (18) gives that
: P 1 _
}Lli% ||Uh||W1,p(Q) = }Lli% Sq,n = Sq-

Hence there exists a constant C' such that for every h small enough, [jup|lyw1.»Q) <
C. Therefore we can extract a subsequence, that we denote by wup;, such that

Up, — W weakly in W1P(Q),
Up, — W strongly in LP(£2), (22)
Up;, — W strongly in L(09Q).

Hence, from the L7(0N2) convergence we have,
1= lim |up,|* do = / |w|? do.
hi—0Ja0 o0

Therefore w is an admissible function in the minimization problem (17). Now we
observe that, if v is an extremal,

||U|‘€V1.p(g) < ||wH€V1,p(Q) < hhr?i%f ||“hj Hgvl,p(g)
< hljigo Huhj”Ip;Vl»p(Q) = hljifo Sqn =S¢ = HU”ZI:VLP(Q)a
and therefore,
Jimn e, o) = lwlhwno = 5577 (23)

The space WP(Q) being uniformly convex, the weak convergence, (22), and the
convergence of the norms, (23), imply the convergence in norm. Therefore uy,; — w
in WHP(Q). This limit w verifies [|w|[{1,q) = Sq and [[w[|zs(an) = 1. Hence it is
an extremal and we have that limy, o |lun, — w|lw1.r() = 0. O

With these convergence results we can prove the lower bound in the case p = q.
LEMMA 3.5. Let p = g, then Sp(Q2,) = A1 () > C, for every 1 large.

Proof. Let us choose a particular subspace Vj, of W1P?(Q). As the boundary of Q is
smooth, we can define new coordinates near the boundary as follows. As before we
denote by Q, = {x € Q;dist(z,00Q) > r} and by 9Q, = {z € Q;dist(z,00) = r}
and we use the following construction. We define ®(&,r) = & — rv(€), where v(§)
is the exterior normal vector at £ € 9Q. @ : 9Q x (0,R) — Q\ Qr. We recall
that ® is a difeomorphism if R is small enough. With this application ® we can
define a triangulation as follows. First, choose a uniform regular triangulation of
size h of the set 9 x (0, R). Now, by the application ® we can get a triangulation
of the strip 2\ Qg. In fact, we can select as nodes z;; the points ®(&;,r;), where
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(&,7;) is a node of the uniform mesh of 92 x (0,R). Our space Vj, is defined
by all the continuous functions in WP(Q) that are linear over each triangle of
the strip 2\ Q. This space is the usual space of linear finite elements in special
triangulations defined using the mapping @, see [3] for detailed information on the
finite elements method.

Let us call uj, the functions in V3. We have indexed the nodes x;; in a way such
that z;; € 0Q and z;; is at distance j — 1 (in nodes) from the boundary, 0Q. We
denote by u;; the value of uj at the node z;; and by a;; the value of the gradient
of up, on the triangle T;;. We assume that the index ¢ runs from 1 to [ and j from
1 to ko. Remark that kg ~ R/h and [ ~ |02 /RN L.

We want to find a lower bound (independent of h and w) on the approximation
of the first eigenvalue,

@) =t {a [1vapasn [upas [ jupis=1f,

To this end we consider a function u;, € V}, such that

/ lup|? do =1,
o0

!
Z lui |PRN L > Oy
i—1

Let k be the first integer in [1, ko] such that

l
C
> AN < =2
=1

that is

First, let us observe that if k = ko (there are kg triangles between the two
boundaries of 2\ €,.), then we have

ko I ko 1
p[Jupdez 53S0 [ ez Cnds 3 gl
Q Ti]‘

j=21:=1 Jj=21i=1
ko l C

= Ch wii PR > Chuko—~.
M;;' J| Z HRo 5

As kg ~ R/h we get that

wa@) = it = [ [wupds e [ upas [ jupis =1}
Uh h Q Q o0

> inf {u/ |up|P dx; / |uh|pd0:1} >Cu>1
up€Vp Q o0

and we are done. Hence let us assume that k < ky. As before we can bound the
term p [, lun [P by

ko1 koo
- Gy
u/ﬂ lup|P dx > C“ZZ lui;[PRN = Chuzz lui; PR~ > C’h,uk7. (24)

j=2i=1 j=2i=1
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Now we observe that
k
win — ik = Y _ aijh.
=1

Using this fact we get,

p\ 1/p

Hence we get

and finally,

Clullfpthfl C‘ulfp
kp—1pp—1 2 kp—1pp—1"

ulf”/ |Vup|P dx >
Q

Using (24) and (25) we obtain

@) = int L [wup s [ upds [ a1
up€Vh Q Q oQ

C

Hence, if we call 7 = uhk we get that

>C.

Tp—1 =

An(Qy) > F(r)=C1 +

Since the subspaces that we have chosen verify hypotheses (18), we can use the
convergence result, Theorem 3.1, to get that A;(Q,) = limp_0 A1 x(2,) > C. O

Let us look at the case 1 < ¢ < p more carefully, and obtain a bound from below
using the lower bound obtained for A;(€2,,).

LEMMA 3.6. Let 1 < g < p. Then, for every p large, Sq(Q,) > CpPra=1. Moreover
this shows that, if v is an extremal,

1/q 1/p 1/q
c1 (/ |v] da) > (/ [v|? da) > ey (/ lv|? da) .
i) o9 a0

Hence there is no peaking formation in this case.
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Proof. As we mentioned in the introduction, we have that
/ LIV + o] da
— (Ng=Np+p)/q Q
Salf) = vewin@) v/a
( / ol da>
a0

/ J1P V0 + plol? da
Q

inf
'L)EWLP(Q) P/q
( / BE da>
o0

/ p P |\ VolP + plol? da / [v|P dx
= Mﬂpq_l inf Q o0

vEWLP(Q) p/a’
[ oo ( / v|qd0)
o0 00

Using that 1 < g < p we get that, by Holder’s inequality
/ [v|P dx
90 > C.

p/qa —
(/ |U|qd0>
oQ

Hence, using our previous lower bound for A, (€2,,) we get that there exists a constant
C such that S,(,) > CpPra=1. The upper bound proved in Lemma 3.3, S,(,,) <
CuPra=1 gives that

— Bpq—1

/ul_p|V1}H\p+u|vu|pdm / v, [P dx
Bpq—1JQ (219
» p/q
/BQ |UM| do (/ |Uuqd0>
o0
/ vpl? dx
o0
p/q’
(/ |vu|qd0>
o0

r/q
/ lo|Pde < C (/ v, [? da) .
o9 o9

This ends the proof. O

Clufgpq_l > SQ(QM) =

Z C"uﬁqul

Hence

To finish the proof of Theorem 1.3 we need the following Lemma.

LEMMA 3.7. Let p < q¢ < p*. Then, for large p, Sq(2,) > C. Moreover, the
extremals concentrates in the sense that a?|0Q2 N {v, > a}| — 0, as p — 400, with
maxg v, = 1.

Proof. First we prove that there exists a constant C such that S,(Q,) > C. Let
v, be an extremal in €). By rescaling v, we can obtain an extremal ¥,, such that
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maxg 0, = 1. That is, 0 < 9, < 1 and there exits a point zy € 9Q with v,(x¢) = 1.
Arguing as in Lemma 3.6 we have

/ul—P|w#|P+u|au|de / (5,7 da
Q o

~ p/q’
/89 |0ul” do </ 0,17 do)
oN

As v, satisfies (2), by our hypothesis, we have that |V7,| < Cu. Hence
{z € 0Q; v, (x) > 1/2} D B(zo,c/p) NOQ.

Sq() = plra=t

As ¢ >pand 0 <7, <1 we have that

/ (5, do 2/ 15,]7 do.
e} e}
Therefore
- /89 |6u|p dx P (9—p)/q
" pq > 1 pa (/ ‘/ﬁ |pd1~)
p/q 20 ®

(/ |0, dg)
o9
1 (a—p)/a
> CpPra—t / — dx > C.
OONB(zo,c/p) 2p

Using this bound and the lower bound for S,(€2,,) in (26) we get the desired lower
bound. Next, we prove the concentration property for the extremals. Using the
same arguments as before, we get

ap|8§2ﬂ{f)u>a}|§/ [0,|P do < —7— — 0, as [ — +oo,
oQ H

with maxg 0, = 1. This proves the concentration phenomena. O
We end the article proving that every eigenvalue is bounded as y — +oc.

Proof of Theorem 1.4. The idea is similar as the one used in the proof of Theo-
rem 1.2, see Section 2. Let z1,...,2 € 00 such that dist(z;,z;) > 2p and let
¢; € C>*(Q) with support B(z;, ) and max¢; = 1. Now, let us define S =
span{¢y,...,¢x} N {u € WP(Q); |ullwir) =1} and Sk, = {v(z/pn); v € Sk}
Then, v(Sk) = v(Sk,u) = k. Hence
/ |u|? do
> inf O

/ luf? do

L sup inf 0%

() (s)2k “ES/ [Vul? + |u|? dz - ek / [Vaul? + [ul” dz
Qu Qu

/ [v|? do
o0

/ |VolP + uPlv|P da
Q

Changing variables we get,

1
———— > Pt inf
() = ues,

(27)
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As ¢; have disjoint support,

k p k
”U”LP Q) — Zai(bi = Z ‘a’l|p”¢lHLp(Q < CZ ;| p
i=1 Le(Q) =1 i=1
and
P k
IVl () = Zazwl = Z il IV illh ) < O laslP
Lr(Q) i=1 i=1

As the boundary of Q2 is regular we have that there exists a constant C' such that

””Hip(ag) = Zazﬁbz = Z |az|p”¢z”m(ag) = OZ JailP '~ .

Lr(092) =1
Using these estimates we get 0 < ¢ < A1(2,) < A(Q,) < Ae(Qu) < Cp < +o00. O
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